
By Bill Rosenblatt; ISBN 1-56592-054-6, 336 pages.
First Edition, June 1993.
(See the catalog page for this book.)

Search the text of Learning the Korn Shell.

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Table of Contents
Preface
Chapter 1: Korn Shell Basics
Chapter 2: Command-line Editing
Chapter 3: Customizing Your Environment
Chapter 4: Basic Shell Programming
Chapter 5: Flow Control
Chapter 6: Command-line Options and Typed Variables
Chapter 7: Input/Output and Command-line Processing
Chapter 8: Process Handling
Chapter 9: Debugging Shell Programs
Chapter 10: Korn Shell Administration

Appendix A: Related Shells
Appendix B: Reference Lists
Appendix C: Obtaining Sample Programs

Copyright © 1998 O'Reilly & Associates. All Rights Reserved.

Learning the Korn Shell

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ [2/8/2001 4:51:05 PM]

http://www.oreilly.com/catalog/korn/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/

Full Text Search
Use this HTML form to search the contents of Learning the Korn Shell.

Results report format:

Search for

If you are having difficulty searching, or if you have not used this search utility before, please read this.

Copyright © 1998 O'Reilly & Associates. All Rights Reserved.

Search Learning the Korn Shell

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/ksrch.htm [2/8/2001 4:51:07 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/server.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: Symbols and Numbers
!

built-in variable : 8.4.2. Process ID Variables and Temporary Files

keyword in next release : A.7. The Future of the Korn Shell

negating a condition test : 5.1.3.3. File Attribute Checking

negation in character sets : 1.6.2. Filenames and Wildcards

POSIX shell keyword : A.2. The IEEE 1003.2 POSIX Shell Standard

regular expression operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

#

pattern-matching operator

4.3.3. Pattern-matching Operators

6.2.2. Arithmetic Variables and Assignment

built-in variable : 4.2.1. Positional Parameters

comments : 4.3.1. Syntax of String Operators

length operator : 4.3.4. Length Operator

pattern-matching operator

4.3.3. Pattern-matching Operators

4.5. Advanced Examples: pushd and popd

5.5. while and until

size of an array : 6.3. Arrays

$

$' ANSI C string delimiter in next release : A.7. The Future of the Korn Shell

$(()) : (see arithmetic expressions)

built-in variable

2.2. The History File

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_0.htm (1 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

8.4.2. Process ID Variables and Temporary Files

%

%% pattern-matching operator

4.3.3. Pattern-matching Operators

4.5. Advanced Examples: pushd and popd

5.5. while and until

6.2.2. Arithmetic Variables and Assignment

pattern-matching operator

4.3.3. Pattern-matching Operators

5.2. for

5.3. case

specifying jobs

8.2.1. Foreground and Background

8.3.2. kill

A.1. The Bourne Shell

& : (see background jobs)

&&

for condition tests

5.1.3.3. File Attribute Checking

A.1. The Bourne Shell

for exit statuses

5.1.2. Combinations of Exit Statuses

5.5. while and until

A.2. The IEEE 1003.2 POSIX Shell Standard

for condition tests : 7.2.2.3. Code blocks

> : 1.7.2. I/O Redirection

< : 1.7.2. I/O Redirection

" (weak quotes) : 1.9.1. Quoting

(()) : (see condition tests, arithmetic)

*

accessing entire array : 6.3. Arrays

as default in case statement : 5.3. case

built-in variable : 4.2.1. Positional Parameters

as default list in for statement : 5.2. for

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_0.htm (2 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3

as default list in select statement : 5.4. select

regular expression operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

wildcard

1.6.2. Filenames and Wildcards

9.2.3.3. Breakpoints

+

regular expression operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

.

current directory : 1.6.1.3. Changing working directories

to hide files : 1.6.2. Filenames and Wildcards

to run a script : 4.1. Shell Scripts and Functions

.. (directory) : 1.6.1.3. Changing working directories

:

:+

4.3.1. Syntax of String Operators

5.2. for

:-

4.3.1. Syntax of String Operators

4.5. Advanced Examples: pushd and popd

9.2.3.4. Break conditions

:= : 4.3.1. Syntax of String Operators

:?

4.3.1. Syntax of String Operators

4.5. Advanced Examples: pushd and popd

no-op command : 8.4. trap

;

;; in case statement : 5.4. select

statement separator

3.2. Aliases

5.1.3.1. String comparisons

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_0.htm (3 of 6) [2/8/2001 4:51:09 PM]

9.2.5. Exercises

A.6. Workalikes on PC Platforms

?

built-in variable

5.1.1. Exit Status and Return

9.1.2.2. ERR

9.2.5. Exercises

regular expression operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

wildcard

1.6.2. Filenames and Wildcards

4.3.2.2. Korn shell versus awk/egrep regular expressions

@

built-in variable : 4.2.1. Positional Parameters

preserving whitespace : 6.3. Arrays

regular expression operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

9.2.3.3. Breakpoints

[] : (see condition tests, old syntax)

[] (wildcard)

1.6.2. Filenames and Wildcards

4.3.2.2. Korn shell versus awk/egrep regular expressions

[[]] : (see condition tests)

\ (backslash) : 1.9.2. Backslash-escaping

as continuation characters : 1.9.4. Continuing Lines

for quoting quote marks : 1.9.3. Quoting Quotation Marks

\" (weak quotes) : 3.4.1. Variables and Quoting

^

matching beginning of line in regular expressions

2.3.4. Moving Around in the History File

10.1. Installing the Korn Shell as the Standard Shell

as pipe character in Bourne shell

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_0.htm (4 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

10.1. Installing the Korn Shell as the Standard Shell

A.1. The Bourne Shell

` (grave accent) : A.7. The Future of the Korn Shell

archaic command substitution delimiter

4.4. Command Substitution

A.1. The Bourne Shell

obsolescence in next release : A.7. The Future of the Korn Shell

|

|&, background job with two-way pipes

8.5.4. Coroutines with Two-way Pipes

8.5.5. Two-way Pipes Versus Standard Pipes

|| for condition tests

5.1.3.3. File Attribute Checking

A.1. The Bourne Shell

|| for exit statuses

5.1.2. Combinations of Exit Statuses

9.2.3.3. Breakpoints

A.2. The IEEE 1003.2 POSIX Shell Standard

as case pattern separator : 5.3. case

pipe

1.7.3. Pipelines

10.1. Installing the Korn Shell as the Standard Shell

A.1. The Bourne Shell

~ (tilde)

1.6.1.2. Tilde notation

7.3. Command-line Processing

7.3.1. Quoting

A.1. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard

in public domain Korn shell : A.4. pdksh

within double quotes : 3.4.1. Variables and Quoting

within variable expressions : A.7. The Future of the Korn Shell

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_0.htm (5 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_0.htm (6 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: A
a.out

5.1.3.2. About C Compilers

6.1.3.1. More About C Compilers

A/UX : 1. Korn Shell Basics

Ada

4.1.1. Functions

4.3.1. Syntax of String Operators

adb : 9. Debugging Shell Programs

ADM-3a terminal : 2.4.4. Moving Around in the History File

AIX

1. Korn Shell Basics

1.9.5. Control Keys

algebraic notation

8.5.4. Coroutines with Two-way Pipes

8.6.2. Nested Subshells

aliases

Summary of Korn Shell Features

2.3.7. Keyboard Shortcuts with Aliases

2.4.7. Miscellaneous Commands

3. Customizing Your Environment

3.2. Aliases

7.1. I/O Redirectors

A.1. The Bourne Shell

on arguments of command line : 3.2. Aliases

defining : 3.2. Aliases

lack of system-wide : 10.2.3. Types of Global Customization

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_a.htm (1 of 4) [2/8/2001 4:51:10 PM]

order of precedence in command lookup

4.1.1. Functions

7.3. Command-line Processing

output of alias command in next release : A.7. The Future of the Korn Shell

preventing lookup as : 5.1.1. Exit Status and Return

recursive

3.2. Aliases

7.3. Command-line Processing

removing (unalias) : 3.2.1. Tracked Aliases

showing : 3.2.1. Tracked Aliases

tracked

3.2.1. Tracked Aliases

3.4.2.6. PATH and Tracked Aliases

10.2.3. Types of Global Customization

defining : 3.2.1. Tracked Aliases

in next release : A.7. The Future of the Korn Shell

as protection against Trojan horses

10.3.3. Tracked Aliases

10.3.4. Privileged Mode

showing

3.2.1. Tracked Aliases

10.3.3. Tracked Aliases

using

as mnemonic : 3.2. Aliases

as shorthand : 3.2. Aliases

for correcting command typos : 3.2. Aliases

ANSI : A.4. pdksh

Apple Macintosh : Preface

Multifinder : 8. Process Handling

OS System 7 : 8. Process Handling

OS Version 6 : 8. Process Handling

arithmetic expressions

6.1.3. getopts

6.2. Integer Variables and Arithmetic

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_a.htm (2 of 4) [2/8/2001 4:51:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

6.3.3. String Formatting Options

A.2. The IEEE 1003.2 POSIX Shell Standard

bases of numbers : 6.2. Integer Variables and Arithmetic

bash syntax : A.5. bash

condition tests : (see condition tests, arithmetic)

features in next release : A.7. The Future of the Korn Shell

floating point (real number) : A.7. The Future of the Korn Shell

MKS Toolkit shell syntax : A.6. Workalikes on PC Platforms

operators : 6.2. Integer Variables and Arithmetic

assignment form : 6.2. Integer Variables and Arithmetic

truth values of relational : 6.2. Integer Variables and Arithmetic

order of evaluation in command-line processing : 7.3. Command-line Processing

arrays

6.3. Arrays

6.3.3. String Formatting Options

A.1. The Bourne Shell

A.4. pdksh

(size of) : 6.3. Arrays

assigning values to : 6.3. Arrays

assignment with set -A

6.3. Arrays

6.3.3. String Formatting Options

associative : A.7. The Future of the Korn Shell

extracting values from : 6.3. Arrays

features in next release : A.7. The Future of the Korn Shell

initializing

6.3. Arrays

6.3.3. String Formatting Options

preserving whitespace in : 6.3. Arrays

value of entire : 6.3. Arrays

ASCII : 1.6.2. Filenames and Wildcards

assembler : (see assembly language)

assembly language : 5.1.3.2. About C Compilers

AT&T

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_a.htm (3 of 4) [2/8/2001 4:51:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

1.3.1. The Korn Shell

A.7. The Future of the Korn Shell

AT&T Bell Laboratories : 1.3.1. The Korn Shell

autoload

4.1.1.1. Autoloaded functions

10.2.3. Types of Global Customization

(see also functions, autoloading)

awk

Summary of Korn Shell Features

4.3.2. Patterns and Regular Expressions

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

7.3.1. Quoting

10.1. Installing the Korn Shell as the Standard Shell

A.6. Workalikes on PC Platforms

using instead of cut : 4.4. Command Substitution

using instead of pr -n : 9.2.3.3. Breakpoints

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_a.htm (4 of 4) [2/8/2001 4:51:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: B
background jobs

1.8. Background Jobs

4.1. Shell Scripts and Functions

8. Process Handling

8.1. Process IDs and Job Numbers

! variable (process ID of most recent) : 8.4.2. Process ID Variables and Temporary Files

creating : 8.2. Job Control

lack of in MS-DOS : A.6. Workalikes on PC Platforms

saving standard output and error of : 7.1.2. File Descriptors

with two-way pipes : 8.5.4. Coroutines with Two-way Pipes

Backus-Naur Form (BNF) : A.4. pdksh

basename : 4.3.3. Pattern-matching Operators

bash

1.4. Getting the Korn Shell

A. Related Shells

A.5. bash

obtaining from Internet : A.5. bash

bc : 8.5.4. Coroutines with Two-way Pipes

bg

8.2. Job Control

8.2.2. Suspending a Job

A.1. The Bourne Shell

biff : 3.4.2.2. Mail Variables

/bin

3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_b.htm (1 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

BITFTP : C.3. BITFTP

Bourne shell

Preface

Summary of Korn Shell Features

1.3. History of UNIX Shells

1.3.1. The Korn Shell

1.3.2. Features of the Korn Shell

1.4. Getting the Korn Shell

2. Command-line Editing

3.3. Options

4.1.1. Functions

4.2. Shell Variables

4.3.2. Patterns and Regular Expressions

4.4. Command Substitution

5.1.3.1. String comparisons

5.4. select

6.1.3. getopts

6.2. Integer Variables and Arithmetic

7.1. I/O Redirectors

7.1.2. File Descriptors

8.5.4. Coroutines with Two-way Pipes

9. Debugging Shell Programs

10.1. Installing the Korn Shell as the Standard Shell

A. Related Shells

A.1. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard

A.4. pdksh

A.5. bash

Bourne, Steven : 1.3. History of UNIX Shells

break : 5.4. select

BSD

1.3. History of UNIX Shells

1.9.5. Control Keys

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_b.htm (2 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

2.3.4. Moving Around in the History File

2.3.6. Miscellaneous Commands

2.4. Vi Editing Mode

3.4.2.2. Mail Variables

built-in commands

ability to add new in next release : A.7. The Future of the Korn Shell

online help for in next release : A.7. The Future of the Korn Shell

order of precedence in command lookup

4.1.1. Functions

7.3. Command-line Processing

built-in variables

3.4. Shell Variables

(see also environment variables)

: 4.2.1. Positional Parameters

$: 2.2. The History File

* : 4.2.1. Positional Parameters

as default list in for statement : 5.2. for

as default list in select statement : 5.4. select

* and # in functions : 4.2.1.1. Positional parameters in functions

?

5.1.1. Exit Status and Return

9.1.2.2. ERR

9.2.5. Exercises

@ : 4.2.1. Positional Parameters

CDPATH : 3.4.3. Directory Search Path

COLUMNS

3.4.2.1. Editing mode variables

7.2.2.3. Code blocks

EDITOR

3.4.2.1. Editing mode variables

3.5.1. Environment Variables

ERRNO, obsolescence in next release : A.7. The Future of the Korn Shell

FCEDIT : 3.4.2.1. Editing mode variables

FPATH

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_b.htm (3 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3

4.1.1.1. Autoloaded functions

10.2.3. Types of Global Customization

LINENO

9.1.1. Set Options

9.1.2.2. ERR

9.2.2. The Preamble

LINES : 3.4.2.1. Editing mode variables

list of those not supported in Bourne shell : A.1. The Bourne Shell

list of those not supported in pdksh : A.4. pdksh

MAILCHECK : 3.4.2.2. Mail Variables

MAILPATH : 3.4.2.5. Command Search Path

naming convention : 3.4. Shell Variables

OLDPWD

3.4.3.1. Miscellaneous Variables

4.5. Advanced Examples: pushd and popd

5.1.1. Exit Status and Return

7.3. Command-line Processing

OPTARG : 6.1.3. getopts

OPTIND : 6.1.3. getopts

PID : A.6. Workalikes on PC Platforms

positional parameters : (see positional parameters)

PS1

3.4.2.3. Prompting Variables

4.4. Command Substitution

PS2 : 3.4.2.3. Prompting Variables

PS3

3.4.2.3. Prompting Variables

5.4. select

command substitution in next release : A.7. The Future of the Korn Shell

PS4

3.4.2.3. Prompting Variables

9.1.1. Set Options

in kshdb : 9.2.3. Debugger Functions

RANDOM : 9.1.2.1. EXIT

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_b.htm (4 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

REPLY

in read statement : 7.2.2. read

in select statement

5.4. select

6.3. Arrays

SECONDS : 3.4.3.1. Miscellaneous Variables

VISUAL : 3.4.2.1. Editing mode variables

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_b.htm (5 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: C
C compilers

4.3.3. Pattern-matching Operators

5.1.3.1. String comparisons

5.3. case

6.1.3. getopts

optimization : 6.1.3.1. More About C Compilers

options : 6.1.3.1. More About C Compilers

as pipelines : 7.3.2.1. The C Compiler as Pipeline

C programming language

1.3. History of UNIX Shells

1.6.2. Filenames and Wildcards

4. Basic Shell Programming

4.1. Shell Scripts and Functions

4.1.1. Functions

4.3.2.1. Regular expression basics

5.1.1. Exit Status and Return

5.1.1.1. Return

5.1.3.2. About C Compilers

5.2. for

5.3. case

5.4. select

5.5. while and until

6. Command-line Options and Typed Variables

6.1.3. getopts

6.2. Integer Variables and Arithmetic

6.2.1. Arithmetic Conditionals

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (1 of 10) [2/8/2001 4:51:14 PM]

7.2.1. print

7.2.1.1. print escape sequences

7.2.2. read

7.2.2.3. Code blocks

7.3.2.1. The C Compiler as Pipeline

9. Debugging Shell Programs

A.7. The Future of the Korn Shell

C shell

Preface

Intended Audience

1.3. History of UNIX Shells

1.3.2. Features of the Korn Shell

1.4. Getting the Korn Shell

2.3.5. Filename Completion and Expansion

3.2. Aliases

3.4.2.3. Prompting Variables

3.5.2. The Environment File

4.1.1. Functions

4.2. Shell Variables

4.4. Command Substitution

4.5. Advanced Examples: pushd and popd

5.4. select

6.2.2. Arithmetic Variables and Assignment

7.1.2. File Descriptors

10.2.3. Types of Global Customization

10.3.2. A System Break-in Scenario

10.3.4. Privileged Mode

A.4. pdksh

A.5. bash

history mechanism

Summary of Korn Shell Features

2. Command-line Editing

2.1. Enabling Command-line Editing

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (2 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

2.5. The fc Command

list of features in Korn shell : Summary of Korn Shell Features

which : 3.2. Aliases

C++ programming language

7.3.2.1. The C Compiler as Pipeline

9. Debugging Shell Programs

case

5.3. case

6.1.1. shift

6.3. Arrays

7.2.2.1. Reading lines from files

9.2.3.1. Commands

double-semicolons : 5.4. select

redirecting I/O to : 7.2.2.2. I/O Redirection and multiple commands

syntax : 5.3. case

cat

1.7.1. Standard I/O

1.7.2. I/O Redirection

7.1. I/O Redirectors

8.4.1. Traps and Functions

9.2.1.1. The driver script

cd

1.6.1.3. Changing working directories

7.3.1. Quoting

10.1. Installing the Korn Shell as the Standard Shell

A.1. The Bourne Shell

- (to previous directory)

1.6.1.3. Changing working directories

4.5. Advanced Examples: pushd and popd

examples : 1.6.1.3. Changing working directories

inoperative in restricted shell : 10.3.1. Restricted Shell

substitution form : 1.6.1.3. Changing working directories

CD-ROM : 5.1.3.2. About C Compilers

CDPATH : 3.4.3. Directory Search Path

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (3 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2

chapter summary : Chapter Summary

chmod

4.1. Shell Scripts and Functions

10.2.1. umask

chsh : 1.4. Getting the Korn Shell

code blocks

7.2.2.3. Code blocks

8.6.2. Nested Subshells

compared to nested subshells : 8.6.2. Nested Subshells

piping outout to : 7.2.2.3. Code blocks

POSIX shell syntax : A.2. The IEEE 1003.2 POSIX Shell Standard

redirecting standard I/O to : 7.2.2.3. Code blocks

COLUMNS

3.4.2.1. Editing mode variables

7.2.2.3. Code blocks

command substitution

2.1. Enabling Command-line Editing

4.4. Command Substitution

A.1. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard

examples : 4.4. Command Substitution

I/O redirection within

4.4. Command Substitution

A.2. The IEEE 1003.2 POSIX Shell Standard

order in command-line processing : 7.3. Command-line Processing

shown in xtrace output : 9.1.1. Set Options

syntax : 4.4. Command Substitution

command-line options : 6.1. Command-line Options

list of : B.1. Invocation Options

command-line processing : 7.3. Command-line Processing

effect of eval on : 7.3.2. eval

effect of quoting on : 7.3.1. Quoting

example : 7.3. Command-line Processing

inside condition tests : 5.1.3. Condition Tests

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (4 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

order of steps in : 7.3. Command-line Processing

order of steps in POSIX shell : A.2. The IEEE 1003.2 POSIX Shell Standard

commands

built-in command in next release : A.7. The Future of the Korn Shell

list of : B.2. Built-in Commands and Keywords

vi : B.8. Vi Control Mode Commands

comments in scripts : 4.3.1. Syntax of String Operators

compound statements : 7.2.2.2. I/O Redirection and multiple commands

redirecting I/O to : 7.2.2.2. I/O Redirection and multiple commands

compress

1.8. Background Jobs

1.8.1. Background I/O

condition tests

5.1.3. Condition Tests

6.2. Integer Variables and Arithmetic

A.1. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard

A.4. pdksh

A.5. bash

arithmetic

6.2.1. Arithmetic Conditionals

6.2.2. Arithmetic Variables and Assignment

A.2. The IEEE 1003.2 POSIX Shell Standard

integer values as truth values

6.2.1. Arithmetic Conditionals

9.2.3.5. Execution tracing

file attribute operators : 5.1.3.3. File Attribute Checking

-a

5.1.3.3. File Attribute Checking

5.2. for

A.7. The Future of the Korn Shell

-d

5.1.3.3. File Attribute Checking

5.2. for

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (5 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

5.5. while and until

-f

5.1.3.3. File Attribute Checking

5.2. for

-G : 5.1.3.3. File Attribute Checking

-nt

5.1.3.3. File Attribute Checking

7.3.2. eval

-O

5.1.3.3. File Attribute Checking

5.2. for

-ot : 5.1.3.3. File Attribute Checking

-r

5.1.3.3. File Attribute Checking

5.2. for

-s : 5.1.3.3. File Attribute Checking

-w

5.1.3.3. File Attribute Checking

5.2. for

-x

5.1.3.3. File Attribute Checking

5.2. for

5.5. while and until

function of : 5.1.3. Condition Tests

integer comparison operators : 5.1.4. Integer Conditionals

-eq : 5.1.4. Integer Conditionals

-ge : 5.1.4. Integer Conditionals

-gt : 5.1.4. Integer Conditionals

-le : 5.1.4. Integer Conditionals

-lt : 5.1.4. Integer Conditionals

-ne : 5.1.4. Integer Conditionals

obsolescence in next release : A.7. The Future of the Korn Shell

old syntax

5.1.3. Condition Tests

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (6 of 10) [2/8/2001 4:51:14 PM]

5.1.3.1. String comparisons

A.1. The Bourne Shell

A.4. pdksh

A.5. bash

A.6. Workalikes on PC Platforms

processing of text inside : 5.1.3. Condition Tests

string comparison operators : 5.1.3.1. String comparisons

!= : 5.1.3.1. String comparisons

> : 5.1.3.1. String comparisons

< : 5.1.3.1. String comparisons

-n

5.1.3.1. String comparisons

5.4. select

5.5. while and until

-z : 5.1.3.1. String comparisons

=

5.1.3.1. String comparisons

7.2.2.3. Code blocks

9.2.3.3. Breakpoints

A.7. The Future of the Korn Shell

string vs. integer comparisons : 5.1.4. Integer Conditionals

supported in MKS Toolkit shell : A.6. Workalikes on PC Platforms

in while and until statements : 5.5. while and until

conditionals : (see if)

constants : 6.3.4. Type and Attribute Options

control keys : 1.9.5. Control Keys

clashes with editing modes : 2. Command-line Editing

CTRL-\ : 1.9.5. Control Keys

CTRL-C : 1.9.5. Control Keys

CTRL-D

1.4. Getting the Korn Shell

1.5. Interactive Shell Use

1.9.5. Control Keys

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (7 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

5.4. select

CTRL-H : 1.9.5. Control Keys

CTRL-M : 1.9.5. Control Keys

CTRL-Q : 1.9.5. Control Keys

CTRL-S : 1.9.5. Control Keys

CTRL-U : 1.9.5. Control Keys

DEL

1.9.5. Control Keys

2.3.1. Basic Commands

conventions, typographical : Conventions Used in This Handbook

core dumps

8.3.1. Control-key Signals

8.4. trap

8.6.2. Nested Subshells

10.2.2. ulimit

coroutines

8. Process Handling

8.5. Coroutines

A.1. The Bourne Shell

A.4. pdksh

definition : 8.5. Coroutines

on multiple-CPU computers : 8.5.3. Parallelization

performance issues : 8.5.2. Advantages and Disadvantages of Coroutines

pipelines as example of : 8.5. Coroutines

two-way pipes : (see two-way pipes)

cp

1.7.2. I/O Redirection

8.5.3. Parallelization

crontab : 2.2. The History File

CTRL-\

1.9.5. Control Keys

8.3.1. Control-key Signals

8.6.2. Nested Subshells

CTRL-C

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (8 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

1.9.5. Control Keys

7.1. I/O Redirectors

8.2.2. Suspending a Job

8.3. Signals

8.3.1. Control-key Signals

8.3.2. kill

8.4. trap

8.4.2. Process ID Variables and Temporary Files

8.6.2. Nested Subshells

9.1.2.1. EXIT

CTRL-D

1.4. Getting the Korn Shell

1.5. Interactive Shell Use

1.9.5. Control Keys

5.4. select

7.1. I/O Redirectors

8.4.1. Traps and Functions

CTRL-H : 1.9.5. Control Keys

CTRL-M : 1.9.5. Control Keys

CTRL-Q : 1.9.5. Control Keys

CTRL-S : 1.9.5. Control Keys

CTRL-U : 1.9.5. Control Keys

CTRL-Z

8.2. Job Control

8.2.2. Suspending a Job

8.3. Signals

8.3.1. Control-key Signals

cut

1.7.1. Standard I/O

1.7.3. Pipelines

4.4. Command Substitution

5.2. for

7.1.1. Here-documents

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (9 of 10) [2/8/2001 4:51:14 PM]

7.2.2. read

7.3.1. Quoting

9.1.1. Set Options

10.1. Installing the Korn Shell as the Standard Shell

-c (extract columns) : 4.4. Command Substitution

-d (field delimiter)

4.4. Command Substitution

6.1.2. Options with Arguments

using awk instead of : 4.4. Command Substitution

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_c.htm (10 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: D
date

1.7.2. I/O Redirection

6.2. Integer Variables and Arithmetic

dc

8.5.4. Coroutines with Two-way Pipes

8.6.2. Nested Subshells

debuggers

6.1.3.1. More About C Compilers

9. Debugging Shell Programs

dbx : 10.2.2. ulimit

essential features : 9.2. A Korn Shell Debugger

sdb : 10.2.2. ulimit

debugging

core dumps : 10.2.2. ulimit

shell code

Summary of Korn Shell Features

9.1. Basic Debugging Aids

9.2. A Korn Shell Debugger

(see also kshdb)

basics : 9.1. Basic Debugging Aids

options : (see options, noexec, verbose, xtrace)

with print : 9.1. Basic Debugging Aids

DEL

1.9.5. Control Keys

2.3.1. Basic Commands

/dev/null

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_d.htm (1 of 2) [2/8/2001 4:51:15 PM]

5.2. for

6.1.3. getopts

10.1. Installing the Korn Shell as the Standard Shell

diff

1.8.1. Background I/O

5.1.1. Exit Status and Return

directories

. : 1.6.1.3. Changing working directories

.. : 1.6.1.3. Changing working directories

home (login) : 1.6.1.1. The working directory

dirname : 4.3.3. Pattern-matching Operators

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_d.htm (2 of 2) [2/8/2001 4:51:15 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: E
EBCDIC : 1.6.2. Filenames and Wildcards

echo

Summary of Korn Shell Features

1.4. Getting the Korn Shell

3.4. Shell Variables

7.2.1. print

A.1. The Bourne Shell

difference in versions of : 7.2.1. print

ed

3.5.1. Environment Variables

4.3.2.2. Korn shell versus awk/egrep regular expressions

7.1.1. Here-documents

9. Debugging Shell Programs

EDITOR

3.4.2.1. Editing mode variables

3.5.1. Environment Variables

egrep

4.3.2. Patterns and Regular Expressions

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

elif : (see if)

emacs editor

2. Command-line Editing

2.3. Emacs Editing Mode

2.3.1. Basic Commands

2.3.5. Filename Completion and Expansion

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_e.htm (1 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1

2.3.6. Miscellaneous Commands

2.4.6. Filename Completion

2.6. Finger Habits

3.1. The .profile File

3.4.2.4. Terminal Types

3.5.1. Environment Variables

4.3.2. Patterns and Regular Expressions

4.3.2.1. Regular expression basics

4.4. Command Substitution

9. Debugging Shell Programs

A.4. pdksh

commands : B.7. Emacs Mode Commands

GNU emacs

2.3.6. Miscellaneous Commands

3.1. The .profile File

A.5. bash

Gosling (Unipress) emacs : 2.3.6. Miscellaneous Commands

search commands : 2.3.4. Moving Around in the History File

emacs-mode

Korn Shell Versions

Summary of Korn Shell Features

2.3. Emacs Editing Mode

7.2.1.2. Options to print

10.2.3. Types of Global Customization

A.4. pdksh

basic commands : 2.3.1. Basic Commands

case-changing commands : 2.3.6. Miscellaneous Commands

enabling : 2.1. Enabling Command-line Editing

exchanging point and mark : 2.3.6. Miscellaneous Commands

filename completion : 2.3.5. Filename Completion and Expansion

filename expansion : 2.3.5. Filename Completion and Expansion

history file commands : 2.3.4. Moving Around in the History File

key customization in next release : A.7. The Future of the Korn Shell

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_e.htm (2 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

keyboard shortcuts with aliases : 2.3.7. Keyboard Shortcuts with Aliases

line commands : 2.3.3. Line Commands

mark : 2.3.6. Miscellaneous Commands

point (dot) : 2.3.1. Basic Commands

repeat counts : 2.3.6. Miscellaneous Commands

searching the history file : 2.3.4. Moving Around in the History File

terminal requirements : 2.3.1. Basic Commands

transpose characters command : 2.3.6. Miscellaneous Commands

useful command subset : 2.6. Finger Habits

word commands : 2.3.2. Word Commands

in workalike shells : A.6. Workalikes on PC Platforms

email : (see mail)

ENV

3.5.2. The Environment File

10.2.3. Types of Global Customization

A.1. The Bourne Shell

command subsitution in next release : A.7. The Future of the Korn Shell

in privileged mode : 10.3.4. Privileged Mode

environment files : 3.5.2. The Environment File

compared to .profile : 3.5.2. The Environment File

creating : 3.5.2. The Environment File

customization in next release : A.7. The Future of the Korn Shell

lack of system-wide : 10.2.3. Types of Global Customization

in : 10.3.4. Privileged Mode

security holes in : 10.3.2. A System Break-in Scenario

in subshells : 8.6.1. Subshell Inheritance

environment variables

3.4. Shell Variables

(see also built-in variables)

about : 3.5.1. Environment Variables

creating : 3.5.1. Environment Variables

ENV

3.5.2. The Environment File

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_e.htm (3 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

10.2.3. Types of Global Customization

A.1. The Bourne Shell

command substitution in next release : A.7. The Future of the Korn Shell

in privileged mode : 10.3.4. Privileged Mode

FCEDIT : 2.5. The fc Command

HISTFILE

2.2. The History File

3.4.2.1. Editing mode variables

3.5.1. Environment Variables

HISTSIZE : 2.2. The History File

HOME

3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

7.3. Command-line Processing

IFS

4.2.1. Positional Parameters

4.2.1.1. Positional parameters in functions

7.2.2. read

7.3. Command-line Processing

role in command-line processing : 7.3. Command-line Processing

inheritance by subshells : 8.6.1. Subshell Inheritance

LOGNAME

3.4.2.3. Prompting Variables

3.5.1. Environment Variables

MAIL

3.4.2.2. Mail Variables

3.5.1. Environment Variables

MAILPATH

3.4.2.2. Mail Variables

3.5.1. Environment Variables

4.5. Advanced Examples: pushd and popd

A.6. Workalikes on PC Platforms

PATH

3.4.2.5. Command Search Path

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_e.htm (4 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

3.5.1. Environment Variables

4.1. Shell Scripts and Functions

4.5. Advanced Examples: pushd and popd

5.5. while and until

6.2.2. Arithmetic Variables and Assignment

6.3.4. Type and Attribute Options

7.2.1.2. Options to print

7.3. Command-line Processing

10.1. Installing the Korn Shell as the Standard Shell

10.2.3. Types of Global Customization

10.3.4. Privileged Mode

A.1. The Bourne Shell

A.6. Workalikes on PC Platforms

in restricted shell : 10.3.1. Restricted Shell

security problem with

3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario

PS1

7.3.1. Quoting

10.2.3. Types of Global Customization

A.5. bash

command substitution in next release : A.7. The Future of the Korn Shell

PWD

3.4.2.3. Prompting Variables

3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

5.1.1. Exit Status and Return

7.3. Command-line Processing

read-only variables in restricted shell : 10.3.1. Restricted Shell

SHELL

3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

A.1. The Bourne Shell

showing : 3.5.1. Environment Variables

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_e.htm (5 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

TERM

3.4.2.4. Terminal Types

3.5.1. Environment Variables

5.3. case

5.4. select

6.3. Arrays

7.2.2.1. Reading lines from files

10.2.3. Types of Global Customization

TMOUT : 10.2.3. Types of Global Customization

visibility in subshells : 4.1. Shell Scripts and Functions

VISUAL : 2.1. Enabling Command-line Editing

environments : 3. Customizing Your Environment

ERRNO, obsolescence in next release : A.7. The Future of the Korn Shell

/etc/hosts : 7.2.2.3. Code blocks

/etc/passwd

1.7.3. Pipelines

7.1.1. Here-documents

7.3.1. Quoting

7.3.2.1. The C Compiler as Pipeline

10.3.1. Restricted Shell

/etc/profile

5.3. case

5.4. select

6.3.4. Type and Attribute Options

7.2.2.1. Reading lines from files

10.2. Environment Customization

10.2.3. Types of Global Customization

/etc/suid_profile : 10.3.4. Privileged Mode

/etc/termcap : 3.4.2.4. Terminal Types

eval : 7.3.2. eval

for constructing pipelines

7.3.2. eval

7.3.2.1. The C Compiler as Pipeline

role in command-line processing : 7.3.2. eval

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_e.htm (6 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1

exec : 9.2.1.2. exec

with I/O redirectors : 9.2.1.2. exec

executable files : (see files, executable)

exit

1.4. Getting the Korn Shell

1.5. Interactive Shell Use

5.1.1.1. Return

8.4.2. Process ID Variables and Temporary Files

exit status

5.1.1. Exit Status and Return

5.1.3.1. String comparisons

9.2.3.4. Break conditions

9.2.5. Exercises

conventional values : 5.1.1. Exit Status and Return

in job status messages : 8.1. Process IDs and Job Numbers

logical combinations : 5.1.2. Combinations of Exit Statuses

trapping when non-0 : 9.1.2.2. ERR

export

3.5.1. Environment Variables

4.1. Shell Scripts and Functions

6.3.4. Type and Attribute Options

10.2.3. Types of Global Customization

expr

Summary of Korn Shell Features

6.2. Integer Variables and Arithmetic

A.1. The Bourne Shell

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_e.htm (7 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: F
fake signals : 9.1.2. Fake Signals

DEBUG

9.1.2. Fake Signals

9.1.2.3. DEBUG

9.2.3.1. Commands

9.2.3.6. Limitations

A.1. The Bourne Shell

A.5. bash

A.6. Workalikes on PC Platforms

ERR

9.1.2. Fake Signals

9.1.2.2. ERR

A.1. The Bourne Shell

A.4. pdksh

A.6. Workalikes on PC Platforms

EXIT

9.1.2. Fake Signals

9.2.2. The Preamble

9.2.3.6. Limitations

A.1. The Bourne Shell

A.4. pdksh

A.6. Workalikes on PC Platforms

in next release : A.7. The Future of the Korn Shell

trapping in scripts being debugged with kshdb : 9.2.3.6. Limitations

fc

2. Command-line Editing

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_f.htm (1 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

2.1. Enabling Command-line Editing

2.5. The fc Command

-e (edit) : 2.5. The fc Command

-l (list previous commands) : 2.5. The fc Command

obsolescence in next release : A.7. The Future of the Korn Shell

FCEDIT

2.5. The fc Command

3.4.2.1. Editing mode variables

fg

8.2. Job Control

8.2.1. Foreground and Background

8.2.2. Suspending a Job

A.1. The Bourne Shell

to resume suspended jobs : 8.2.2. Suspending a Job

fi : (see if)

file (command)

5.5. while and until

9.2.5. Exercises

10.1. Installing the Korn Shell as the Standard Shell

file descriptors

7.1. I/O Redirectors

7.1.2. File Descriptors

I/O redirection to/from

7.1. I/O Redirectors

7.1.2. File Descriptors

7.2.2.4. Reading User Input

of standard I/O : 7.1.2. File Descriptors

files

environment : (see environment files)

executable

3.4.2.5. Command Search Path

5.1.3.2. About C Compilers

5.5. while and until

a.out : 5.1.3.2. About C Compilers

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_f.htm (2 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4

order of precedence in command lookup

4.1.1. Functions

7.3. Command-line Processing

modification times : 7.3.2. eval

permissions

4.1. Shell Scripts and Functions

10.2.1. umask

A.6. Workalikes on PC Platforms

octal notation : 10.2.1. umask

suid : (see suid shell scripts)

temporary (names for) : 8.4.2. Process ID Variables and Temporary Files

find : 1.9.2. Backslash-escaping

finding commands

order of precedence

4.1.1. Functions

7.3. Command-line Processing

control over in next release : A.7. The Future of the Korn Shell

in next release : A.7. The Future of the Korn Shell

PATH : 3.4.2.5. Command Search Path

tracked aliases : 3.4.2.6. PATH and Tracked Aliases

finger : 5.2. for

flow control

general description : 5. Flow Control

summary of constructs : 5. Flow Control

for

5.2. for

5.3. case

6.3.3. String Formatting Options

comparison to for statement in C and Pascal : 5.2. for

lists of names in : 5.2. for

in next release : A.7. The Future of the Korn Shell

overview : 5.2. for

syntax : 5.2. for

Forsyth, Charles : A.4. pdksh

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_f.htm (3 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

FORTRAN

5.1.4. Integer Conditionals

5.5. while and until

FPATH

4.1.1.1. Autoloaded functions

10.2.3. Types of Global Customization

Free Software Foundation (FSF) : A.5. bash

from : 3.5.2. The Environment File

FTP

9.2. A Korn Shell Debugger

A.5. bash

full pathnames : 1.6.1. Directories

functions

Summary of Korn Shell Features

A.1. The Bourne Shell

A.5. bash

advantages over scripts : 4.1.1. Functions

autoloading

4.1.1.1. Autoloaded functions

6.3.5. Function Options

10.2.3. Types of Global Customization

definition : 4.1.1. Functions

deleting : 4.1.1. Functions

differences between scripts and : 4.1.1. Functions

exporting : 6.3.5. Function Options

listing

4.1.1. Functions

6.3.5. Function Options

local variables in : 6.3.2. Local Variables in Functions

in next release : A.7. The Future of the Korn Shell

order of precedence in command lookup

4.1.1. Functions

7.3. Command-line Processing

POSIX shell syntax : A.2. The IEEE 1003.2 POSIX Shell Standard

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_f.htm (4 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

preventing lookup as : 5.1.1. Exit Status and Return

recursive : 8.6.2. Nested Subshells

running : 4.1.1. Functions

in SunOS Bourne shell : A.1. The Bourne Shell

syntax : 4.1.1. Functions

system-wide : 10.2.3. Types of Global Customization

tracing execution of

6.3.5. Function Options

9.1.1. Set Options

in workalike shells : A.6. Workalikes on PC Platforms

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_f.htm (5 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: G
getopt

Summary of Korn Shell Features

6.1.3. getopts

A.1. The Bourne Shell

getopts

6.1.3. getopts

6.2. Integer Variables and Arithmetic

A.1. The Bourne Shell

advantages : 6.1.3. getopts

arguments : 6.1.3. getopts

error messages : 6.1.3. getopts

exit status : 6.1.3. getopts

OPTARG variable : 6.1.3. getopts

OPTIND variable : 6.1.3. getopts

summary of functionality : 6.1.3. getopts

suppressing error messages : 6.1.3. getopts

Gisin, Eric : A.4. pdksh

GNU : A.5. bash

graphical user interface (GUI)

1. Korn Shell Basics

A.3. wksh

grep

Summary of Korn Shell Features

1.7.1. Standard I/O

4.3.2. Patterns and Regular Expressions

4.3.2.1. Regular expression basics

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_g.htm (1 of 2) [2/8/2001 4:51:19 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm

4.3.2.2. Korn shell versus awk/egrep regular expressions

4.4. Command Substitution

5.1.2. Combinations of Exit Statuses

5.2. for

7.2.2. read

7.2.2.3. Code blocks

8.2.2. Suspending a Job

10.1. Installing the Korn Shell as the Standard Shell

10.3.2. A System Break-in Scenario

-i (case insensitive) : 4.4. Command Substitution

-l : 4.4. Command Substitution

older BSD version of : 4.4. Command Substitution

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_g.htm (2 of 2) [2/8/2001 4:51:19 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: H
head

4.3.1. Syntax of String Operators

6.2.2. Arithmetic Variables and Assignment

7.3.2. eval

here-documents : 7.1.1. Here-documents

deleting leading TABs in : 7.1.1. Here-documents

parameter and command substitution in : 7.1.1. Here-documents

HISTFILE

2.2. The History File

3.4.2.1. Editing mode variables

3.5.1. Environment Variables

history (alias) : 2.5. The fc Command

history file : 2.2. The History File

printing to : 7.2.1.2. Options to print

HISTSIZE : 2.2. The History File

HOME

3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

7.3. Command-line Processing

hostname : 4.4. Command Substitution

HP/UX

1. Korn Shell Basics

1.9.5. Control Keys

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_h.htm (1 of 2) [2/8/2001 4:51:20 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_h.htm (2 of 2) [2/8/2001 4:51:20 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: I
I/O

pipelines : 1.7.3. Pipelines

redirection

1.7.2. I/O Redirection

7.1. I/O Redirectors

A.1. The Bourne Shell

A.4. pdksh

>

1.7.2. I/O Redirection

7.1. I/O Redirectors

>&-

7.1. I/O Redirectors

7.1.2. File Descriptors

>&p : 7.1. I/O Redirectors

>>

7.1. I/O Redirectors

7.1.1. Here-documents

>| : 7.1. I/O Redirectors

<

1.7.2. I/O Redirection

6.2.2. Arithmetic Variables and Assignment

7.1. I/O Redirectors

<&-

7.1. I/O Redirectors

7.1.2. File Descriptors

<&p : 7.1. I/O Redirectors

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_i.htm (1 of 3) [2/8/2001 4:51:22 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

<>

7.1. I/O Redirectors

7.1.2. File Descriptors

A.1. The Bourne Shell

A.4. pdksh

<< : (see here-documents)

| : 7.1. I/O Redirectors

|& : 7.1. I/O Redirectors

to code blocks : 7.2.2.3. Code blocks

to/from file descriptors

7.1. I/O Redirectors

7.1.2. File Descriptors

7.2.2.4. Reading User Input

7.2.2.5. Options to read

to functions : 7.2.2.2. I/O Redirection and multiple commands

limitations in restricted shell : 10.3.1. Restricted Shell

to multiline flow-control constructs : 7.2.2.2. I/O Redirection and multiple commands

order in command-line processing : 7.3. Command-line Processing

sending standard error to a pipe : 7.1.2. File Descriptors

with exec : 9.2.1.2. exec

standard I/O : 1.7.1. Standard I/O

inheritance by subshells : 8.6.1. Subshell Inheritance

in kshdb break conditions : 9.2.3.4. Break conditions

saving standard error in a file : 7.1.2. File Descriptors

strings : (see print, read)

IEEE

A.2. The IEEE 1003.2 POSIX Shell Standard

(see also POSIX)

IEEE POSIX 1003.2 : (see POSIX, shell)

if

5.1. if/else

6.2.2. Arithmetic Variables and Assignment

6.3.3. String Formatting Options

7.2.2.1. Reading lines from files

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_i.htm (2 of 3) [2/8/2001 4:51:22 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1

7.3.1. Quoting

9.2.3.2. Stepping

9.2.3.4. Break conditions

redirecting I/O to : 7.2.2.2. I/O Redirection and multiple commands

syntax : 5.1. if/else

IFS

4.2.1. Positional Parameters

4.2.1.1. Positional parameters in functions

7.2.2. read

7.3. Command-line Processing

role in command-line processing : 7.3. Command-line Processing

incompatibilites in next release : A.7. The Future of the Korn Shell

installing the Korn shell as /bin/sh

10.1. Installing the Korn Shell as the Standard Shell

10.3.4. Privileged Mode

Institute of Electrical and Electronic Engineers : (see IEEE)

INT : 8.6.2. Nested Subshells

Internet

7.1.1. Here-documents

9.2. A Korn Shell Debugger

A.4. pdksh

A.5. bash

interprocess communication (IPC) : 8.3. Signals

ISO : A.2. The IEEE 1003.2 POSIX Shell Standard

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_i.htm (3 of 3) [2/8/2001 4:51:22 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: J
job control

Summary of Korn Shell Features

8.2. Job Control

lack of support for in MS-DOS : A.6. Workalikes on PC Platforms

job numbers

8.1. Process IDs and Job Numbers

8.6.2. Nested Subshells

difference between process IDs and : 8.1. Process IDs and Job Numbers

in job status messages : 8.1. Process IDs and Job Numbers

jobs

7.1.2. File Descriptors

8. Process Handling

8.6.2. Nested Subshells

(see also processes)

background : (see background jobs)

command

1.8. Background Jobs

8.2. Job Control

8.2.1. Foreground and Background

A.1. The Bourne Shell

+ and - in output of : 8.2.1. Foreground and Background

-l (also list process IDs) : 8.2.1. Foreground and Background

-n (list suspended or exited jobs) : 8.2.1. Foreground and Background

-p (only list process IDs)

8.2.1. Foreground and Background

8.3.2. kill

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_j.htm (1 of 2) [2/8/2001 4:51:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

similarity to ps : 8.3.3. ps

definition : 8.1. Process IDs and Job Numbers

resuming : 8.2.2. Suspending a Job

in background : (see bg)

in background, pitfalls of : 8.2.2. Suspending a Job

status messages : 8.1. Process IDs and Job Numbers

suspending

8.2. Job Control

8.2.2. Suspending a Job

ways to refer to

%% (most recent) : 8.2.1. Foreground and Background

%+ (most recent) : 8.2.1. Foreground and Background

%- (second most recent) : 8.2.1. Foreground and Background

by command name

8.2.1. Foreground and Background

8.4. trap

by job number

8.2.1. Foreground and Background

8.3.2. kill

by string search : 8.2.1. Foreground and Background

Joy, Bill : 1.3. History of UNIX Shells

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_j.htm (2 of 2) [2/8/2001 4:51:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: K
keywords

order of precedence in command lookup

4.1.1. Functions

7.3. Command-line Processing

kill

8.2. Job Control

8.3.2. kill

8.4. trap

A.1. The Bourne Shell

-l (list signals) : 8.3. Signals

arguments to : 8.3.2. kill

default signal sent : 8.3.2. kill

killing runaway processes : 8.3.3.1. System V

used with process IDs : 8.3.3.1. System V

Korn, David

1.3.1. The Korn Shell

A.7. The Future of the Korn Shell

kshdb

9. Debugging Shell Programs

9.2. A Korn Shell Debugger

commands : 9.2.3.1. Commands

*bc (set break condition) : 9.2.3.4. Break conditions

*bp (set breakpoint) : 9.2.3.3. Breakpoints

*bp (without arguments; list breakpoints) : 9.2.3.3. Breakpoints

*cb (clear breakpoints) : 9.2.3.3. Breakpoints

*g (go) : 9.2.3.1. Commands

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_k.htm (1 of 2) [2/8/2001 4:51:24 PM]

*q (quit) : 9.2.3.2. Stepping

*s (step) : 9.2.3.2. Stepping

*x (execution tracing) : 9.2.3.5. Execution tracing

enhancing : 9.2.5. Exercises

limitations : 9.2.3.6. Limitations

sample session : 9.2.4. Sample kshdb Session

source code

debugging functions : 9.2.5. Exercises

driver script : 9.2.1.1. The driver script

online availability : 9.2. A Korn Shell Debugger

preamble : 9.2.2. The Preamble

structure : 9.2.1. Structure of the Debugger

.kshrc : 3.5.2. The Environment File

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_k.htm (2 of 2) [2/8/2001 4:51:24 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: L
let

6.2.2. Arithmetic Variables and Assignment

6.3.3. String Formatting Options

A.1. The Bourne Shell

(see also arithmetic expressions)

examples : 6.2.2. Arithmetic Variables and Assignment

syntax : 6.2.2. Arithmetic Variables and Assignment

LINENO

9.1.1. Set Options

9.1.2.2. ERR

9.2.2. The Preamble

LINES : 3.4.2.1. Editing mode variables

linkers : (see linking)

linking

5.1.3.2. About C Compilers

5.3. case

6.1.3.1. More About C Compilers

LISP

1.7. Input and Output

5.1.1. Exit Status and Return

LOGNAME : 3.5.1. Environment Variables

logout command files : 3.2. Aliases

lp

1.5.1. Commands, Arguments, and Options

1.6.1.1. The working directory

1.7.3. Pipelines

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_l.htm (1 of 2) [2/8/2001 4:51:25 PM]

7.1.1. Here-documents

ls

1.6.2. Filenames and Wildcards

7.2.2.3. Code blocks

8.5. Coroutines

-F (show file type) : 3.2. Aliases

-l (long listing)

1.6.2. Filenames and Wildcards

5.1.3.3. File Attribute Checking

column formats of : 4.4. Command Substitution

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_l.htm (2 of 2) [2/8/2001 4:51:25 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: M
mail

1.5.1. Commands, Arguments, and Options

1.7.1. Standard I/O

3.1. The .profile File

3.4.2.2. Mail Variables

3.5.1. Environment Variables

4.4. Command Substitution

7.1.1. Here-documents

7.2.2.5. Options to read

8.4.1. Traps and Functions

8.4.2. Process ID Variables and Temporary Files

8.4.4. Resetting Traps

A.1. The Bourne Shell

dead.letter : 8.4.2. Process ID Variables and Temporary Files

MAIL

3.4.2.2. Mail Variables

3.5.1. Environment Variables

MAILCHECK : 3.4.2.2. Mail Variables

MAILPATH

3.4.2.2. Mail Variables

3.4.2.5. Command Search Path

3.5.1. Environment Variables

4.5. Advanced Examples: pushd and popd

A.6. Workalikes on PC Platforms

.mailrc : 7.1. I/O Redirectors

make

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_m.htm (1 of 3) [2/8/2001 4:51:26 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

7.3.2. eval

A.6. Workalikes on PC Platforms

man

4.1. Shell Scripts and Functions

8.3.3.2. BSD

metacharacters : 7.3. Command-line Processing

Microsoft Windows

8. Process Handling

A. Related Shells

Microsoft Windows NT : 8. Process Handling

mknod : 8.3. Signals

MKS Toolkit

A.2. The IEEE 1003.2 POSIX Shell Standard

A.6. Workalikes on PC Platforms

shell

A. Related Shells

A.6. Workalikes on PC Platforms

names for standard shell files : A.6. Workalikes on PC Platforms

obtaining : A.6. Workalikes on PC Platforms

Modula

4.1.1. Functions

4.3.1. Syntax of String Operators

more

1.7.3. Pipelines

3.4.2.4. Terminal Types

8.5. Coroutines

MS-DOS

Preface

1.6.2. Filenames and Wildcards

2.6. Finger Habits

5.2. for

8. Process Handling

A. Related Shells

A.2. The IEEE 1003.2 POSIX Shell Standard

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_m.htm (2 of 3) [2/8/2001 4:51:26 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

A.6. Workalikes on PC Platforms

multitasking in POSIX shell standard : A.2. The IEEE 1003.2 POSIX Shell Standard

mv

5.2. for

6.1.3.1. More About C Compilers

8.4.2. Process ID Variables and Temporary Files

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_m.htm (3 of 3) [2/8/2001 4:51:26 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: N
Network Information Service (NIS) : 7.3.2.1. The C Compiler as Pipeline

new features in next release : A.7. The Future of the Korn Shell

newgrp : A.6. Workalikes on PC Platforms

next release

incompatibilities : A.7. The Future of the Korn Shell

new features : A.7. The Future of the Korn Shell

obsolete features in : A.7. The Future of the Korn Shell

nice : 1.8.2. Background Jobs and Priorities

nohup

8.4.3. Ignoring Signals

A.1. The Bourne Shell

Novell : A.7. The Future of the Korn Shell

Novell NetWare : A. Related Shells

null string : 4.2.1. Positional Parameters

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_n.htm [2/8/2001 4:51:27 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: O
object-code libraries : 6.1.3.1. More About C Compilers

C runtime library : 6.1.3.1. More About C Compilers

names of : 6.1.3.1. More About C Compilers

obsolete features in next release : A.7. The Future of the Korn Shell

OLDPWD

3.4.3.1. Miscellaneous Variables

4.5. Advanced Examples: pushd and popd

5.1.1. Exit Status and Return

7.3. Command-line Processing

OPEN LOOK : A.3. wksh

OPTARG : 6.1.3. getopts

OPTIND : 6.1.3. getopts

options

3. Customizing Your Environment

3.3. Options

bgnice

3.3. Options

8.5.2. Advantages and Disadvantages of Coroutines

A.6. Workalikes on PC Platforms

command-line : (see command-line options)

dash : (see command-line options)

emacs

2.1. Enabling Command-line Editing

3.3. Options

ignoreeof : 3.3. Options

keyword : 3.5.1. Environment Variables

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_o.htm (1 of 3) [2/8/2001 4:51:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

obsolescence in next release : A.7. The Future of the Korn Shell

list of : B.1. Invocation Options

set -o : B.5. Options

typeset : B.6. Typeset Options

list of those not supported in pdksh : A.4. pdksh

markdirs : 3.3. Options

monitor

8.2. Job Control

A.6. Workalikes on PC Platforms

in next release : A.7. The Future of the Korn Shell

noclobber

3.3. Options

7.1. I/O Redirectors

10.2.3. Types of Global Customization

noexec : 9.1.1. Set Options

turning on and off : 9.1.1. Set Options

noglob : 3.3. Options

privileged

10.3.4. Privileged Mode

A.6. Workalikes on PC Platforms

trackall

3.3. Options

10.2.3. Types of Global Customization

obsolescence in next release : A.7. The Future of the Korn Shell

turning on and off

3.3. Options

9.1.1. Set Options

verbose : 9.1.1. Set Options

vi

2.1. Enabling Command-line Editing

3.3. Options

xtrace : 9.1.1. Set Options

PS4 prompt in : 9.1.1. Set Options

tracing function execution : 9.1.1. Set Options

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_o.htm (2 of 3) [2/8/2001 4:51:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

orphans : (see processes, in pathological states)

OS/2 : A.6. Workalikes on PC Platforms

Version 2 : 8. Process Handling

OSF/Motif : A.3. wksh

other shells : (see entries for individual shells)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_o.htm (3 of 3) [2/8/2001 4:51:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: P
parallelizing shell scripts : 8.5.3. Parallelization

parenthesis

for grouping condition tests : 5.1.3.3. File Attribute Checking

for nested subshells

5.1.3.3. File Attribute Checking

8.6.2. Nested Subshells

within arithmetic expressions : 6.2. Integer Variables and Arithmetic

Pascal

4. Basic Shell Programming

4.1.1. Functions

4.2. Shell Variables

4.3.1. Syntax of String Operators

5.1.1. Exit Status and Return

5.1.1.1. Return

5.2. for

5.3. case

5.5. while and until

6. Command-line Options and Typed Variables

7.3.2.1. The C Compiler as Pipeline

PATH

3.4.2.5. Command Search Path

3.5.1. Environment Variables

4.1. Shell Scripts and Functions

4.5. Advanced Examples: pushd and popd

5.5. while and until

6.2.2. Arithmetic Variables and Assignment

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_p.htm (1 of 8) [2/8/2001 4:51:31 PM]

6.3.4. Type and Attribute Options

7.2.1.2. Options to print

7.3. Command-line Processing

10.1. Installing the Korn Shell as the Standard Shell

10.2.3. Types of Global Customization

10.3.4. Privileged Mode

A.1. The Bourne Shell

A.6. Workalikes on PC Platforms

in restricted shell : 10.3.1. Restricted Shell

security problem with

3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario

pathnames

full : 1.6.1. Directories

limitations in restricted shell : 10.3.1. Restricted Shell

relative : 1.6.1.1. The working directory

pattern-matching operators : 4.3.3. Pattern-matching Operators

#

4.3.3. Pattern-matching Operators

4.5. Advanced Examples: pushd and popd

5.5. while and until

##

4.3.3. Pattern-matching Operators

6.2.2. Arithmetic Variables and Assignment

%

4.3.3. Pattern-matching Operators

5.2. for

5.3. case

%%

4.3.3. Pattern-matching Operators

4.5. Advanced Examples: pushd and popd

5.5. while and until

6.2.2. Arithmetic Variables and Assignment

examples : 4.3.3. Pattern-matching Operators

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_p.htm (2 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

syntax : 4.3.3. Pattern-matching Operators

PCs

3.4.2.4. Terminal Types

A. Related Shells

A.6. Workalikes on PC Platforms

pdksh : (see public domain Korn shell)

PID : A.6. Workalikes on PC Platforms

pipelines

7.3. Command-line Processing

8.5. Coroutines

system calls used in : 8.5. Coroutines

pipes : 8. Process Handling

to code blocks : 7.2.2.3. Code blocks

compared to two-way pipes : 8.5.5. Two-way Pipes Versus Standard Pipes

two-way : (see two-way pipes)

popd

4.5. Advanced Examples: pushd and popd

5.1.3.1. String comparisons

6.2.2. Arithmetic Variables and Assignment

10.2.3. Types of Global Customization

A.5. bash

additional arguments : 6.2.2. Arithmetic Variables and Assignment

functionality : 4.5. Advanced Examples: pushd and popd

positional parameters

4.2.1. Positional Parameters

6.1. Command-line Options

9.1.1. Set Options

9.2.2. The Preamble

in functions : 4.2.1.1. Positional parameters in functions

number of (#) : 4.2.1. Positional Parameters

syntax for higher than nine : 4.2.2. More on Variable Syntax

POSIX

1003.1 : A.2. The IEEE 1003.2 POSIX Shell Standard

1003.2

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_p.htm (3 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

(see POSIX, shell)

(see

1003.2a (UPE) : A.2. The IEEE 1003.2 POSIX Shell Standard

history : A.2. The IEEE 1003.2 POSIX Shell Standard

shell

A. Related Shells

A.2. The IEEE 1003.2 POSIX Shell Standard

Korn shell features in : A.2. The IEEE 1003.2 POSIX Shell Standard

pr : 9.2.3.3. Breakpoints

using awk instead of pr -n : 9.2.3.3. Breakpoints

print

1.9.1. Quoting

3.4. Shell Variables

7.2.1. print

7.2.2.4. Reading User Input

7.2.2.5. Options to read

9.2.3.6. Limitations

A.1. The Bourne Shell

as debugging aid : 9.1. Basic Debugging Aids

escape sequences : 7.2.1.1. print escape sequences

features in next release : A.7. The Future of the Korn Shell

for emulating eval : 7.3.2. eval

options : 7.2.1.2. Options to print

-n

4.3.1. Syntax of String Operators

7.2.1.2. Options to print

-n (suppress LINEFEED)

5.1.3.3. File Attribute Checking

6.3.3. String Formatting Options

-p : 7.2.1.2. Options to print

-p (to two-way pipe)

8.5.4. Coroutines with Two-way Pipes

8.5.5. Two-way Pipes Versus Standard Pipes

-r : 7.2.1.2. Options to print

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_p.htm (4 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2

-s : 7.2.1.2. Options to print

-u : 7.2.1.2. Options to print

priorities : 1.8.2. Background Jobs and Priorities

privileged mode

10.3.4. Privileged Mode

A.1. The Bourne Shell

/etc/suid_profile as environment file : 10.3.4. Privileged Mode

turning off : 10.3.4. Privileged Mode

process IDs

8.1. Process IDs and Job Numbers

8.3.3. ps

8.6.2. Nested Subshells

A.1. The Bourne Shell

! variable (process ID of most recent background job) : 8.4.2. Process ID Variables and Temporary
Files

$ variable (ID of current shell)

2.2. The History File

8.4.2. Process ID Variables and Temporary Files

for constructing temp filenames : 8.4.2. Process ID Variables and Temporary Files

difference between job numbers and : 8.1. Process IDs and Job Numbers

processes

8. Process Handling

(see also jobs)

daemons : 8.3.3.2. BSD

group leaders

8.3.3.1. System V

8.3.3.2. BSD

in pathological states

8.3.3.2. BSD

8.5. Coroutines

performance characteristics of : 8.5.2. Advantages and Disadvantages of Coroutines

.profile

2.1. Enabling Command-line Editing

2.2. The History File

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_p.htm (5 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2

3.1. The .profile File

3.5.1. Environment Variables

7.1. I/O Redirectors

7.2.2.1. Reading lines from files

for setting up restricted shell environment : 10.3.1. Restricted Shell

prompting

in read statement : 7.2.2.4. Reading User Input

prompts : 3.4.2.3. Prompting Variables

customizing

with command number : 3.4.2.3. Prompting Variables

with current directory

3.4.2.3. Prompting Variables

7.3.1. Quoting

features in next release : A.7. The Future of the Korn Shell

with user name : 3.4.2.3. Prompting Variables

with machine name : 4.4. Command Substitution

primary : 3.4.2.3. Prompting Variables

processing of PS1 : 7.3.1. Quoting

ps

8.3.3. ps

8.6.2. Nested Subshells

-a

8.3.3. ps

8.3.3.2. BSD

-ax (BSD) : 8.3.3.2. BSD

-e (System V) : 8.3.3.2. BSD

listing all processes on the system : 8.3.3.2. BSD

output of BSD version : 8.3.3. ps

output of System V version : 8.3.3. ps

PS1

3.4.2.3. Prompting Variables

4.4. Command Substitution

7.3.1. Quoting

10.2.3. Types of Global Customization

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_p.htm (6 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4

A.5. bash

command subsitution in next release : A.7. The Future of the Korn Shell

PS2 : 3.4.2.3. Prompting Variables

PS3

3.4.2.3. Prompting Variables

5.4. select

command subsitution in next release : A.7. The Future of the Korn Shell

PS4

3.4.2.3. Prompting Variables

9.1.1. Set Options

in kshdb : 9.2.3. Debugger Functions

public domain Korn shell

Korn Shell Versions

A. Related Shells

A.4. pdksh

documentation : A.4. pdksh

for OS/2 : A.6. Workalikes on PC Platforms

pushd

4.5. Advanced Examples: pushd and popd

5.1.1. Exit Status and Return

5.1.3.3. File Attribute Checking

6.2.2. Arithmetic Variables and Assignment

10.2.3. Types of Global Customization

A.5. bash

additional arguments : 6.2.2. Arithmetic Variables and Assignment

functionality : 4.5. Advanced Examples: pushd and popd

PWD

3.4.2.3. Prompting Variables

3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

5.1.1. Exit Status and Return

7.3. Command-line Processing

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_p.htm (7 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_p.htm (8 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: Q
quoting : 1.9.1. Quoting

arithmetic expressions in double quotes : 6.2. Integer Variables and Arithmetic

command substitution with double quotes : 4.4. Command Substitution

in command-line processing : 7.3.1. Quoting

difference between single and double quotes : 7.3.1. Quoting

double quotes with $@ and $* : 4.2.1.1. Positional parameters in functions

examples : 7.3.1. Quoting

rules for quoting character strings : 6.2. Integer Variables and Arithmetic

variables and : 3.4.1. Variables and Quoting

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_q.htm [2/8/2001 4:51:32 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: R
r (alias) : 2.5. The fc Command

RANDOM : 9.1.2.1. EXIT

read : 7.2.2. read

exit status of : 7.2.2.1. Reading lines from files

from files : 7.2.2.2. I/O Redirection and multiple commands

options : 7.2.2.5. Options to read

-p

7.2.2.5. Options to read

8.5.4. Coroutines with Two-way Pipes

8.5.5. Two-way Pipes Versus Standard Pipes

-r : 7.2.2.5. Options to read

-s

7.2.2.5. Options to read

9.2.3.1. Commands

-u : 7.2.2.5. Options to read

syntax : 7.2.2. read

from user input : 7.2.2.4. Reading User Input

continuing on next line : 7.2.2.5. Options to read

prompting : 7.2.2.4. Reading User Input

readonly

6.3.4. Type and Attribute Options

10.3.4. Privileged Mode

regular expressions

Summary of Korn Shell Features

4.3.2. Patterns and Regular Expressions

A.1. The Bourne Shell

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_r.htm (1 of 3) [2/8/2001 4:51:34 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4

A.4. pdksh

! operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

* operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

+ operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

6.1.1. shift

? operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

@ operator

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

compared to awk and egrep : 4.3.2.1. Regular expression basics

operator examples : 4.3.2.1. Regular expression basics

order of evaluation in command-line processing : 7.3. Command-line Processing

relationship to wildcards : 4.3.2.2. Korn shell versus awk/egrep regular expressions

syntax : 4.3.2.1. Regular expression basics

relative pathnames : 1.6.1.1. The working directory

REPLY

in read statement : 7.2.2. read

in select statement

5.4. select

6.3. Arrays

restricted shell : 10.3.1. Restricted Shell

installing as a user's login shell : 10.3.1. Restricted Shell

restrictions : 10.3.1. Restricted Shell

role of .profile in : 10.3.1. Restricted Shell

return : 5.1.1.1. Return

Reverse Polish Notation (RPN)

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_r.htm (2 of 3) [2/8/2001 4:51:34 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2

8.5.4. Coroutines with Two-way Pipes

8.6.2. Nested Subshells

rksh : (see security, restricted shell)

rm : 8.4.2. Process ID Variables and Temporary Files

root : 1.6.1. Directories

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_r.htm (3 of 3) [2/8/2001 4:51:34 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: S
SCO : 1.9.5. Control Keys

scripts

built-in commands implemented as : 4.1. Shell Scripts and Functions

comments in : 4.3.1. Syntax of String Operators

order of precedence in command lookup

4.1.1. Functions

7.3. Command-line Processing

running : 4.1. Shell Scripts and Functions

SECONDS : 3.4.3.1. Miscellaneous Variables

security

Summary of Korn Shell Features

3.2.1. Tracked Aliases

10.3. System Security Features

Korn shell features pertaining to : 10.3. System Security Features

problem with PATH

3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario

restricted shell : (see restricted shell)

suid interactive shells : 10.3.2. A System Break-in Scenario

Trojan horse schemes : 10.3.2. A System Break-in Scenario

sed

1.7.1. Standard I/O

4.3.2. Patterns and Regular Expressions

4.3.2.2. Korn shell versus awk/egrep regular expressions

10.1. Installing the Korn Shell as the Standard Shell

select

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_s.htm (1 of 6) [2/8/2001 4:51:37 PM]

Summary of Korn Shell Features

5.4. select

6.3. Arrays

7.2.2.4. Reading User Input

A.1. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard

description : 5.4. select

lists of names in : 5.4. select

PS3 prompt in : 5.4. select

redirecting I/O to : 7.2.2.2. I/O Redirection and multiple commands

syntax : 5.4. select

set : (see options)

+o (turn off option)

3.3. Options

9.1.1. Set Options

-A (array assignment)

6.3. Arrays

6.3.3. String Formatting Options

-o (turn on option)

3.3. Options

9.1.1. Set Options

A.1. The Bourne Shell

output of in next release : A.7. The Future of the Korn Shell

SHELL

3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

A.1. The Bourne Shell

shell compilers : 9. Debugging Shell Programs

shell variables, list of : B.3. Built-in Shell Variables

shift

6.1.1. shift

6.1.3. getopts

signals

8.2. Job Control

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_s.htm (2 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2

8.3. Signals

ALRM

A.6. Workalikes on PC Platforms

A.7. The Future of the Korn Shell

DEBUG : (see fake signals)

description : 8.3. Signals

effect of on processes : 8.3.2. kill

ERR : (see fake signals)

EXIT : (see fake signals)

fake : (see fake signals)

hangup : (see HUP)

HUP : 8.4.3. Ignoring Signals

ignoring : 8.4.3. Ignoring Signals

INT

8.3.1. Control-key Signals

8.3.2. kill

8.4. trap

8.4.1. Traps and Functions

8.4.2. Process ID Variables and Temporary Files

9.1.2.1. EXIT

A.2. The IEEE 1003.2 POSIX Shell Standard

A.6. Workalikes on PC Platforms

KILL

8.3.1. Control-key Signals

8.3.2. kill

8.3.3.1. System V

lack of propagation to subshells

8.6.1. Subshell Inheritance

A.7. The Future of the Korn Shell

listing : 8.3. Signals

other types of : 8.3.1. Control-key Signals

in POSIX shell : A.2. The IEEE 1003.2 POSIX Shell Standard

propagation to subshells in next release : A.7. The Future of the Korn Shell

QUIT

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_s.htm (3 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

8.3.1. Control-key Signals

8.3.2. kill

8.3.3.1. System V

sending with control keys : 8.3.1. Control-key Signals

shown in background job status messages : 8.3.2. kill

specifying in trap command : 8.4. trap

STOP : A.6. Workalikes on PC Platforms

TERM

8.3.2. kill

8.4. trap

8.4.2. Process ID Variables and Temporary Files

9.1.2.1. EXIT

A.2. The IEEE 1003.2 POSIX Shell Standard

trapping : (see traps)

TSTP

8.2. Job Control

8.3.1. Control-key Signals

sleep : 8.4. trap

SNOBOL : 4.2. Shell Variables

sort

1.7.1. Standard I/O

1.7.2. I/O Redirection

1.7.3. Pipelines

1.8. Background Jobs

1.8.1. Background I/O

4.3.1. Syntax of String Operators

5.2. for

7.2.2. read

8.2.2. Suspending a Job

special characters : 4.2.2. More on Variable Syntax

spell : 4.1. Shell Scripts and Functions

stacks : 4.5. Advanced Examples: pushd and popd

Stallman, Richard : A.5. bash

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_s.htm (4 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

standard I/O : (see I/O)

string I/O : (see print, read)

string operators

4.3. String Operators

A.1. The Bourne Shell

(length) : 4.3.4. Length Operator

:+

4.3.1. Syntax of String Operators

5.2. for

:-

4.3.1. Syntax of String Operators

4.5. Advanced Examples: pushd and popd

9.2.3.4. Break conditions

:= : 4.3.1. Syntax of String Operators

:?

4.3.1. Syntax of String Operators

4.5. Advanced Examples: pushd and popd

in next release : A.7. The Future of the Korn Shell

summary of functionality : 4.3. String Operators

syntax : 4.3.1. Syntax of String Operators

stty : 1.9.5. Control Keys

to customize control-key signals : 8.3.1. Control-key Signals

subprocesses : 3.5. Customization and Subprocesses

subshells

4.1. Shell Scripts and Functions

8. Process Handling

8.6. Subshells

information passed from parent processes : 3.5. Customization and Subprocesses

inheritance of properties from parent shells : 8.6.1. Subshell Inheritance

nested

8.6.2. Nested Subshells

9.2.3.6. Limitations

A.2. The IEEE 1003.2 POSIX Shell Standard

compared to code blocks : 8.6.2. Nested Subshells

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_s.htm (5 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

suid : A.6. Workalikes on PC Platforms

suid shell scripts

10.3.2. A System Break-in Scenario

10.3.4. Privileged Mode

creating : 10.3.2. A System Break-in Scenario

dangers of : 10.3.2. A System Break-in Scenario

SunOS

1. Korn Shell Basics

1.3. History of UNIX Shells

1.9.5. Control Keys

4.4. Command Substitution

system calls

exec : 8.5. Coroutines

fork : 8.5. Coroutines

pipe : 8.5. Coroutines

wait : 8.5. Coroutines

System III : 1.9.5. Control Keys

System V

1.9.5. Control Keys

3.4.2.4. Terminal Types

System V Release 4

1.3.1. The Korn Shell

1.4. Getting the Korn Shell

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_s.htm (6 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: T
tail : 5.2. for

TCP/IP : 7.2.2.3. Code blocks

tee : 7.1.2. File Descriptors

temporary files : 8.4.2. Process ID Variables and Temporary Files

TERM

3.4.2.4. Terminal Types

3.5.1. Environment Variables

5.3. case

5.4. select

6.3. Arrays

7.2.2.1. Reading lines from files

10.2.3. Types of Global Customization

termcap : 3.4.2.4. Terminal Types

terminfo

3.4.2.4. Terminal Types

5.4. select

test

Summary of Korn Shell Features

(see also condition tests, old syntax)

test operators, list of : B.4. Test Operators

testopt : 3.3. Options

thrashing : (see processes, performance characteristics of)

tilde (~) notation

1.6.1.2. Tilde notation

7.3. Command-line Processing

7.3.1. Quoting

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_t.htm (1 of 4) [2/8/2001 4:51:38 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1

A.1. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard

within double quotes : 3.4.1. Variables and Quoting

within variable expressions : A.7. The Future of the Korn Shell

~+ (current directory) : 7.3. Command-line Processing

~- (previous directory) : 7.3. Command-line Processing

TMOUT : 10.2.3. Types of Global Customization

/tmp

8.4.2. Process ID Variables and Temporary Files

9.2.1.1. The driver script

TOPS-20

2.3.5. Filename Completion and Expansion

2.4.6. Filename Completion

tr

1.7.1. Standard I/O

5.2. for

6.3.3. String Formatting Options

trap command : 8.4. trap

- (to reset default) : 8.4.4. Resetting Traps

null string argument (for ignoring signals) : 8.4.3. Ignoring Signals

syntax : 8.4. trap

traps

8.4. trap

A.1. The Bourne Shell

after every statement : 9.1.2.3. DEBUG

for ignoring signals : 8.4.3. Ignoring Signals

lack of propagation to subshells

8.6.1. Subshell Inheritance

A.7. The Future of the Korn Shell

listing : 8.4. trap

propagation to subshells in next release : A.7. The Future of the Korn Shell

resetting defaults : 8.4.4. Resetting Traps

setting global traps within functions : 8.4.1. Traps and Functions

trapping fake signals

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_t.htm (2 of 4) [2/8/2001 4:51:38 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

9.1.2. Fake Signals

9.2.2. The Preamble

9.2.3.1. Commands

within functions : 8.4.1. Traps and Functions

troff

1.6. Files

5.5. while and until

8.2.2. Suspending a Job

true : 8.4. trap

tty : 5.3. case

two-way pipes

Summary of Korn Shell Features

8.5.4. Coroutines with Two-way Pipes

for building interfaces to existing programs : 8.5.4. Coroutines with Two-way Pipes

compared to standard pipes : 8.5.5. Two-way Pipes Versus Standard Pipes

creating : 8.5.4. Coroutines with Two-way Pipes

flow of I/O : 8.5.4. Coroutines with Two-way Pipes

relationship to standard I/O : 8.5.4. Coroutines with Two-way Pipes

typeset

6.3.1. typeset

A.1. The Bourne Shell

function options

+f : 6.3.5. Function Options

+ft : 6.3.5. Function Options

-f : 6.3.5. Function Options

-ft

6.3.5. Function Options

9.1.1. Set Options

-fu : 6.3.5. Function Options

-fx

6.3.5. Function Options

10.2.3. Types of Global Customization

making variables local to functions

4.2.1.1. Positional parameters in functions

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_t.htm (3 of 4) [2/8/2001 4:51:38 PM]

6.3.2. Local Variables in Functions

options supported in pdksh : A.4. pdksh

output of in next release : A.7. The Future of the Korn Shell

string formatting options : 6.3.3. String Formatting Options

-l : 6.3.3. String Formatting Options

-L

6.3.3. String Formatting Options

7.2.2.5. Options to read

combined effect : 6.3.3. String Formatting Options

examples : 6.3.3. String Formatting Options

syntax : 6.3.1. typeset

turning off options : 6.3.3. String Formatting Options

type and attribute options : 6.3.4. Type and Attribute Options

-f

6.3.4. Type and Attribute Options

6.3.5. Function Options

-i : 6.3.4. Type and Attribute Options

-r

6.3.4. Type and Attribute Options

10.3.4. Privileged Mode

-x : 6.3.4. Type and Attribute Options

variables in kshdb break conditions : 9.2.3.6. Limitations

with no arguments (to list variables) : 6.3.5. Function Options

typographical conventions : Conventions Used in This Handbook

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_t.htm (4 of 4) [2/8/2001 4:51:38 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: U
ulimit

10.2.2. ulimit

A.1. The Bourne Shell

hard vs. soft limits : 10.2.2. ulimit

options

-a (print all limits) : 10.2.2. ulimit

-c (core file size) : 10.2.2. ulimit

-d (process data segment) : 10.2.2. ulimit

-f (file size) : 10.2.2. ulimit

-n (file descriptors) : 10.2.2. ulimit

-s (process stack segment) : 10.2.2. ulimit

-t (process CPU time) : 10.2.2. ulimit

-v (virtual memory) : 10.2.2. ulimit

privileged (superuser) options to : 10.2.2. ulimit

removing limits : 10.2.2. ulimit

Ultrix

1. Korn Shell Basics

1.3. History of UNIX Shells

1.9.5. Control Keys

umask

10.2.1. umask

A.6. Workalikes on PC Platforms

as logical XOR with file permission : 10.2.1. umask

unalias : 3.2.1. Tracked Aliases

uncompress : 1.8. Background Jobs

UNIX

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_u.htm (1 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Command Syntax Standard Rules : 6.1.3. getopts

documentation conventions : 4.3.1. Syntax of String Operators

filenames in BSD : 7.2.2.3. Code blocks

filenames in System V

6.3.3. String Formatting Options

7.2.2.3. Code blocks

interprocess communication in : 8.3. Signals

Programmer's Manual

8. Process Handling

8.3.3.2. BSD

security : (see security)

shell history : 1.3. History of UNIX Shells

terminal interface

2. Command-line Editing

2.3.4. Moving Around in the History File

2.3.6. Miscellaneous Commands

2.4. Vi Editing Mode

utilities : 1.7.1. Standard I/O

versions

A/UX

1. Korn Shell Basics

1.9.5. Control Keys

AIX

1. Korn Shell Basics

8.3.3. ps

BSD

1.3. History of UNIX Shells

1.9.5. Control Keys

2.3.4. Moving Around in the History File

2.3.6. Miscellaneous Commands

2.4. Vi Editing Mode

3.4. Shell Variables

3.4.2.2. Mail Variables

4.4. Command Substitution

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_u.htm (2 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3

7.2.2.3. Code blocks

8.3. Signals

8.3.3. ps

8.3.3.2. BSD

9.2.3.3. Breakpoints

A.2. The IEEE 1003.2 POSIX Shell Standard

A.4. pdksh

HP/UX

1. Korn Shell Basics

1.9.5. Control Keys

8.3.3. ps

SCO : 1.9.5. Control Keys

SunOS

1. Korn Shell Basics

1.3. History of UNIX Shells

1.9.5. Control Keys

4.4. Command Substitution

8.3.3. ps

A.1. The Bourne Shell

A.3. wksh

A.4. pdksh

System III

1.9.5. Control Keys

8.2. Job Control

System V

1.9.5. Control Keys

3.4. Shell Variables

3.4.2.4. Terminal Types

6.3.3. String Formatting Options

7.2.2.3. Code blocks

8.2. Job Control

8.3. Signals

8.3.3. ps

9.2.3.3. Breakpoints

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_u.htm (3 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3

A.2. The IEEE 1003.2 POSIX Shell Standard

System V Release 4

Korn Shell Versions

1.3.1. The Korn Shell

1.4. Getting the Korn Shell

6.1.3.1. More About C Compilers

A.3. wksh

that don't support job control : 8.2. Job Control

Ultrix

1. Korn Shell Basics

1.3. History of UNIX Shells

1.9.5. Control Keys

8.3.3. ps

UTS : 1. Korn Shell Basics

Version 6 : 4.3.2. Patterns and Regular Expressions

Version 7

1.3. History of UNIX Shells

A.1. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard

A.4. pdksh

Xenix

1. Korn Shell Basics

1.9.5. Control Keys

8.2. Job Control

workalikes

Coherent : A.6. Workalikes on PC Platforms

Minix : A.6. Workalikes on PC Platforms

UNIX commands : C.4. UUCP

UNIX System Laboratories (USL)

1.3.1. The Korn Shell

A.3. wksh

A.7. The Future of the Korn Shell

address and phone number : A.3. wksh

unset

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_u.htm (4 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm

in POSIX shell : A.2. The IEEE 1003.2 POSIX Shell Standard

until

5.4. select

5.5. while and until

differences with while : 5.5. while and until

redirecting I/O to : 7.2.2.2. I/O Redirection and multiple commands

syntax : 5.5. while and until

USENET

comp.binaries.os2 newsgroup : A.6. Workalikes on PC Platforms

comp.sources.unix newsgroup : A.4. pdksh

user-controlled multitasking : 8. Process Handling

/usr/bin

3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario

/usr/lib : 9.2.1.1. The driver script

/usr/tmp : 8.4.2. Process ID Variables and Temporary Files

UTS : 1. Korn Shell Basics

uucp

7.1.1. Here-documents

A.6. Workalikes on PC Platforms

uucp command : C.4. UUCP

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_u.htm (5 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: V
variables

3. Customizing Your Environment

3.4. Shell Variables

arrays : (see arrays)

assignment to : 3.4. Shell Variables

built-in : (see built-in variables)

compared to conventional programming languages : 4.2. Shell Variables

defining : 3.4. Shell Variables

deleting : 3.4. Shell Variables

environment : (see environment variables)

global : 4.2.1.1. Positional parameters in functions

integer

6.2. Integer Variables and Arithmetic

6.2.2. Arithmetic Variables and Assignment

6.3.4. Type and Attribute Options

A.1. The Bourne Shell

(see also arithmetic expressions; let; typeset, -i)

(see also let)

listing : 6.3.5. Function Options

local (in functions)

4.2.1.1. Positional parameters in functions

6.3.2. Local Variables in Functions

in next release : A.7. The Future of the Korn Shell

order of substitution in command-line processing : 7.3. Command-line Processing

pattern-matching operators : (see pattern-matching operators)

positional parameters : (see positional parameters)

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_v.htm (1 of 3) [2/8/2001 4:51:42 PM]

quoting rules and : 3.4.1. Variables and Quoting

string operators : (see string operators)

value of

full syntax : 4.2.2. More on Variable Syntax

short form : 3.4. Shell Variables

VAX/VMS

1.6.2. Filenames and Wildcards

1.7.3. Pipelines

4.3.2.1. Regular expression basics

4.4. Command Substitution

5.2. for

8. Process Handling

Version 7 : 1.3. History of UNIX Shells

version of Korn shell, determining : Korn Shell Versions

vi editor

2. Command-line Editing

2.4. Vi Editing Mode

2.6. Finger Habits

3.1. The .profile File

3.4.2.4. Terminal Types

3.5.1. Environment Variables

4.3.2. Patterns and Regular Expressions

4.3.2.2. Korn shell versus awk/egrep regular expressions

8.2.2. Suspending a Job

9. Debugging Shell Programs

A.6. Workalikes on PC Platforms

vi-mode

Summary of Korn Shell Features

2.4. Vi Editing Mode

7.2.1.2. Options to print

10.2.3. Types of Global Customization

basic control mode commands : 2.4.1. Simple Control Mode Commands

case-changing command : 2.4.7. Miscellaneous Commands

character-finding commands : 2.4.5. Character-finding Commands

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_v.htm (2 of 3) [2/8/2001 4:51:42 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2

control mode : 2.4. Vi Editing Mode

delete buffer : 2.4.3. Deletion Commands

deletion commands : 2.4.3. Deletion Commands

abbreviations : 2.4.3. Deletion Commands

enabling : 2.1. Enabling Command-line Editing

entering and changing text : 2.4.2. Entering and Changing Text

entering input mode : 2.4.2. Entering and Changing Text

filename completion : 2.4.6. Filename Completion

filename expansion : 2.4.6. Filename Completion

input mode : 2.4. Vi Editing Mode

key customization in next release : A.7. The Future of the Korn Shell

keyboard shortcuts with aliases : 2.4.7. Miscellaneous Commands

moving around in the history file : 2.4.4. Moving Around in the History File

repeat counts : 2.4.1. Simple Control Mode Commands

retrieving words from previous commands : 2.4.7. Miscellaneous Commands

searching the history file : 2.4.4. Moving Around in the History File

undelete commands : 2.4.3. Deletion Commands

word definitions : 2.4.1. Simple Control Mode Commands

in workalike shells : A.6. Workalikes on PC Platforms

VISUAL

2.1. Enabling Command-line Editing

3.4.2.1. Editing mode variables

VM/CMS

Preface

1.8. Background Jobs

8. Process Handling

VT100 terminal : 3.4.2.4. Terminal Types

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_v.htm (3 of 3) [2/8/2001 4:51:42 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: W
wait

8.5.1. wait

A.1. The Bourne Shell

arguments to : 8.5.1. wait

wc : 6.2.2. Arithmetic Variables and Assignment

whence

2.1. Enabling Command-line Editing

4.1.1. Functions

5.5. while and until

A.1. The Bourne Shell

A.5. bash

-p : 4.4. Command Substitution

-v

4.1.1. Functions

9.2.5. Exercises

to show tracked aliases : 10.3.3. Tracked Aliases

while

5.2. for

5.4. select

5.5. while and until

6.2.2. Arithmetic Variables and Assignment

6.3.3. String Formatting Options

7.2.2.1. Reading lines from files

7.2.2.3. Code blocks

7.2.2.4. Reading User Input

7.2.2.5. Options to read

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_w.htm (1 of 2) [2/8/2001 4:51:44 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5

7.3.1. Quoting

differences with until : 5.5. while and until

redirecting I/O to : 7.2.2.2. I/O Redirection and multiple commands

syntax : 5.5. while and until

who : 4.4. Command Substitution

who am i : 7.1. I/O Redirectors

wildcards

* : 1.6.2. Filenames and Wildcards

?

1.6.2. Filenames and Wildcards

4.3.2.2. Korn shell versus awk/egrep regular expressions

[]

1.6.2. Filenames and Wildcards

4.3.2.2. Korn shell versus awk/egrep regular expressions

in alias expansions : 3.2. Aliases

basic : 1.6.2. Filenames and Wildcards

character ranges : 1.6.2. Filenames and Wildcards

examples : 1.6.2. Filenames and Wildcards

order of expansion in command-line processing : 7.3. Command-line Processing

Windowing Korn shell (wksh)

A. Related Shells

A.3. wksh

wksh : A. Related Shells

words : 1.1. What Is a Shell?

order of separation in command-line processing : 7.3. Command-line Processing

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_w.htm (2 of 2) [2/8/2001 4:51:44 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: X
X Window System

2.2. The History File

3.1. The .profile File

3.4.2.4. Terminal Types

7.1. I/O Redirectors

8.3.3.1. System V

8.5.4. Coroutines with Two-way Pipes

A. Related Shells

A.3. wksh

xcalc : 8.5.4. Coroutines with Two-way Pipes

Xenix

1. Korn Shell Basics

1.9.5. Control Keys

xterm

2.2. The History File

3.4.2.4. Terminal Types

7.1. I/O Redirectors

8.3.3.1. System V

xtrace mode : (see options, xtrace)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_x.htm [2/8/2001 4:51:45 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: Y
y.tab.c : 4.3.3. Pattern-matching Operators

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_y.htm [2/8/2001 4:51:45 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Index: Z
zombies : (see processes, in pathological states)

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

Index

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_z.htm [2/8/2001 4:51:46 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Learning the UNIX
Operating System

Full Text Search
Use this HTML form to search the contents of Learning the UNIX Operating System.

Results report format:

Search for

If you are having difficulty searching, or if you have not used this search utility before, please read this.

Copyright © 1998 O'Reilly & Associates. All Rights Reserved.

Search Learning the UNIX Operating System

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/lsrch.htm [2/8/2001 4:51:49 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/server.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm

 Preface

Preface
Contents:
Korn Shell Versions
Summary of Korn Shell Features
Intended Audience
Code Examples
Chapter Summary
Conventions Used in This Handbook
Acknowledgments
We'd Like to Hear From You

The long, tortuous history of the UNIX operating system has resulted in systems with all kinds of
permutations and combinations of features. This means that whenever you walk up to an unfamiliar
UNIX system, you need to find out certain things about it in order to use it properly. And even on a given
system, you may have a number of choices you can make about what features you want to use.

The most important such decision - if you get to make it - is what shell to use. "Shell" is UNIX jargon for
the program that allows you to communicate with the computer by entering commands and getting
responses. The shell is completely separate from the UNIX operating system per se; it's just a program
that runs on UNIX. With other systems such as MS-DOS, the Macintosh, and VM/CMS, the command
interpreter or user interface is an integral part of the operating system.

Nowadays there are dozens of different shells floating around, ranging from the original standard, the
Bourne shell, to menu-based and graphical interfaces. The most important shells have been the Bourne
shell, the C shell, and now the Korn shell - the subject of this book.

Korn Shell Versions
Specifically, this book describes the 1988 version of the Korn shell, which is distributed with all UNIX
systems based on System V Release 4. There are various other versions, variations, and implementations
on other operating systems; these are described in Appendix A, Related Shells.

To find out which version you have, type the command set -o emacs, then press CTRL-V. You should

Preface

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_01.htm (1 of 2) [2/8/2001 4:52:12 PM]

see a date followed by a version letter (the letter is unimportant). If you do, you have one of the official
versions, whether it be the 1988 version or an older one. But if you don't, then you have a non-standard
version such as pdksh, the public domain Korn shell discussed in Appendix A.

 Summary of Korn Shell

Features

Preface

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_01.htm (2 of 2) [2/8/2001 4:52:12 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Preface

Summary of Korn Shell Features
The Korn shell is the most advanced of the shells that are "officially" distributed with UNIX systems. It's
a backward-compatible evolutionary successor to the Bourne shell that includes most of the C shell's
major advantages as well as a few new features of its own.

Features appropriated from the C shell include:

Job control, including the fg and bg commands and the ability to stop jobs with CTRL-Z.●

Aliases, which allow you to define shorthand names for commands or command lines.●

Functions (included in some C shell versions), which increase programmability and allow you to
store your own shell code in memory instead of files.

●

Command history, which lets you recall previously entered commands.●

The Korn shell's major new features include:

Command-line editing, allowing you to use vi or emacs-style editing commands on your
command lines.

●

Integrated programming features: the functionality of several external UNIX commands,
including test, expr, getopt, and echo, has been integrated into the shell itself, enabling common
programming tasks to be done more cleanly and without creating extra processes.

●

Control structures, especially the select construct, which enables easy menu generation.●

Debugging primitives that make it possible to write tools that help programmers debug their shell
code.

●

Regular expressions, well known to users of UNIX utilities like grep and awk, have been added
to the standard set of filename wildcards and to the shell variable facility.

●

Advanced I/O features, including the ability to do two-way communication with concurrent
processes (coroutines).

●

New options and variables that give you more ways to customize your environment.●

Increased speed of shell code execution.●

[Preface] Summary of Korn Shell Features

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_02.htm (1 of 2) [2/8/2001 4:52:21 PM]

Security features that help protect against "Trojan horses" and other types of break-in schemes.●

Korn Shell Versions Intended Audience

[Preface] Summary of Korn Shell Features

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_02.htm (2 of 2) [2/8/2001 4:52:21 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Preface

Intended Audience
This book is designed to appeal most closely to casual UNIX users who are just above the "raw
beginner" level. You should be familiar with the process of logging in, entering commands, and doing
simple things with files. Although Chapter 1, Korn Shell Basics, reviews concepts such as the tree-like
file and directory scheme, you may find that it moves too quickly if you're a complete neophyte. In that
case, we recommend the O'Reilly & Associates Nutshell Handbook, Learning the UNIX Operating
System, by Grace Todino and John Strang.

If you're an experienced user, you may wish to skip Chapter 1 altogether. But if your experience is with
the C shell, you may find that Chapter 1 reveals a few subtle differences between the Korn and C shells.

No matter what your level of experience is, you will undoubtedly learn many things in this book that
make you a more productive Korn shell user - from major features down to details at the
"nook-and-cranny" level that you weren't aware of.

If you are interested in shell programming (writing shell scripts and functions that automate everyday
tasks or serve as system utilities), you should find this book useful too. However, we have deliberately
avoided drawing a strong distinction between interactive shell use (entering commands during a login
session) and shell programming. We see shell programming as a natural, inevitable outgrowth of
increasing experience as a user.

Accordingly, each chapter depends on those previous to it, and although the first three chapters are
oriented toward interactive use only, subsequent chapters describe interactive user-oriented features in
addition to programming concepts.

In fact, if this book has an overriding message, it is: "The Korn shell is an incredibly powerful and
grossly undervalued UNIX programming environment. You - yes, you - can write useful shell programs,
even if you just learned how to log on last week and have never programmed before."

Toward that end, we have decided not to spend much time on features of interest exclusively to low-level
systems programmers. Concepts like file descriptors, errno error numbers, special file types, etc., can
only confuse the casual user, and anyway, we figure that those of you who understand such things are
smart enough to extrapolate the necessary information from our cursory discussions.

[Preface] Intended Audience

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_03.htm (1 of 2) [2/8/2001 4:52:22 PM]

Summary of Korn Shell
Features

Code Examples

[Preface] Intended Audience

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_03.htm (2 of 2) [2/8/2001 4:52:22 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Preface

Code Examples
This book is full of examples of shell commands and programs that are designed to be useful in your
everyday life as a user, not just to illustrate the feature being explained. In Chapter 4, Basic Shell
Programming and onwards, we include various programming problems, which we call tasks, that
illustrate particular shell programming concepts. Some tasks have solutions that are refined in subsequent
chapters. The later chapters also include programming exercises, many of which build on the tasks in the
chapter.

You should feel free to use any code you see in this book and to pass it along to friends and colleagues.
We especially encourage you to modify and enhance it yourself.

If you want to try examples but you don't use the Korn shell as your login shell, you must put the
following line at the top of each shell script:

#!/bin/ksh

If your Korn shell isn't installed as the file /bin/ksh, substitute its pathname in the above.

Intended Audience Chapter Summary

[Preface] Code Examples

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_04.htm [2/8/2001 4:52:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Preface

Chapter Summary
If you want to investigate specific topics rather than read the entire book through, here is a
chapter-by-chapter summary:

Chapter 1

introduces the Korn shell and tells you how to install it as your login shell. Then it gives an
introduction to the basics of interactive shell use, including overviews of the UNIX file and
directory scheme, standard I/O, and background jobs.

Chapter 2, Command-line Editing,

discusses the shell's command history mechanism, including the emacs- and vi-editing modes and
the fc history command.

Chapter 3, Customizing Your Environment,

covers ways to customize your shell environment without programming, by using the .profile and
environment files. Aliases, options, and shell variables are the customization techniques discussed.

Chapter 4

is an introduction to shell programming. It explains the basics of shell scripts and functions, and
discusses several important "nuts-and-bolts" programming features: string manipulation operators,
regular expressions, command-line arguments (positional parameters), and command substitution.

Chapter 5, Flow Control,

continues the discussion of shell programming by describing command exit status, conditional
expressions, and the shell's flow-control structures: if, for, case, select, while, and until.

Chapter 6, Command-line Options and Typed Variables,

goes into depth about positional parameters and command-line option processing, then discusses
special types and properties of variables, such as integer arithmetic and arrays, and the typeset
command.

Chapter 7, Input/Output and Command-line Processing,

gives a detailed description of Korn shell I/O, filling in the information omitted in Chapter 1. All
of the shell's I/O redirectors are covered, as are the line-at-a-time I/O commands read and print.

[Preface] Chapter Summary

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_05.htm (1 of 2) [2/8/2001 4:52:24 PM]

Then the chapter discusses the shell's command-line processing mechanism and the eval
command.

Chapter 8, Process Handling,

covers process-related issues in detail. It starts with a discussion of job control, then gets into
various low-level information about processes, including process IDs, signals, and traps. The
chapter then moves out to a higher level of abstraction to discuss coroutines, two-way pipes, and
subshells.

Chapter 9, Debugging Shell Programs,

discusses various debugging techniques, starting with simple ones like trace and verbose modes
and "fake signal" traps. Then it presents kshdb, a Korn shell debugging tool that you can use to
debug your own code.

Chapter 10, Korn Shell Administration,

gives information for system administrators, including techniques for implementing system-wide
shell customization and features related to system security.

Appendix A

compares the 1988 UNIX Korn shell to several similar shells, including the standard Bourne shell,
the IEEE 1003.2 POSIX shell standard, the Windowing Korn shell (wksh), public domain Korn
shell (pdksh), the Free Software Foundation's bash, and the MKS Toolkit shell for MS-DOS and
OS/2.

Appendix B, Reference Lists,

contains lists of shell invocation options, built-in commands, built-in variables, conditional test
operators, options, typeset command options, and emacs and vi editing mode commands.

Appendix C, Obtaining Sample Programs,

lists the ways that you can obtain the major scripts in this book for free, using anonymous FTP or
electronic mail.

Code Examples Conventions Used in This
Handbook

[Preface] Chapter Summary

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_05.htm (2 of 2) [2/8/2001 4:52:24 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Preface

Conventions Used in This Handbook
We leave it as understood that, when you enter a shell command, you press RETURN at the end.
RETURN is labeled ENTER on some keyboards.

Characters called CTRL-X, where X is any letter, are entered by holding down the CTRL (or CTL, or
CONTROL) key and pressing that letter. Although we give the letter in uppercase, you can press the
letter without the SHIFT key.

Other special characters are LINEFEED (which is the same as CTRL-J), BACKSPACE (same as
CTRL-H), ESC, TAB, and DEL (sometimes labeled DELETE or RUBOUT).

This book uses the following font conventions:

Italic is used for UNIX filenames, commands not built into the shell, (which are files
anyway), and shell functions. Italic is also used for dummy parameters that should
be replaced with an actual value, to distinguish the vi and emacs programs from
their Korn-shell modes, and to highlight special terms the first time they are
defined.

Bold is used for Korn shell built-in commands, aliases, variables, and options, as well as
command lines when they are within regular text. Bold is used for all elements
typed in by the user.

Constant
Width

is used in examples to show the contents of files or the output from commands.

Constant Bold is used in examples to show interaction between the user and the shell; any text the
user types in is shown in Constant Bold. For example:

$ pwd
/users/billr/ora/kb
$

Constant
Italic

is used in displayed command lines for dummy parameters that should be replaced
with an actual value.

Reverse Video is used in Chapter 2 to show the position of the cursor on the command line being
edited. For example:

grep -l Bob < ~pete/wk/names

Standard UNIX utility commands are sometimes mentioned with a number in parentheses (usually 1)
following the command's name. The number refers to the section of the UNIX User's Manual in which

[Preface] Conventions Used in This Handbook

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_06.htm (1 of 2) [2/8/2001 4:52:26 PM]

you'll find reference documentation (a.k.a. "man page") on the utility in question. For example, grep(1)
means you will find the man page for grep in Section 1.

Chapter Summary Acknowledgments

[Preface] Conventions Used in This Handbook

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_06.htm (2 of 2) [2/8/2001 4:52:26 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Preface

Acknowledgments
Many people contributed to this book in many ways. I'd like to thank the following people for technical
advice and/or assistance: for system administration help, John van Vlaanderen and Alexis Rosen. For
information on alternative shells, John (again), Sean Wilson (of MKS), Ed Ravin, Mel Rappaport, and
Chet Ramey. For identifying the need for a shell debugger, expertise in SunOS and system security, and,
indeed, a significant portion of my career, Hal Stern. For debugger suggestions, Tan Bronson. For
humanitarian aid, Jessica Lustig. And much thanks to David Korn for all kinds of great "horse's mouth"
information - and, of course, for the Korn shell itself.

Thanks to our technical reviewers: Jim Baumbach, Jim Falk, David Korn, Ed Miner, Eric Pearce, and Ed
Ravin. I especially appreciate the cooperation of Ed and Ed (in that order) during my "Whaddya mean, it
doesn't work?!?" phase.

Several people at O'Reilly & Associates contributed to this effort: Gigi Estabrook and Clairemarie Fisher
O'Leary proofread multiple drafts of the manuscript, Kismet McDonough and Donna Woonteiler
copyedited the manuscript, Len Muellner implemented the book design macro package, Jennifer Niederst
designed the cover and the format of the book, and Chris Reilley created the figures. Finally, an ocean of
gratitude to Mike Loukides - editor, motivator, facilitator, constructive nit-picker, and constant voice of
reason. He and the other folks at O'Reilly & Associates are some of the most innovative, interesting, and
motivated people I've ever had the privilege to work with.

Conventions Used in This
Handbook

We'd Like to Hear From You

[Preface] Acknowledgments

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_07.htm [2/8/2001 4:52:27 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Preface

We'd Like to Hear From You
We have tested and verified all of the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any errors
you find, as well as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Acknowledgments 1. Korn Shell Basics

[Preface] We'd Like to Hear From You

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/prf1_08.htm [2/8/2001 4:52:28 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix A

A. Related Shells
Contents:
The Bourne Shell
The IEEE 1003.2 POSIX Shell Standard
wksh
pdksh
bash
Workalikes on PC Platforms
The Future of the Korn Shell

The fragmentation of the UNIX marketplace has had its advantages and disadvantages. The advantages
came mostly in the early days: lack of standardization and proliferation among technically savvy
academics and professionals contributed to a healthy "free market" for UNIX software, in which several
programs of the same type (e.g., shells, text editors, system administration tools) would often compete
for popularity. The best programs would usually become the most widespread, while inferior software
tended to fade away.

But often there was no single "best" program in a given category, so several would prevail. This led to
the current situation, where multiplicity of similar software has led to confusion, lack of compatibility,
and-most unfortunate of all-UNIX' inability to capture as big a share of the market as other operating
platforms (MS-DOS, Microsoft Windows, Novell NetWare, etc.).

The "shell" category has probably suffered in this way more than any other type of software. As we said
in the Preface and Chapter 1, Korn Shell Basics, of this book, several shells are currently available; the
differences between them are often not all that great. We believe that the Korn shell is the best of the
most widely used shells, but other shells certainly have their staunch adherents, so they aren't likely to
fade into obscurity for a while.

Therefore we felt it necessary to include information on shells similar to the 1988 UNIX Korn shell. This
Appendix summarizes the differences between the latter and the following:

The standard Version 7 Bourne shell, as a kind of "baseline"●

The IEEE POSIX 1003.2 shell Standard, to which the Korn shell and other shells will adhere in the
future

●

[Appendix A] Related Shells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_01.htm (1 of 4) [2/8/2001 4:52:30 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

The Windowing Korn shell (wksh), a Korn shell with enhancements for X Window System
programming

●

pdksh, a widely-used public domain Korn shell●

The bash shell, which is another enhanced Bourne shell with some C shell and Korn shell features●

Korn shell workalikes on desktop PC platforms, including the MKS Toolkit shell●

We'll conclude this appendix with a look at the Korn shell's future: the next release's expected features,
obsolescent features of the current shell, and other issues.

A.1 The Bourne Shell
The Korn shell is almost completely backward-compatible with the Bourne shell. The only significant
feature of the latter that the Korn shell doesn't support is ^ (caret) as a synonym for the pipe (|) character.
[1] This is an archaic feature that the Bourne shell includes for its own backward compatibility with
earlier shells. No modern UNIX version has any shell code that uses ^ as a pipe.

[1] There are also a few differences in how the two shells react to certain extremely
pathological input. Usually, the Korn shell processes correctly what causes the Bourne shell
to "choke."

To describe the differences between the Bourne shell and the Korn shell, we'll go through each chapter of
this book and enumerate the features discussed in the chapter that the Bourne shell does not support.
Although some versions of the Bourne shell exist that include a few Korn shell features, [2] we refer to
the standard, Version 7 Bourne shell that has been around for many years.

[2] For example, the Bourne shell distributed with System V supports functions and a few
other Korn shell features.

Chapter 1

The cd old new and cd - forms of the cd command; tilde (~) expansion; the jobs command.

Chapter 2, Command-line Editing

All. (I.e., the Bourne shell doesn't support any of the history and editing features discussed in
Chapter 2.)

Chapter 3, Customizing Your Environment

Aliases; set -o options. The Bourne shell supports the "abbreviations" listed in the "Options" table
in Appendix B, Reference Lists-except -A, -h, -m, -p, and -s. Environment files aren't supported;
neither is the print command (use echo instead). The following built-in variables aren't supported:

EDITOR OPTIND
ERRNO PPID
ENV PS3
FCEDIT PS4

[Appendix A] Related Shells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_01.htm (2 of 4) [2/8/2001 4:52:30 PM]

FPATH PWD
HISTFILE RANDOM
HISTSIZE REPLY
LINENO SECONDS
LINES TMOUT
OLDPWD VISUAL
OPTARG

Some of these variables (e.g., EDITOR and VISUAL) are still used by other programs, like mail
and news readers.

Chapter 4, Basic Shell Programming

Functions; the whence command; pattern-matching variable operators (%, %%, #, ##); advanced
(regular expression) wildcards-use the external command expr instead. Command substitution
syntax is different: use the older `command` instead of $(command).

Chapter 5, Flow Control

Conditional tests use older syntax: [condition] or test condition instead of [[condition]]. These are
actually two forms of the same external command (see the test(1) manual page). The logical
operators && and || are -a and -o instead. Supported test operators differ from system to system.
The select construct isn't supported.

Chapter 6, Command-line Options and Typed Variables

Use the external command getopt instead of getopts, but note that it doesn't really do the same
thing. Integer arithmetic isn't supported: use the external command expr instead of the
$((arithmetic-exp)) syntax. For integer conditionals, use the old condition test syntax and relational
operators -lt, -eq, etc., instead of ((arithmetic-expr)). let isn't supported. Array variables and the
typeset command are not supported.

Chapter 7, Input/Output and Command-line Processing

The following I/O redirectors are not supported:

>|
<>
<&p
>&p
|&

print isn't supported (use echo instead). None of the options to read are supported.

Chapter 8, Process Handling

Job control-specifically, the jobs, fg, and bg commands. Job number notation with %, i.e., the kill
and wait commands only accept process IDs. The - option to trap (reset trap to the default for that
signal). trap only accepts signal numbers, not logical names. Coroutines aren't supported.

Chapter 9, Debugging Shell Programs

The ERR and DEBUG fake signals. The EXIT fake signal is supported, as signal 0.

[Appendix A] Related Shells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_01.htm (3 of 4) [2/8/2001 4:52:30 PM]

Chapter 10, Korn Shell Administration

The ulimit command and privileged mode aren't supported. The Bourne shell's restrictive
counterpart, rsh, only inhibits assignment to PATH.

10.3 System Security Features A.2 The IEEE 1003.2 POSIX
Shell Standard

[Appendix A] Related Shells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_01.htm (4 of 4) [2/8/2001 4:52:30 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1

1. Korn Shell Basics
Contents:
What Is a Shell?
Scope of This Book
History of UNIX Shells
Getting the Korn Shell
Interactive Shell Use
Files
Input and Output
Background Jobs
Special Characters and Quoting

You've used your computer for simple tasks, such as invoking your favorite application programs,
reading your electronic mail, and perhaps examining and printing files. You know that your machine
runs the UNIX operating system, or maybe you know it under some other name, like SunOS, Ultrix,
HP/UX, AIX, A/UX, UTS, or Xenix. But apart from that, you may not have given too much thought to
what goes on inside the machine when you type in a command and hit RETURN.

It is true that several layers of events take place whenever you enter a command, but we're going to
consider only the top layer, known as the shell. Generically speaking, a shell is any user interface to the
UNIX operating system, i.e., any program that takes input from the user, translates it into instructions
that the operating system can understand, and conveys the operating system's output back to the user.

There are various types of user interfaces. The Korn shell belongs to the most common category, known
as character-based user interfaces. These interfaces accept lines of textual commands that the user types
in; they usually produce text-based output. Other types of interfaces include the increasingly common
graphical user interfaces (GUI), which add the ability to display arbitrary graphics (not just typewriter
characters) and to accept input from mice and other pointing devices, touch-screen interfaces (such as
those you see on some bank teller machines), and so on.

[Chapter 1] Korn Shell Basics

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_01.htm (1 of 2) [2/8/2001 4:53:09 PM]

1.1 What Is a Shell?
The shell's job, then, is to translate the user's command lines into operating system instructions. For
example, consider this command line:

sort -n phonelist > phonelist.sorted

This means, "Sort lines in the file phonelist in numerical order, and put the result in the file
phonelist.sorted." Here's what the shell does with this command:

Breaks up the line into the pieces sort, -n, phonelist, >, and phonelist.sorted. These pieces are
called words.

1.

Determines the purpose of the words: sort is a command, -n and phonelist are arguments, and >
and phonelist.sorted, taken together, are I/O instructions.

2.

Sets up the I/O according to > phonelist.sorted (output to the file phonelist.sorted) and some
standard, implicit instructions.

3.

Finds the command sort in a file and runs it with the option -n (numerical order) and the argument
phonelist (input filename).

4.

Of course, each of these steps really involves several substeps, each of which includes a particular
instruction to the underlying operating system.

Remember that the shell itself is not UNIX-just the user interface to it. UNIX is one of the first operating
systems to make the user interface independent of the operating system.

Figure 1.1: The shell is a layer around the UNIX operating system

We'd Like to Hear From You 1.2 Scope of This Book

[Chapter 1] Korn Shell Basics

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_01.htm (2 of 2) [2/8/2001 4:53:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1
Korn Shell Basics

1.2 Scope of This Book
In this book, you will learn about the Korn shell, which is the most recent and powerful of the major
UNIX shells. There are two ways to use the Korn shell: as a user interface and as a programming
environment.

This chapter and the next cover interactive use. These two chapters should give you enough background
to use the shell confidently and productively for most of your everyday tasks.

After you have been using the shell for a while, you will undoubtedly find certain characteristics of your
environment (the shell's "look and feel") that you would like to change and tasks that you would like to
automate. Chapter 3, Customizing Your Environment shows several ways of doing this.

Chapter 3 also prepares you for shell programming, the bulk of which is covered in Chapter 4, Basic
Shell Programming through Chapter 6, Command-line Options and Typed Variables. You need not have
any programming experience to understand these chapters and learn shell programming. Chapter 7,
Input/Output and Command-line Processing and Chapter 8, Process Handling give more complete
descriptions of the shell's I/O and process handling capabilities, while Chapter 9, Debugging Shell
Programs discusses various techniques for debugging shell programs.

You'll learn a lot about the Korn shell in this book; you'll also learn about UNIX utilities and the way the
UNIX operating system works in general. It's possible to become a virtuoso shell programmer without
any previous programming experience. At the same time, we've carefully avoided going down past a
certain level of detail about UNIX internals. We maintain that you shouldn't have to be an internals
expert to use and program the shell effectively, and we won't dwell on the few shell features that are
intended specifically for low-level systems programmers.

1.1 What Is a Shell? 1.3 History of UNIX Shells

[Chapter 1] 1.2 Scope of This Book

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_02.htm [2/8/2001 4:53:20 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1
Korn Shell Basics

1.3 History of UNIX Shells
The independence of the shell from the UNIX operating system per se has led to the development of
dozens of shells throughout UNIX history-although only a few have achieved widespread use.

The first major shell was the Bourne shell (named after its inventor, Steven Bourne); it was included in
the first popular version of UNIX, Version 7, starting in 1979. The Bourne shell is known on the system
as sh. Although UNIX has gone through many, many changes, the Bourne shell is still popular and
essentially unchanged. Several UNIX utilities and administration features depend on it.

The first widely-used alternative shell was the C shell, or csh. This was written by Bill Joy at the
University of California at Berkeley as part of the Berkeley System Distribution (BSD) version of UNIX
that came out a couple of years after Version 7. It's included in most recent UNIX versions.

The C shell gets its name from the resemblance of its commands to statements in the C Programming
Language, which makes the shell easier for programmers on UNIX systems to learn. It supports a
number of operating system features (e.g., job control; see Chapter 8) that were unique to BSD UNIX but
by now have migrated to most other modern versions. It also has a few important features (e.g., aliases;
see Chapter 3) that make it easier to use in general.

1.3.1 The Korn Shell

The Korn shell, or ksh, was invented by David Korn of AT&T Bell Laboratories in the mid-1980s. It is
almost entirely upwardly compatible with the Bourne shell, [1] which means that Bourne shell users can
use it right away, and all system utilities that use the Bourne shell can use the Korn shell instead. In fact,
some systems have the Korn shell installed as if it were the Bourne shell.

[1] With a few extremely minor exceptions. See Appendix A, Related Shells for the only
important one.

The Korn shell began its public life in 1986 as part of AT&T's "Experimental Toolchest," meaning that
its source code was available at very low cost to anyone who was willing to use it without technical
support and with the knowledge that it might still have a few bugs. Eventually, AT&T's UNIX System
Laboratories (USL) decided to give it full support as a UNIX utility. As of USL's version of UNIX called
System V Release 4 (SVR4 for short, 1989), it was distributed with all USL UNIX systems, all
third-party versions of UNIX derived from SVR4, and many other versions.

[Chapter 1] 1.3 History of UNIX Shells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_03.htm (1 of 2) [2/8/2001 4:53:21 PM]

USL's distributed version of the Korn shell, dated November 16, 1988, is what this book describes. Other
versions are summarized briefly in Appendix A.

1.3.2 Features of the Korn Shell

Although the Bourne shell is still known as the "standard" shell, the Korn shell is becoming increasingly
popular and is destined to replace it. In addition to its Bourne shell compatibility, it includes the best
features of the C shell as well as several advantages of its own. It also runs more efficiently than any
previous shell.

The Korn shell's command-line editing modes are the features that tend to attract people to it at first.
With command-line editing, it's much easier to go back and fix mistakes than it is with the C shell's
history mechanism-and the Bourne shell doesn't let you do this at all.

The other major Korn shell feature that is intended mostly for interactive users is job control. As Chapter
8 explains, job control gives you the ability to stop, start, and pause any number of commands at the
same time. This feature was borrowed almost verbatim from the C shell.

The rest of the Korn shell's important advantages are mainly meant for shell customizers and
programmers. It has many new options and variables for customization, and its programming features
have been significantly expanded to include function definition, more control structures, built-in regular
expressions and integer arithmetic, advanced I/O control, and more.

1.2 Scope of This Book 1.4 Getting the Korn Shell

[Chapter 1] 1.3 History of UNIX Shells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_03.htm (2 of 2) [2/8/2001 4:53:21 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1
Korn Shell Basics

1.4 Getting the Korn Shell
You may or may not be using the Korn shell right now. Your system administrator probably set your
account up with whatever shell he or she uses as the "standard" on the system. You may not even have
been aware that there is more than one shell available.

Yet it's easy for you to determine which shell you are using. Log in to your system and type echo
$SHELL at the prompt. You will see a response containing sh, csh, or ksh; these denote the Bourne, C,
and Korn shells respectively. (There's also a remote chance that you're using a third-party shell such as
bash or tcsh.)

If you aren't using the Korn shell and you want to, then first you need to find out if it exists on your
system. Most major UNIX versions released since roughly 1989 come with it-especially those derived
from AT&T's System V Release 4. Just type ksh. If you get a new dollar-sign prompt ($), then all is
well; type exit or press CTRL-D to go back to your normal shell.

But if you get a "not found" message, your system may not have it. Ask your system administrator or
another knowledgeable user; there's a chance that you might have some version of the Korn shell
installed on the system in a place (directory) that is not normally accessible to you. But if not, read
Appendix A to find out how you can obtain a version of the Korn shell.

Once you know you have the Korn shell on your system, you can invoke it from whatever other shell you
use by typing ksh as above. However, it's much better to install it as your login shell, i.e., the shell that
you get automatically whenever you log in. You may be able to do the installation by yourself. Here are
instructions that are designed to work on the widest variety of UNIX systems. If something doesn't work
(e.g., you type in a command and get a "not found" error message or a blank line as the response), you'll
have to abort the process and see your system administrator.

You need to find out where the Korn shell is on your system, i.e., in which directory it's installed. You
might be able to find the location by typing whereis ksh (especially if you are using the C shell); if that
doesn't work, try whence ksh, which ksh, or this complex command:

grep ksh /etc/passwd | awk -F: '{print $7}' | sort -u

You should see a response that looks like /bin/ksh or /usr/local/bin/ksh.

To install as your login shell, type chsh ksh-name, where ksh-name is the response you got to your
whereis command (or whatever worked). You'll either get an error message saying that the shell is

[Chapter 1] 1.4 Getting the Korn Shell

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_04.htm (1 of 2) [2/8/2001 4:53:23 PM]

invalid, or you'll be prompted for your password. Type in your password, then log out and log back in
again to start using the Korn shell. If you got an error message, you'll just have to see your system
administrator. (For system security reasons, only certain shells are allowed to be installed as login shells.)

1.3 History of UNIX Shells 1.5 Interactive Shell Use

[Chapter 1] 1.4 Getting the Korn Shell

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_04.htm (2 of 2) [2/8/2001 4:53:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1
Korn Shell Basics

1.5 Interactive Shell Use
When you use the shell interactively, you engage in a login session that begins when you log in and ends
when you exit or press [CTRL-D]. [2] During a login session, you type command lines in to the shell;
these are lines of text ending in RETURN that you type in to your terminal or workstation. By default,
the shell prompts you for each command with a dollar sign, though as you will see in Chapter 3 the
prompt can be changed.

[2] You can set up your shell so that it doesn't accept [CTRL-D], i.e., it requires you to type
exit to end your session. We recommend this, because [CTRL-D] is too easy to type by
accident; see the section on options in Chapter 3.

1.5.1 Commands, Arguments, and Options

Shell command lines consist of one or more words, which are separated on a command line by blanks or
TABs. The first word on the line is the command. The rest (if any) are arguments (also called
parameters) to the command, which are names of things on which the command will act.

For example, the command line lp myfile consists of the command lp (print a file) and the single
argument myfile. lp treats myfile as the name of a file to print. Arguments are often names of files, but
not necessarily: in the command line mail billr, the mail program treats billr as the name of the user to
which a message will be sent.

An option is a special type of argument that gives the command specific information on what it is
supposed to do. Options usually consist of a dash followed by a letter; we say "usually" because this is a
convention rather than a hard-and-fast rule. The command lp -h myfile contains the option -h, which
tells lp not to print the "banner page" before it prints the file.

Sometimes options take their own arguments. For example, lp -d hp3si -h myfile has two options and
one argument. The first option is -d hp3si, which means "Send the output to the printer (destination)
called hp3si". The second option and argument are as above.

1.4 Getting the Korn Shell 1.6 Files

[Chapter 1] 1.5 Interactive Shell Use

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_05.htm (1 of 2) [2/8/2001 4:53:24 PM]

[Chapter 1] 1.5 Interactive Shell Use

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_05.htm (2 of 2) [2/8/2001 4:53:24 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1
Korn Shell Basics

1.6 Files
Although arguments to commands aren't always files, files are the most important types of "things" on
any UNIX system. A file can contain any kind of information, and indeed there are different types of
files. Three types are by far the most important:

Regular files

Also called text files; these contain readable characters. For example, this book was created from
several regular files that contain the text of the book plus human-readable formatting instructions
to the troff word processor.

Executable files

Also called programs; these are invoked as commands. Some can't be read by humans; others-the
shell scripts that we'll examine in this book-are just special text files. The shell itself is a
(non-human-readable) executable file called ksh.

Directories

Like folders that contain other files-possibly other directories (called subdirectories).

1.6.1 Directories

Let's review the most important concepts about directories. The fact that directories can contain other
directories leads to a hierarchical structure, more popularly known as a tree, for all files on a UNIX
system. Figure 1.2 shows part of a typical directory tree; ovals are regular files and rectangles are
directories.

Figure 1.2: A tree of directories and files

[Chapter 1] 1.6 Files

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_06.htm (1 of 7) [2/8/2001 4:53:29 PM]

The top of the tree is a directory called "root" that has no name on the system. [3] All files can be named
by expressing their location on the system relative to root; such names are built by listing all of the
directory names (in order from root), separated by slashes (/), followed by the file's name. This way of
naming files is called a full (or absolute) pathname.

[3] Most introductory UNIX tutorials say that root has the name /. We stand by this
alternative explanation because it is more logically consistent.

For example, say there is a file called memo that is in the directory fred, which is in the directory users,
which is in the root directory. This file's full pathname is /users/fred/memo.

1.6.1.1 The working directory

Of course, it's annoying to have to use full pathnames whenever you need to specify a file. So there is
also the concept of the working directory (sometimes called the current directory), which is the directory
you are "in" at any given time. If you give a pathname with no leading slash, then the location of the file
is worked out relative to the working directory. Such pathnames are called relative pathnames; you'll use
them much more often than full pathnames.

When you log in to the system, your working directory is initially set to a special directory called your
home (or login) directory. System administrators often set up the system so that everyone's home
directory name is the same as their login name, and all home directories are contained in a common
directory under root.

For example, /users/billr is a typical home directory. If this is your working directory and you give the
command lp memo, then the system looks for the file memo in /users/billr. If you have a directory called
bob in your home directory, and it contains the file statreport, then you can print it with the command lp

[Chapter 1] 1.6 Files

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_06.htm (2 of 7) [2/8/2001 4:53:29 PM]

bob/statreport.

1.6.1.2 Tilde notation

As you can well imagine, home directories occur often in pathnames. Although many systems are
organized so that all home directories have a common parent (such as /home or /users), you should not
have to rely on that being the case, nor should you even have to know what the absolute pathname of
someone's home directory is.

Therefore, the Korn shell has a way of abbreviating home directories: just precede the name of the user
with a tilde (~). For example, you could refer to the file memo in user fred's home directory as
~fred/memo. This is an absolute pathname, so it doesn't matter what your working directory is when you
use it. If fred's home directory has a subdirectory called bob and the file is in there instead, you can use
~fred/bob/memo as its name.

Even more convenient, a tilde by itself refers to your own home directory. You can refer to a file called
notes in your home directory as ~/notes (note the difference between that and ~notes, which the shell
would try to interpret as user notes home directory). If notes is in your bob subdirectory, then you can
call it ~/bob/notes. This notation is handiest when your working directory is not in your home directory
tree, e.g., when it's some "system" directory like /tmp.

1.6.1.3 Changing working directories

If you want to change your working directory, use the command cd. If you don't remember your working
directory, the command pwd tells the shell to print it.

cd takes as argument the name of the directory you want to become your working directory. It can be
relative to your current directory, it can contain a tilde, or it can be absolute (starting with a slash). If you
omit the argument, cd changes to your home directory (i.e., it's the same as cd ~).

Table 1.1 gives some sample cd commands. Each command assumes that your working directory is
/users/billr just before the command is executed, and that your directory structure looks like Figure 1.2.

Table 1.1: Sample cd Commands
Command New Working Directory
cd bob /users/billr/bob
cd bob/dave /users/billr/bob/dave
cd ~/bob/dave /users/billr/bob/dave
cd /usr/lib /usr/lib
cd .. /users
cd ../pete /users/pete
cd ~pete /users/pete
cd billr pete /users/pete
cd illr arry /users/barry

The first four are straightforward. The next two use a special directory called .. (two dots), which
means "parent of this directory." Every directory has one of these; it's a universal way to get to the

[Chapter 1] 1.6 Files

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_06.htm (3 of 7) [2/8/2001 4:53:29 PM]

directory above the current one in the hierarchy-which is called the parent directory. [4]

[4] Each directory also has the special directory . (single dot), which just means "this
directory." Thus, cd . effectively does nothing. Both . and .. are actually special hidden
files in each directory that point to the directory itself and to its parent directory,
respectively. Root is its own parent.

The last two examples in the table use a new form of the cd command, which is not included in most
Bourne shells. The form is cd old new. It takes the full pathname of the current working directory and
tries to find the string old in it. If it finds the string, it substitutes new and changes to the resulting
directory.

In the first of the two examples, the shell substitutes pete for billr in the current directory name and
makes the result the new current directory. The last example shows that the substitution need not be a
complete filename: substituting arry for illr in /users/billr yields /users/barry. (If the old string can't be
found in the current directory name, the shell prints an error message.)

Another new feature of the Korn shell's cd command is the form cd -, which changes to whatever
directory you were in before the current one. For example, if you start out in /usr/lib, type cd without an
argument to go to your home directory, and then type cd -, you will be back in /usr/lib.

1.6.2 Filenames and Wildcards

Sometimes you need to run a command on more than one file at a time. The most common example of
such a command is ls, which lists information about files. In its simplest form, without options or
arguments, it lists the names of all files in the working directory except special hidden files, whose
names begin with a dot (.).

If you give ls filename arguments, it will list those files-which is sort of silly: if your current directory
has the files bob and fred in it and you type ls bob fred, the system will simply parrot the filenames back
at you.

Actually, ls is more often used with options that tell it to list information about the files, like the -l (long)
option, which tells ls to list the file's owner, size, time of last modification, and other information, or -a
(all), which also lists the hidden files described above. But sometimes you want to verify the existence of
a certain group of files without having to know all of their names; for example, if you use the
WordPerfect word processor, you might want to see which files in your current directory have names that
end in .wp.

Filenames are so important in UNIX that the shell provides a built-in way to specify the pattern of a set
of filenames without having to know all of the names themselves. You can use special characters, called
wildcards, in filenames to turn them into patterns. We'll show the three basic types of wildcards that all
major UNIX shells support, and we'll save the Korn shell's set of advanced wildcard operators for
Chapter 4. Table 1.2 lists the basic wildcards.

Table 1.2: Basic Wildcards
Wildcard Matches
? Any single character

[Chapter 1] 1.6 Files

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_06.htm (4 of 7) [2/8/2001 4:53:29 PM]

* Any string of characters
[set] Any character in set
[!set] Any character not in set

The ? wildcard matches any single character, so that if your directory contains the files program.c,
program.log, and program.o, then the expression program.? matches program.c and program.o but not
program.log.

The asterisk (*) is more powerful and far more widely-used; it matches any string of characters. The
expression program.* will match all three files in the previous paragraph; WordPerfect users can use the
expression *.wp to match their input files. [5]

[5] MS-DOS and VAX/VMS users should note that there is nothing special about the dot (.)
in UNIX filenames (aside from the leading dot, which "hides" the file); it's just another
character. For example, ls * lists all files in the current directory; you don't need *.* as you
do on other systems.

Table 1.3 should give you a better idea of how the asterisk works. Assume that you have the files bob,
darlene, dave, ed, frank, and fred in your working directory.

Notice that * can stand for nothing: both *ed and *e* match ed. Also notice that the last example shows
what the shell does if it can't match anything: it just leaves the string with the wildcard untouched.

Table 1.3: Using the * Wildcard
Expression Yields
fr* frank fred
*ed ed fred
b* bob
e darlene dave ed fred
r darlene frank fred
* bob darlene dave ed frank fred
d*e darlene dave
g* g*

The remaining wildcard is the set construct. A set is a list of characters (e.g., abc), an inclusive range
(e.g., a-z), or some combination of the two. If you want the dash character to be part of a list, just list it
first or last. Table 1.4 should explain things more clearly.

Table 1.4: Using the Set Construct Wildcards
Expression Matches
[abc] a, b, or c
[.,;] Period, comma, or semicolon
[-_] Dash and underscore
[a-c] a, b, or c
[a-z] All lowercase letters
[!0-9] All non-digits

[Chapter 1] 1.6 Files

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_06.htm (5 of 7) [2/8/2001 4:53:29 PM]

[0-9!] All digits and exclamation point
[a-zA-Z] All lower- and uppercase letters
[a-zA-Z0-9_-] All letters, all digits, underscore, and dash

In the original wildcard example, program.[co] and program.[a-z] both match program.c and
program.o, but not program.log.

An exclamation point after the left bracket lets you "negate" a set. For example, [!.;] matches any
character except period and semicolon; [!a-zA-Z] matches any character that isn't a letter.

The range notation is handy, but you shouldn't make too many assumptions about what characters are
included in a range. It's safe to use a range for uppercase letters, lowercase letters, digits, or any
subranges thereof (e.g., [f-q], [2-6]). Don't use ranges on punctuation characters or mixed-case letters:
e.g., [a-Z] and [A-z] should not be trusted to include all of the letters and nothing more. The problem is
that such ranges are not entirely portable between different types of computers. [6]

[6] Specifically, ranges depend on the character encoding scheme your computer uses. The
vast majority use ASCII, but IBM mainframes use EBCDIC.

The process of matching expressions containing wildcards to filenames is called wildcard expansion.
This is just one of several steps the shell takes when reading and processing a command line; another that
we have already seen is tilde expansion, where tildes are replaced with home directories where
applicable. We'll see others in later chapters, and the full details of the process are enumerated in Chapter
7.

However, it's important to be aware that the commands that you run only see the results of wildcard
expansion. That is, they just see a list of arguments, and they have no knowledge of how those arguments
came into being. For example, if you type ls fr* and your files are as on the previous page, then the shell
expands the command line to ls fred frank and invokes the command ls with arguments fred and frank.
If you type ls g*, then (because there is no match) ls will be given the literal string g* and will complain
with the error message, g* not found. [7]

[7] This is different from the C shell's wildcard mechanism, which prints an error message
and doesn't execute the command at all.

Here is another example that should help you understand why this is important. Suppose you are a C
programmer. This just means that you deal with files whose names end in .c (programs, a.k.a. source
files), .h (header files for programs), and .o (object code files that aren't human-readable) as well as other
files.

Let's say you want to list all source, object, and header files in your working directory. The command ls
*.[cho] does the trick. The shell expands *.[cho] to all files whose names end in a period followed by a
c, h, or o and passes the resulting list to ls as arguments.

In other words, ls will see the filenames just as if they were all typed in individually-but notice that we
assumed no knowledge of the actual filenames whatsoever! We let the wildcards do the work.

As you gain experience with the shell, reflect on what life would be like without wildcards. Pretty
miserable, we would say.

[Chapter 1] 1.6 Files

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_06.htm (6 of 7) [2/8/2001 4:53:29 PM]

1.5 Interactive Shell Use 1.7 Input and Output

[Chapter 1] 1.6 Files

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_06.htm (7 of 7) [2/8/2001 4:53:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1
Korn Shell Basics

1.7 Input and Output
The software field-really, any scientific field-tends to advance most quickly and impressively on those
few occasions when someone (i.e., not a committee) comes up with an idea that is small in concept yet
enormous in its implications. The standard input and output scheme of UNIX has to be on the short list of
such ideas, along with such classic innovations as the LISP language, the relational data model, and
object-oriented programming.

The UNIX I/O scheme is based on two dazzlingly simple ideas. First, UNIX file I/O takes the form of
arbitrarily long sequences of characters (bytes). In contrast, file systems of older vintage have more
complicated I/O schemes (e.g., "block," "record," "card image," etc.). Second, everything on the system
that produces or accepts data is treated as a file; this includes hardware devices like disk drives and
terminals. Older systems treated every device differently. Both of these ideas have made systems
programmers' lives much more pleasant.

1.7.1 Standard I/O

By convention, each UNIX program has a single way of accepting input called standard input, a single
way of producing output called standard output, and a single way of producing error messages called
standard error output, usually shortened to standard error. Of course, a program can have other input
and output sources as well, as we will see in Chapter 7.

Standard I/O was the first scheme of its kind that was designed specifically for interactive users at
terminals, rather than the older batch style of use that usually involves decks of punch-cards. Since the
UNIX shell provides the user interface, it should come as no surprise that standard I/O was designed to
fit in very neatly with the shell.

All shells handle standard I/O in basically the same way. Each program that you invoke has all three
standard I/O channels set to your terminal or workstation, so that standard input is your keyboard, and
standard output and error are your screen or window. For example, the mail utility prints messages to you
on the standard output, and when you use it to send messages to other users, it accepts your input on the
standard input. This means that you view messages on your screen and type new ones in on your
keyboard.

When necessary, you can redirect input and output to come from or go to a file instead. If you want to
send the contents of a pre-existing file to someone as mail, you redirect mail's standard input so that it

[Chapter 1] 1.7 Input and Output

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_07.htm (1 of 4) [2/8/2001 4:53:31 PM]

reads from that file instead of your keyboard.

You can also hook up programs into a pipeline, in which the standard output of one program feeds
directly into the standard input of another; for example, you could feed mail output directly to the lp
program so that messages are printed instead of shown on the screen.

This makes it possible to use UNIX utilities as building blocks for bigger programs. Many UNIX utility
programs are meant to be used in this way: they each perform a specific type of filtering operation on
input text. Although this isn't a textbook on UNIX utilities, they are essential to productive shell use. The
more popular filtering utilities are listed in Table 1.5.

Table 1.5: Popular UNIX Data Filtering Utilities
Utility Purpose
cat Copy input to output
grep Search for strings in the input
sort Sort lines in the input
cut Extract columns from input
sed Perform editing operations on input
tr Translate characters in the input to other characters

You may have used some of these before and noticed that they take names of input files as arguments
and produce output on standard output. You may not know, however, that all of them (and most other
UNIX utilities) accept input from standard input if you omit the argument. [8]

[8] If a particular UNIX utility doesn't accept standard input when you leave out the
filename argument, try using - as the argument.

For example, the most basic utility is cat, which simply copies its input to its output. If you type cat with
a filename argument, it will print out the contents of that file on your screen. But if you invoke it with no
arguments, it will expect standard input and copy it to standard output. Try it: cat will wait for you to
type a line of text; when you type RETURN, cat will parrot the text back at you. To stop the process, hit
[CTRL-D] at the beginning of a line (see below for what this character means). You will see ^D when
you type [CTRL-D]. Here's what this should look like:

$ cat
Here is a line of text.
Here is a line of text.
This is another line of text.
This is another line of text.
^D
$

1.7.2 I/O Redirection

cat is actually short for "catenate," i.e., link together. It accepts multiple filename arguments and copies
them to the standard output. But let's pretend, for the moment, that cat and other utilities don't accept
filename arguments and accept only standard input. As we said above, the shell lets you redirect standard
input so that it comes from a file. The notation command < filename does this; it sets things up so that

[Chapter 1] 1.7 Input and Output

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_07.htm (2 of 4) [2/8/2001 4:53:31 PM]

command takes standard input from a file instead of from a terminal.

For example, if you have a file called fred that contains some text, then cat < fred will print fred's
contents out onto your terminal. sort < fred will sort the lines in the fred file and print the result on your
terminal (remember: we're pretending that utilities don't take filename arguments).

Similarly, command > filename causes the command's standard output to be redirected to the named file.
The classic "canonical" example of this is date > now: the date command prints the current date and time
on the standard output; the above command saves it in a file called now.

Input and output redirectors can be combined. For example: the cp command is normally used to copy
files; if for some reason it didn't exist or was broken, you could use cat in this way:

$ cat < file1 > file2

This would be similar to cp file1 file2.

1.7.3 Pipelines

It is also possible to redirect the output of a command into the standard input of another command
instead of a file. The construct that does this is called the pipe, notated as |. A command line that includes
two or more commands connected with pipes is called a pipeline.

Pipes are very often used with the more command, which works just like cat except that it prints its
output screen by screen, pausing for the user to type SPACE (next screen), RETURN (next line), or other
commands. If you're in a directory with a large number of files and you want to see details about them, ls
-l | more will give you a detailed listing a screen at a time.

Pipelines can get very complex (see, for example, the lsd function in Chapter 4 or the pipeline version of
the C compiler driver in Chapter 7); they can also be combined with other I/O directors. To see a sorted
listing of the file fred a screen at a time, type sort < fred | more. To print it instead of viewing it on your
terminal, type sort < fred | lp.

Here's a more complicated example. The file /etc/passwd stores information about users' accounts on a
UNIX system. Each line in the file contains a user's login name, user ID number, encrypted password,
home directory, login shell, and other info. The first field of each line is the login name; fields are
separated by colons (:). A sample line might look like this:

billr:5Ae40BGR/tePk:284:93:Bill Rosenblatt:/home/billr:/bin/ksh

To get a sorted listing of all users on the system, type:

$ cut -d: -f1 < /etc/passwd | sort

(Actually, you can omit the <, since cut accepts input filename arguments.) The cut command extracts
the first field (-f1), where fields are separated by colons (-d:), from the input. The entire pipeline will
print a list that looks like this:

al
billr
bob
chris

[Chapter 1] 1.7 Input and Output

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_07.htm (3 of 4) [2/8/2001 4:53:31 PM]

dave
ed
frank
...

If you want to send the list directly to the printer (instead of your screen), you can extend the pipeline
like this:

$ cut -d: -f1 < /etc/passwd | sort | lp

Now you should see how I/O directors and pipelines support the UNIX building block philosophy. The
notation is extremely terse and powerful. Just as important, the pipe concept eliminates the need for
messy temporary files to store output of commands before it is fed into other commands.

For example, to do the same sort of thing as the above command line on other operating systems
(assuming that equivalent utilities were available...), you would need three commands. On DEC's
VAX/VMS system, they might look like this:

$ cut [etc]passwd /d=":" /f=1 /out=temp1
$ sort temp1 /out=temp2
$ print temp2

After sufficient practice, you will find yourself routinely typing in powerful command pipelines that do
in one line what it would take several commands (and temporary files) in other operating systems to
accomplish.

1.6 Files 1.8 Background Jobs

[Chapter 1] 1.7 Input and Output

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_07.htm (4 of 4) [2/8/2001 4:53:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1
Korn Shell Basics

1.8 Background Jobs
Pipes are actually a special case of a more general feature: doing more than one thing at a time. This is a
capability that many other commercial operating systems don't have, because of the rigid limits that they
tend to impose upon users. UNIX, on the other hand, was developed in a research lab and meant for
internal use, so it does relatively little to impose limits on the resources available to users on a
computer-as usual, leaning towards uncluttered simplicity rather than overcomplexity.

"Doing more than one thing at a time" means running more than one program at the same time. You do
this when you invoke a pipeline; you can also do it by logging on to a UNIX system as many times
simultaneously as you wish. (If you try that on an IBM VM/CMS system, for example, you will get an
obnoxious "already logged in" message.)

The shell also lets you run more than one command at a time during a single login session. Normally,
when you type a command and hit RETURN, the shell will let the command have control of your
terminal until it is done; you can't type in further commands until the first one is done. But if you want to
run a command that does not require user input and you want to do other things while the command is
running, put an ampersand (&) after the command.

This is called running the command in the background, and a command that runs in this way is called a
background job; for contrast, a job run the normal way is called a foreground job. When you start a
background job, you get your shell prompt back immediately, enabling you to enter other commands.

The most obvious use for background jobs is programs that take a long time to run, such as sort or
uncompress on large files. For example, assume you just got an enormous compressed file loaded into
your directory from magnetic tape. Compressed files are created by the compress utility, which packs
files into smaller amounts of space; they have names of the form filename.Z, where filename is the name
of the original uncompressed file. Let's say the file is gcc.tar.Z, which is a compressed archive file that
contains well over 10 MB of source code files.

Type uncompress gcc.tar & (you can omit the .Z), and the system will start a job in the background that
uncompresses the data "in place" and ends up with the file gcc.tar. Right after you type the command,
you will see a line like this:

[1] 4692

followed by your shell prompt, meaning that you can enter other commands. Those numbers give you
ways of referring to your background job; Chapter 8 explains them in detail.

[Chapter 1] 1.8 Background Jobs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_08.htm (1 of 3) [2/8/2001 4:53:33 PM]

You can check on background jobs with the command jobs. For each background job, jobs prints a line
similar to the above but with an indication of the job's status:

[1] + Running uncompress gcc.tar

When the job finishes, you will see a message like this right before your shell prompt:

[1] + Done uncompress gcc.tar

The message changes if your background job terminated with an error; again, see Chapter 8 for details.

1.8.1 Background I/O

Jobs you put in the background should not do I/O to your terminal. Just think about it for a moment and
you'll understand why.

By definition, a background job doesn't have control over your terminal. Among other things, this means
that only the foreground process (or, if none, the shell itself) is "listening" for input from your keyboard.
If a background job needs keyboard input, it will often just sit there doing nothing until you do
something about it (as described in Chapter 8).

If a background job produces screen output, the output will just appear on your screen. If you are running
a job in the foreground that produces output too, then the output from the two jobs will be randomly (and
often annoyingly) interspersed.

If you want to run a job in the background that expects standard input or produces standard output, the
obvious solution is to redirect it so that it comes from or goes to a file. The only exception is that some
programs produce small, one-line messages (warnings, "done" messages, etc.); you may not mind if these
are interspersed with whatever other output you are seeing at a given time.

For example, the diff utility examines two files, whose names are given as arguments, and prints a
summary of their differences on the standard output. If the files are exactly the same, diff is silent.
Usually, you invoke diff expecting to see a few lines that are different.

diff, like sort and compress, can take a long time to run if the input files are very large. Suppose you have
two large files that are called warandpeace.wp and warandpeace.wp.old. The command diff
warandpeace.wp warandpeace.wp.old [9] reveals that the author decided to change the name "Ivan" to
"Aleksandr" throughout the entire file-i.e., hundreds of differences, resulting in large amounts of output.

[9] You could use diff warandpeace* as a shorthand to save typing-as long as there are no
other files with names of that form. Remember that diff doesn't see the arguments until after
the shell has expanded the wildcards. Many people overlook this use of wildcards.

If you type diff warandpeace.wp warandpeace.wp.old &, then the system will spew lots and lots of
output at you, which it will be very difficult to stop-even with the techniques explained in Chapter 7.
However, if you type:

$ diff warandpeace.wp warandpeace.wp.old > wpdiff &

then the differences will be saved in the file wpdiff for you to examine later.

[Chapter 1] 1.8 Background Jobs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_08.htm (2 of 3) [2/8/2001 4:53:33 PM]

1.8.2 Background Jobs and Priorities

Background jobs can save you a lot of thumb-twiddling time (or can help you diet by eliminating excuses
to run to the candy machine). Just remember that such jobs eat up lots of system resources like memory
and the processor (CPU). Just because you're running several jobs at once doesn't mean that they will run
faster than they would if run sequentially-in fact, it's usually worse.

Every job on the system is assigned a priority, a number that tells the operating system how much
priority to give the job when it doles out resources (the higher the number, the lower the priority).
Foreground commands that you enter from the shell usually have the same, standard priority. But
background jobs, by default, have lower priority. [10]

[10] This feature was borrowed from the C shell; it is not present in most Bourne shells.

You'll find out in Chapter 3 how you can override this priority assignment so that background jobs run at
the same priority as foreground jobs. However, if you're on a multiuser system, then running lots of
background jobs may eat up more than your fair share of resources, and you should consider whether
having your job run as fast as possible is really more important than being a good citizen.

1.8.2.1 nice

Speaking of good citizenship, there is also a shell command that lets you lower the priority of any job:
the aptly-named nice. If you type nice command, where command can be a complex shell command line
with pipes, redirectors, etc., then the command will run at a lower priority. You can control just how
much lower by giving nice a numerical argument; consult the man page for details. [11]

[11] If you are a system administrator logged in as root, then you can also use nice to raise a
job's priority.

1.7 Input and Output 1.9 Special Characters and
Quoting

[Chapter 1] 1.8 Background Jobs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_08.htm (3 of 3) [2/8/2001 4:53:33 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 1
Korn Shell Basics

1.9 Special Characters and Quoting
The characters <, >, |, and & are four examples of special characters that have particular meanings to the shell. The
wildcards we saw earlier in this chapter (*, ?, and [...]) are also special characters.

Table 1.6 gives indications of the meanings of all special characters within shell command lines only. Other characters
have special meanings in specific situations, such as the regular expressions and string-handling operators we'll see in
Chapter 3 and Chapter 4.

Table 1.6: Special Characters
Character Meaning See Chapter
~ Home directory 1
lsquo; Command substitution (archaic) 4
Comment 4
$ Variable expression 3
& Background job 1
* String wildcard 1
(Start subshell 8
) End subshell 8
\ Quote next character 1
| Pipe 1
[Start character-set wildcard 1
] End character-set wildcard 1
{ Start code block 7
} End code block 7
; Shell command separator 3
' Strong quote 1
" Weak quote 1
< Input redirect 1
> Output redirect 1
/ Pathname directory separator 1
? Single-character wildcard 1

1.9.1 Quoting

Sometimes you will want to use special characters literally, i.e., without their special meanings. This is called quoting.
If you surround a string of characters with single quotes, you strip all characters within the quotes of any special
meaning they might have.

The most obvious situation where you might need to quote a string is with the print command, which just takes its

[Chapter 1] 1.9 Special Characters and Quoting

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_09.htm (1 of 5) [2/8/2001 4:53:36 PM]

arguments and prints them to the standard output. What is the point of this? As you will see in later chapters, the shell
does quite a bit of processing on command lines - most of which involves some of the special characters listed in Table
1.6. print is a way of making the result of that processing available on the standard output.

But what if we wanted to print the string, 2 * 3 > 5 is a valid inequality? Suppose you typed this:

$ print 2 * 3 > 5 is a valid inequality.

You would get your shell prompt back, as if nothing happened! But then there would be a new file, with the name 5,
containing "2", the names of all files in your current directory, and then the string 3 is a valid inequality. Make sure
you understand why. [12]

[12] This should also teach you something about the flexibility of placing I/O redirectors anywhere on the
command line-even in places where they don't seem to make sense.

However, if you type:

$ print '2 * 3 > 5 is a
valid inequality.'

the result is the string, taken literally. You needn't quote the entire line, just the portion containing special characters (or
characters you think might be special, if you just want to be sure):

$ print '2 * 3 > 5' is a valid inequality.

This has exactly the same result.

Notice that Table 1.6 lists double quotes (") as weak quotes. A string in double quotes is subjected to some of the steps
the shell takes to process command lines, but not all. (In other words, it treats only some special characters as special.)
You'll see in later chapters why double quotes are sometimes preferable; Chapter 7 contains the most comprehensive
explanation of the shell's rules for quoting and other aspects of command-line processing. For now, though, you should
stick to single quotes.

1.9.2 Backslash-escaping

Another way to change the meaning of a character is to precede it with a backslash (\). This is called backslash-escaping
the character. In most cases, when you backslash-escape a character, you quote it. For example:

$ print 2 * 3 \> 5 is a valid inequality.

will produce the same results as if you surrounded the string with single quotes. To use a literal backslash, just surround
it with quotes ('\') or, even better, backslash-escape it (\\).

Here is a more practical example of quoting special characters. A few UNIX commands take arguments that often
include wildcard characters, which need to be escaped so the shell doesn't process them first. The most common such
command is find, which searches for files throughout entire directory trees.

To use find, you supply the root of the tree you want to search and arguments that describe the characteristics of the
file(s) you want to find. For example, the command find . -name string searches the directory tree whose root is your
current directory for files whose names match the string. (Other arguments allow you to search by the file's size, owner,
permissions, date of last access, etc.)

You can use wildcards in the string, but you must quote them, so that the find command itself can match them against
names of files in each directory it searches. The command find . -name '*.c' will match all files whose names end in .c
anywhere in your current directory, subdirectories, sub-subdirectories, etc.

[Chapter 1] 1.9 Special Characters and Quoting

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_09.htm (2 of 5) [2/8/2001 4:53:36 PM]

1.9.3 Quoting Quotation Marks

You can also use a backslash to include double quotes within a quoted string. For example:

$ print \"2 * 3 \> 5\" is a valid inequality.

produces the following output:

"2 * 3 > 5" is a valid inequality.

However, this won't work with single quotes inside quoted expressions. For example, print 'Bob\'s hair is brown' will
not give you Bob's hair is brown. You can get around this limitation in various ways. First, try eliminating the quotes:

$ print Bob\'s hair is brown

If no other characters are special (as is the case here), this works. Otherwise, you can use the following command:

$ print 'Bob'\''s hair is brown'

That is, '\'' (i.e., single quote, backslash, single quote, single quote) acts like a single quote within a quoted string.
Why? The first ' in '\'' ends the quoted string we started with (' Bob), the \' inserts a literal single quote, and the
next ' starts another quoted string that ends with the word "brown". If you understand, then you will have no trouble
resolving the other bewildering issues that arise from the shell's often cryptic syntax.

1.9.4 Continuing Lines

A related issue is how to continue the text of a command beyond a single line on your terminal or workstation window.
The answer is conceptually simple: just quote the RETURN key. After all, RETURN is really just another character.

You can do this in two ways: by ending a line with a backslash, or by not closing a quote mark (i.e., by including
RETURN in a quoted string). If you use the backslash, there must be nothing between it and the end of the line-not even
spaces or TABs.

Whether you use a backslash or a single quote, you are telling the shell to ignore the special meaning of the RETURN
character. After you press RETURN, the shell understands that you haven't finished your command line (i.e., since you
haven't typed a "real" RETURN), so it responds with a secondary prompt, which is > by default, and waits for you to
finish the line. You can continue a line as many times as you wish.

For example, if you want the shell to print the first sentence of Thomas Hardy's The Return of the Native, you can type
this:

$ print A Saturday afternoon in November was approaching the \
> time of twilight, and the vast tract of unenclosed wild known \
> as Egdon Heath embrowned itself moment by moment.

Or you can do it this way:

$ print ' A Saturday afternoon in November was approaching the
> time of twilight, and the vast tract of unenclosed wild known
> as Egdon Heath embrowned itself moment by moment.'

1.9.5 Control Keys

Control keys-those that you type by holding down the CONTROL (or CTRL) key and hitting another key-are another
type of special character. These normally don't print anything on your screen, but the operating system interprets a few
of them as special commands. You already know one of them: RETURN is actually the same as [CTRL-M] (try it and
see). You have probably also used the BACKSPACE or DEL key to erase typos on your command line.

Actually, many control keys have functions that don't really concern you-yet you should know about them for future
reference and in case you type them by accident.

[Chapter 1] 1.9 Special Characters and Quoting

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_09.htm (3 of 5) [2/8/2001 4:53:36 PM]

Perhaps the most difficult thing about control keys is that they can differ from system to system. The usual arrangement
is shown in Table 1.7 which lists the control keys that all major modern versions of UNIX support. Note that [CTRL-\]
and [CTRL-|] (control-backslash and control-pipe) are the same character notated two different ways; the same is true
of DEL and [CTRL-?].

You can use the stty command to find out what your settings are and change them if you wish; see Chapter 8 for details.
If the version of UNIX on your system is one of those that derive from BSD (such as SunOS and Ultrix), type stty all to
see your control-key settings; you will see something like this:

erase kill werase rprnt flush lnext susp intr quit stop eof
^? ^U ^W ^R ^O ^V ^Z/^Y ^C ^| ^S/^Q ^D

Table 1.7: Control Keys
Control Key stty Name Function Description
CTRL-C intr Stop current command
CTRL-D eof End of input
[CTRL-\] or [CTRL-|] quit Stop current command, if [CTRL-C] doesn't work
CTRL-S stop Halt output to screen
CTRL-Q Restart output to screen
DEL or [CTRL-?] erase Erase last character
CTRL-U kill Erase entire command line
CTRL-Z susp Suspend current command (see Chapter 8)

The ^X notation stands for CTRL-X. If your UNIX version derives from System III or System V (this includes AIX,
HP/UX, SCO, and Xenix), type stty -a; the resulting output will include this information:

intr = ^c; quit = ^|; erase = DEL; kill = ^u; eof = ^d; eol = ^`; swtch = ^`
susp = ^z; dsusp <undef>;

The control key you will probably use most often is [CTRL-C], sometimes called the interrupt key. This stops-or tries
to stop-the command that is currently running. You will want to use this when you enter a command and find that it's
taking too long, you gave it the wrong arguments by mistake, you change your mind about wanting to run it, or
whatever.

Sometimes [CTRL-C] doesn't work; in that case, if you really want to stop a job, try [CTRL-\]. But don't just type
CTRL-\; always try [CTRL-C] first! Chapter 8 explains why in detail. For now, suffice it to say that [CTRL-C] gives
the running job more of a chance to clean up before exiting, so that files and other resources are not left in funny states.

We've already seen an example of [CTRL-D]. When you are running a command that accepts standard input from your
keyboard, [CTRL-D] tells the process that your input is finished-as if the process were reading a file and it reached the
end of the file. mail is a utility in which this happens often. When you are typing in a message, you end by typing
[CTRL-D]. This tells mail that your message is complete and ready to be sent. Most utilities that accept standard input
understand [CTRL-D] as the end-of-input character, though many such programs accept commands like q, quit, exit,
etc. The shell itself understands [CTRL-D] as the end-of-input character: as we saw earlier in this chapter, you can
normally end a login session by typing [CTRL-D] at the shell prompt. You are just telling the shell that its command
input is finished.

CTRL-S and [CTRL-Q] are called flow-control characters. They represent an antiquated way of stopping and restarting
the flow of output from one device to another (e.g., from the computer to your terminal) that was useful when the speed
of such output was low. They are rather obsolete in these days of high-speed local networks and dialup lines. In fact,
under the latter conditions, CTRL-S and [CTRL-Q] are basically a nuisance. The only thing you really need to know
about them is that if your screen output becomes "stuck," then you may have hit [CTRL-S] by accident. Type
[CTRL-Q] to restart the output; any keys you may have hit in between will then take effect.

[Chapter 1] 1.9 Special Characters and Quoting

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_09.htm (4 of 5) [2/8/2001 4:53:36 PM]

The final group of control characters gives you rudimentary ways to edit your command line. DEL acts as a backspace
key (in fact, some systems use the actual BACKSPACE or [CTRL-H] key as "erase" instead of DEL); [CTRL-U] erases
the entire line and lets you start over. Again, these are outmoded. [13] Instead of using these, go to the next chapter and
read about Korn shell's editing modes, which are among its most exciting features.

[13] Why are so many outmoded control keys still in use? They have nothing to do with the shell per se;
instead, they are recognized by the tty driver, an old and hoary part of the operating system's lower depths
that controls input and output to/from your terminal.

1.8 Background Jobs 2. Command-line Editing

[Chapter 1] 1.9 Special Characters and Quoting

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch01_09.htm (5 of 5) [2/8/2001 4:53:36 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 2

2. Command-line Editing
Contents:
Enabling Command-line Editing
The History File
Emacs Editing Mode
Vi Editing Mode
The fc Command
Finger Habits

It's always possible to make mistakes when you type at a computer keyboard, but perhaps even more so
when you are using a UNIX shell. UNIX shell syntax is powerful, yet terse, full of odd characters, and
not particularly mnemonic, making it possible to construct command lines that are as cryptic as they are
complex. The Bourne and C shells exacerbate this situation by giving you extremely limited ways of
editing your command lines.

In particular, there is no way to recall a previous command line so that you can fix a mistake. For
example, in Chapter 7, Input/Output and Command-line Processing we'll see complex command lines
like:

$ eval cat $srcname | ccom | as | optimize > $objname

If you are an experienced Bourne shell user, undoubtedly you know the frustration of having to retype
lines like this. You can use the backspace key to edit, but once you hit RETURN, it's gone forever!

The C shell provided a small improvement via its history mechanism, which provides a few very
awkward ways of editing previous commands. But there are more than a few people who have wondered,
"Why can't I edit my UNIX command lines in the same way I can edit text with an editor?"

This is exactly what the Korn shell allows you to do. It has editing modes that allow you to edit
command lines with editing commands similar to those of the two most popular UNIX editors, vi and
emacs. [1] It also provides a much-extended analog to the C shell history mechanism called fc (for fix
command) that, among other things, allows you to use your favorite editor directly for editing your
command lines.

[1] For some unknown reason, the documentation on emacs-mode has been removed from
ksh(1) manual pages on some UNIX systems. This does not mean, however, that the mode

[Chapter 2] Command-line Editing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_01.htm (1 of 3) [2/8/2001 4:53:43 PM]

doesn't exist or doesn't work properly.

In this chapter, we will discuss features common to all of the Korn shell's command-history facilities;
then we will deal with each such facility in detail. If you use vi or emacs, you may wish to read only the
section on the emulation mode for the one you use. [2] If you use neither vi or emacs, but are interested
in learning one of the editing modes anyway, we suggest emacs-mode, because it is more of a natural
extension of the minimal editing capability you get with the bare shell.

[2] You will get the most out of these sections if you are already familiar with the editor(s)
in question. Good sources for more complete information on the editors are the O'Reilly &
Associates Nutshell Handbooks Learning the vi Editor, by Linda Lamb, and Learning GNU
Emacs, by Debra Cameron and Bill Rosenblatt.

We should mention up front that both emacs- and vi-modes introduce the potential for clashes with
control keys set up by the UNIX terminal interface. Recall the control keys shown in Chapter 1, Korn
Shell Basics in Table 1.7 and the sample stty command output. The control keys shown there override
their functions in the editing modes.

During the rest of this chapter, we'll warn you when an editing command clashes with the default setting
of a terminal-interface control key. But if you (or your system administrator) choose to customize your
terminal interface, as we'll show in Chapter 8, Process Handling you're on your own as far as the editing
modes are concerned.

2.1 Enabling Command-line Editing
There are two ways of entering either editing mode. First, you can set your editing mode by using the
environment variable VISUAL. The Korn shell checks to see if this variable ends with vi or macs. [3] An
excellent way to set VISUAL is to put a line like the following in your .profile or environment file:

[3] GNU Emacs is often installed as gmacs or gnumacs.

VISUAL=$(whence emacs)

or

VISUAL=$(whence vi)

As you will find out in Chapter 3, Customizing Your Environment and Chapter 4, Basic Shell
Programming the whence built-in command takes the name of another command as its argument and
writes the command's full pathname on the standard output; the form $(command) returns the standard
output generated by command as a string value. Thus, the line above finds out the full pathname of your
favorite editor and stores it in the environment variable VISUAL. The advantage of this code is that it is
portable to other systems, which may have the executables for editors stored in different directories.

The second way of selecting an editing mode is to set the option explicitly with the set -o command:

$ set -o emacs

or

$ set -o vi

[Chapter 2] Command-line Editing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_01.htm (2 of 3) [2/8/2001 4:53:43 PM]

You will find that the vi- and emacs-editing modes are good at emulating the basic commands of these
editors but not their advanced features; their main purpose is to let you transfer "finger habits" from your
favorite editor to the shell. fc is quite a powerful facility; it is mainly meant to supplant C shell history
and as an "escape hatch" for users of editors other than vi or emacs. Therefore the section on fc is mainly
recommended to C shell users and those who don't use either standard editor.

1.9 Special Characters and
Quoting

2.2 The History File

[Chapter 2] Command-line Editing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_01.htm (3 of 3) [2/8/2001 4:53:43 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 2
Command-line Editing

2.2 The History File
All of the Korn shell's command history facilities depend on a file that contains commands as you type
them in. This file is normally .sh_history in your home directory, but you can call it whatever you like by
setting the environment variable HISTFILE (see Chapter 3). When you run one of the Korn shell's
editing modes, you are actually running a mini-editor on your history file.

If you run more than one login session at a time (e.g., more than one xterm on an X Windows
workstation), you may find it advantageous to maintain a separate history file for each login session. Put
the following line in your .profile:

HISTFILE=~/.hist$$

This creates a history file whose name begins with .hist and ends with a number that is essentially
guaranteed to be unique; see Chapter 8 for an explanation of why .hist$$ generates a unique name.
Unfortunately, if you do this, you will end up with lots of stray history files hanging around. One way to
clean up the unneeded history files is to clean up after yourself at logout time, as explained in Chapter 4.
Another way is to put an entry in your personal crontab file (see the man page crontab(1)) [4] that
removes all history files every day at some benign time like 2 A.M. The following line will do it:

[4] Some versions of UNIX do not support personal crontab files, though all versions
derived from AT&T System V should. If yours does not, you have two options: either use at
with a script that reschedules itself at the end, or ask your system administrator to put an
appropriate command in the system's crontab file.

0 2 * * * rm ~/.hist*

Another environment variable, HISTSIZE, can be used to determine the maximum number of commands
kept in the history file. The default is 128 (i.e., the 128 most recent commands), which should be more
than adequate.

2.1 Enabling Command-line
Editing

2.3 Emacs Editing Mode

[Chapter 2] 2.2 The History File

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_02.htm [2/8/2001 4:53:54 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 2
Command-line Editing

2.3 Emacs Editing Mode
If you are an emacs user, you will find it most useful to think of emacs editing mode as a simplified,
non-customizable [5] emacs with a single, one-line window. All of the basic commands are available for
cursor motion, cut and paste, and search.

[5] The public domain Korn shell and bash have emacs-modes that are customizable. See
Appendix A, Related Shells.

2.3.1 Basic Commands

Emacs-mode uses control keys for the most basic editing functions. If you aren't familiar with emacs, you
can think of these as extensions of the rudimentary "erase" character (usually backspace or DEL) that
UNIX provides through its interface to users' terminals. In fact, emacs-mode figures out what your erase
character is and uses that as its delete-backward key. For the sake of consistency, we'll assume your erase
character is DEL from now on; if it is [CTRL-H] or something else, you will need to make a mental
substitution. The most basic control-key commands are shown in Table 2.1.

NOTE: (Important: remember that typing [CTRL-D] when your command line is empty
may log you off!)

The basic finger habits of emacs-mode are easy to learn, but they do require that you assimilate a couple
of concepts that are peculiar to the emacs editor.

The first of these is the use of [CTRL-B] and [CTRL-F] for backward and forward cursor motion. These
keys have the advantage of being obvious mnemonics, but many people would rather use the arrow keys
that are on just about every keyboard nowadays.

Table 2.1: Basic emacs-mode Commands
Command Description
[CTRL-B] Move backward one character (without deleting)
[CTRL-F] Move forward one character
DEL Delete one character backward
[CTRL-D] Delete one character forward
[CTRL-Y] Retrieve ("yank") last item deleted

[Chapter 2] 2.3 Emacs Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_03.htm (1 of 8) [2/8/2001 4:53:59 PM]

Unfortunately, emacs-mode doesn't use the arrow keys, because the codes that they transmit to the
computer aren't completely standardized; emacs-mode was designed to work on the widest variety of
terminals possible without needing to do the kind of heavy-duty customization that the full emacs does.
Just about the only hardware requirement of emacs-mode is that the SPACE character overwrite the
character on top of which it is typed.

In emacs-mode, the point (sometimes also called dot) is an imaginary place just to the left of the
character the cursor is on. In the command descriptions in Table 2.1, some say "forward" while others
say "backward." Think of forward as "to the right of point" and backward as "to the left of point."

For example, let's say you type in a line and, instead of typing RETURN, you type [CTRL-B] and hold it
down so that it repeats. The cursor will move to the left until it is over the first character on the line, like
this:

$ fgrep -l Bob < ~pete/wk/names

Now the cursor is on the f, and point is at the beginning of the line, just before the f. If you type DEL,
nothing will happen because there are no characters to the left of point. However, if you press [CTRL-D]
(the "delete character forward" command) you will delete the first letter:

$ grep -l Bob < ~pete/wk/names

Point is still at the beginning of the line. If this were the desired command, you could hit RETURN now
and run it; you don't need to move the cursor back to the end of the line. However, if you wanted to, you
could type [CTRL-F] repeatedly to get there:

$ grep -l Bob < ~pete/wk/names

At this point, typing [CTRL-D] wouldn't do anything, but hitting DEL would erase the final s. If you type
DEL and decide you want the s back again, just press [CTRL-Y] to yank it back. If you think this
example is silly, you're right in this particular case, but bear in mind that [CTRL-Y] undoes the last
delete command of any kind, including the delete-word and delete-line commands that we will see
shortly. [6]

[6] emacs users should note that this usage of [CTRL-Y] is different from the full editor,
which doesn't save character deletes.

2.3.2 Word Commands

The basic commands are really all you need to get around a command line, but a set of more advanced
commands lets you do it with fewer keystrokes. These commands operate on words rather than single
characters; emacs-mode defines a word to be a sequence of one or more alphanumeric characters.

The word commands are shown in Table 2.2. Whereas the basic commands are all single characters,
these consist of two keystrokes, ESC followed by a letter. You will notice that the command ESC X,
where X is any letter, often does for a word what [CTRL-]X does for a single character. The multiplicity
of choices for delete-word-backward arises from the fact that your erase character could be either
[CTRL-H] or DEL.

Table 2.2: Emacs-mode Word Commands

[Chapter 2] 2.3 Emacs Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_03.htm (2 of 8) [2/8/2001 4:53:59 PM]

Command Description
ESC b Move one word backward
ESC f Move one word forward
ESC DEL Delete one word backward
ESC h Delete one word backward
ESC [CTRL-H] Delete one word backward
ESC d Delete one word forward

To return to our example: if we type ESC b, point will move back a word. Since / is not an alphanumeric
character, emacs-mode will stop there:

$ grep -l Bob < ~pete/wk/names

The cursor is on the n in names, and point is between the / and the n. Now let's say we want to change
the -l option of this command from Bob to Dave. We need to move back on the command line, so we
type ESC b two more times. This gets us here:

$ grep -l Bob < ~pete/wk/names

If we type ESC b again, we end up at the beginning of Bob:

$ grep -l Bob < ~pete/wk/names

Why? Remember that a word is defined as a sequence of alphanumeric characters only; therefore < is not
a word, and the next word in the backward direction is Bob. We are now in the right position to delete
Bob, so we type ESC d and get:

$ grep -l < ~pete/wk/names

Now we can type in the desired argument:

$ grep -l Dave < ~pete/wk/names

The [CTRL-Y] "undelete" command will retrieve an entire word, instead of a character, if the word was
the last thing deleted.

2.3.3 Line Commands

There are still more efficient ways of moving around a command line in emacs-mode. A few commands
deal with the entire line; they are shown in Table 2.3.

Table 2.3: Emacs-mode Line Commands
Command Description
[CTRL-A] Move to beginning of line
[CTRL-E] Move to end of line
[CTRL-K] Delete ("kill") forward to end of line
[CTRL-C] Capitalize character after point

[CTRL-C] is often the "interrupt" key that UNIX provides through its interface to your terminal. If this is
the case, [CTRL-C] in emacs-mode will erase the entire line, as if [CTRL-A] and [CTRL-K] were
pressed. On systems where the interrupt key is set to something else (often DEL), [CTRL-C] capitalizes

[Chapter 2] 2.3 Emacs Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_03.htm (3 of 8) [2/8/2001 4:53:59 PM]

the current character.

Using [CTRL-A], [CTRL-E], and [CTRL-K] should be straightforward. Remember that [CTRL-Y] will
always undelete the last thing deleted; if you use [CTRL-K], that could be quite a few characters.

2.3.4 Moving Around in the History File

Now we know how to get around the command line efficiently and make changes. But that doesn't
address the original issue of recalling previous commands by accessing the history file. Emacs-mode has
several commands for doing this, summarized in Table 2.4.

Table 2.4: Emacs-mode Commands for
Moving Through the History File

Command Description
[CTRL-P] Move to previous line
[CTRL-N] Move to next line
[CTRL-R] Search backward
ESC < Move to first line of history file
ESC > Move to last line of history file

[CTRL-P] is by far the one you will use most often-it's the "I made a mistake, let me go back and fix it"
key. You can use it as many times as you wish to scroll back through the history file. If you want to get
back to the last command you entered, you can hold down [CTRL-N] until the Korn shell beeps at you,
or just type ESC >. As an example, you hit RETURN to run the command above, but you get an error
message telling you that your option letter was incorrect. You want to change it without retyping the
whole thing. First, you would type [CTRL-P] to recall the bad command. You get it back with point at
the end:

$ grep -l Dave < ~pete/wk/names

After [CTRL-A], ESC f, two [CTRL-F]s, and [CTRL-D], you have:

$ grep - Dave < ~pete/wk/names

You decide to try -s instead of -l, so you type s and hit RETURN. You get the same error message, so
you give up and look it up in the manual. You find out that the command you want is fgrep-not
grep-after all. You sigh heavily and go back and find the fgrep command you typed in an hour ago. To
do this, you type [CTRL-R]; whatever was on the line will disappear and be replaced by ^R. Then type
fgrep, and you will see this:

$ ^Rfgrep

Hit RETURN, and the shell will search backwards through the history file for a line containing "fgrep".
If it doesn't find one, it will beep. But if it finds one, it will display it, and your "current line" will be that
line (i.e., you will be somewhere in the middle of the history file, not at the end as usual):

$ fgrep -l Bob < ~pete/wk/names

Typing [CTRL-R] without an argument (i.e., just [CTRL-R] followed by RETURN) causes the shell to
repeat your last backward search. If you try the fgrep command by hitting RETURN again, two things

[Chapter 2] 2.3 Emacs Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_03.htm (4 of 8) [2/8/2001 4:53:59 PM]

will happen. First, of course, the command will run. Second, this line will be entered into the history file
at the end, and your "current line" will be at the end as well. You will no longer be in the middle of the
history file. [CTRL-R] may not work properly on some versions of UNIX, because it is also the default
setting for the "reprint" function of the terminal interface. (It works correctly on all the versions we've
tried.) If you press [CTRL-R] and see the command line reprinted, you may want to consider changing
the terminal interface's "reprint" key. See the section on stty in Chapter 8.

[CTRL-P] and [CTRL-R] are clearly the most important emacs-mode commands that deal with the
history file; you might use [CTRL-N] occasionally. The others are less useful, and we suspect that they
were mainly included for compatibility with the full emacs editor.

emacs users should also note that the full editor's "deluxe" search capabilities, such as incremental and
regular expression search, are not available in the Korn shell's emacs-mode - with one minor exception:
if you use [CTRL-R] and precede your search string with a ^ (caret character), it will match only
commands that have the search string at the beginning of the line.

2.3.5 Filename Completion and Expansion

One of the most powerful (and typically underused) features of emacs-mode is its filename completion
facility, inspired by similar features in the full emacs editor, the C shell, and (originally) the old DEC
TOPS-20 operating system.

The premise behind filename completion is that when you need to type a filename, you should not have
to type more than is necessary to identify the file unambiguously. This is an excellent feature; there is an
analogous one in vi-mode. We recommend that you get it under your fingers, since it will save you quite
a bit of typing.

There are three commands in emacs-mode that relate to filename completion. The most important is ESC
ESC. [7] When you type in a word of text followed by ESC ESC, the Korn shell will attempt to complete
the name of a file in the current directory. Then one of four things can happen:

[7] emacs users can think of this as analogous to minibuffer completion with the TAB key.

If there is no file whose name begins with the word, the shell will beep and nothing further will
happen.

1.

If there is exactly one way to complete the filename and the file is a regular file, the shell will type
the rest of the filename and follow it with a space so you can type in more command arguments.

2.

If there is exactly one way to complete the filename and the file is a directory, the shell will
complete the filename and follow it with a slash.

3.

If there is more than one way to complete the filename, the shell will complete out to the longest
common prefix among the available choices.

4.

For example, assume you have a directory with the files program.c and problem.c. You want to compile
the first of these by typing cc program.c. You type cc pr followed by ESC ESC. This is not an
unambiguous prefix, since the prefix "pro" is common to both filenames, so the shell only completes out
to cc pro. You need to type more letters to disambiguate, so you type g and hit ESC ESC again. Then the

[Chapter 2] 2.3 Emacs Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_03.htm (5 of 8) [2/8/2001 4:53:59 PM]

shell completes out to "cc program.c ", leaving the extra space for you to type in other filenames or
options.

A related command is ESC *, which expands the prefix to all possible choices. ESC * acts like the
standard * shell wildcard character except that it expands the choices for you to see and does not execute
the command. In the above example, if you type ESC * instead of ESC ESC, the shell will expand to "cc
problem.c program.c ". If you type ESC = instead of ESC *, you will see a numbered list of expansions
printed to standard error.

2.3.6 Miscellaneous Commands

Several miscellaneous commands complete emacs editing mode; they are shown in Table 2.5.

Table 2.5: Emacs-mode Miscellaneous Commands
Command Description
[CTRL-J] Same as RETURN
[CTRL-L] Redisplay the line
[CTRL-M] Same as RETURN
[CTRL-O] Same as RETURN, then display next line in history file
[CTRL-T] Transpose two characters to the right of point and move point forward by one[8]
[CTRL-U] Repeat the following command four times
[CTRL-V] Print the version of the Korn shell
[CTRL-W] Delete ("wipe") all characters between point and "mark". "Mark" is discussed

later in this section.
[CTRL-X] [CTRL-X] Exchange point and mark
[CTRL-][Same as ESC (most keyboards)
[CTRL-]] x Search forward on current line for x, where x is any character
ESC Change word after point to all capital letters
ESC l Change word after point to all lowercase letters
ESC p Save all characters between point and mark as if they were deleted
ESC . Insert last word in previous command line after point
ESC _ Same as above
ESC CTRL-]x Search backward for x, where x is any character
ESC SPACE Set mark at point
ESC# Insert line in history file for future editing

[8] [CTRL-T] behaves slightly differently if you put set -o gmacs (instead of emacs) in your
.profile. In this case, it will transpose the two characters to the left of point, leaving point
unmoved. This is the only difference between emacs and gmacs modes; the latter conforms
to the James Gosling version of the emacs editor (a.k.a. Unipress emacs). Note: neither of
these behaves like [CTRL-T] in GNU emacs, which transposes the characters on either side
of point.

Several of these commands may clash with terminal interface control keys on your system. [CTRL-U] is
the default key for "kill line" on most versions of UNIX. BSD-derived systems use [CTRL-V] and

[Chapter 2] 2.3 Emacs Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_03.htm (6 of 8) [2/8/2001 4:53:59 PM]

[CTRL-W] as default settings for the "quote next character" and "word erase" terminal interface
functions respectively. [CTRL-V] is particularly confusing, since it is meant to override other terminal
interface control keys but has no effect on emacs-mode commands.

A few miscellaneous commands are worth discussing, even though they may not be among the most
useful emacs-mode commands.

[CTRL-O] is useful for repeating a sequence of commands you have already entered. Just go back to the
first command in the sequence and press [CTRL-O] instead of RETURN. This will execute the command
and bring up the next command in the history file. Press [CTRL-O] again to enter this command and
bring up the next one. Repeat this until you see the last command in the sequence; then just hit
RETURN.

[CTRL-U], if it doesn't perform the line-delete function of your system's terminal interface, repeats the
next command four times. If you type [CTRL-U] twice, the repeat factor becomes 16; for 3 [CTRL-U]s
it's 64; and so on. [CTRL-U] is possibly most useful when navigating through your history file. If you
want to recall a command that you entered a while ago, you could type [CTRL-U] [CTRL-P] to go back
through the history file four lines at a time; you could think of this as a "fast rewind" through your
command history.

Another possible use of [CTRL-U] is when you want to go from one end of a long pathname to the other.
Unlike vi-mode, emacs-mode does not have a concept of "word" that is flexible enough to distinguish
between pathnames and filename components. The emacs-mode word motion commands (ESC b and
ESC f) will move through a pathname only one component at a time, because emacs-mode treats the
slash as a word separator. You can use [CTRL-U] to help get around this limitation. If you have a line
that looks like this:

$ ls -l /a/very/long/pathname/filename

and you need to go back and change "very" to "really" you can type [CTRL-U] ESC b and your cursor
will end up here:

$ ls -l /a/very/long/pathname/filename

Then you can make the change:

$ ls -l /a/really/long/pathname/filename

Judicious use of [CTRL-U] can save you a few keystrokes, but considering the small amount of
information you manipulate when you edit command lines, it's probably not an incredibly vital feature.
Often, holding down a key to repeat it is just as effective as [CTRL-U]. Because you'll probably have to
redefine the terminal driver's line erase key before you can use [CTRL-U], it's probably better to do
without [CTRL-U].

The mark mentioned in the explanation of [CTRL-W] should be familiar to emacs editor users, but its
function in emacs-mode is a subset of that in the full editor. Emacs-mode keeps track of the place at
which the last delete was performed (whether a delete character, word, line, or whatever); this place is
called the mark. If nothing has been deleted on the current line, mark defaults to the beginning of the
line. You can also set the mark to where your cursor is by typing ESC SPACE. [CTRL-X] [CTRL-X]
([CTRL-X] hit twice) causes the Korn shell to swap point and mark, i.e., to move your cursor to where
the mark is and reset mark to where your cursor was before you typed [CTRL-X] [CTRL-X].

[Chapter 2] 2.3 Emacs Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_03.htm (7 of 8) [2/8/2001 4:53:59 PM]

The mark concept is not extremely useful because of the small amount of "distance" to travel in
command lines. But if you ever have to make a series of changes in the same place in a line, [CTRL-X]
[CTRL-X] will take you back there. In the previous example, if you wanted to change "really" to
"monumentally", one way would be to type [CTRL-X] [CTRL-X] to return to the beginning of "really":

$ ls -l /a/really/long/pathname/filename

Then you could type ESC d to delete "really" and make the change. Of course, you could do this faster
by typing ESC DEL instead of [CTRL-X] [CTRL-X] and ESC d.

Of the case-changing commands, ESC l is useful when you hit the CAPS LOCK key by accident and
don't notice it immediately. Since all-caps words aren't used too often in the UNIX world, you may not
use ESC c very often.

If it seems like there are too many synonyms for RETURN, bear in mind that [CTRL-M] is actually the
same (ASCII) character as RETURN, and that [CTRL-J] is actually the same as LINEFEED, which
UNIX usually accepts in lieu of RETURN anyway.

ESC . and ESC _ are useful if you want to run several commands on a given file. The usual UNIX
convention is that a filename is the last argument to a command. Therefore you can save typing by just
entering each command followed by SPACE and then typing ESC . or ESC _. For example, say you
want to examine a file using more, so you type:

$ more myfilewithaverylongname

Then you decide you want to print it, so you type the print command lp. You can avoid typing the very
long name by typing lp followed by a space and then ESC . or ESC _; the Korn shell will insert
myfilewithaverylongname for you.

2.3.7 Keyboard Shortcuts with Aliases

Finally, emacs-mode has an interesting way of defining keyboard shortcuts for commonly used
commands by interacting with the Korn shell's alias facility, as described in the next chapter. Here's how
it works: if you define an alias called _x, where x is a letter, then emacs-mode will expand the alias when
you hit ESC x. The expansion will appear on your screen, but the Korn shell will not run the command,
leaving you free to type more or just hit RETURN to run it. We don't find this particularly useful, since
you can just define an alias in the normal way instead.

2.2 The History File 2.4 Vi Editing Mode

[Chapter 2] 2.3 Emacs Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_03.htm (8 of 8) [2/8/2001 4:53:59 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 2
Command-line Editing

2.4 Vi Editing Mode
Like emacs-mode, vi-mode essentially creates a one-line editing window into the history file. Vi-mode is
popular because vi is the most standard UNIX editor. But the function for which vi was designed, writing
C programs, has different editing requirements from those of command interpreters. As a result, although
it is possible to do complex things in vi with relatively few keystrokes, the relatively simple things you
need to do in the Korn shell sometimes take too many keystrokes.

Like vi, vi-mode has two modes of its own: input and control mode. The former is for typing commands
(as in normal Korn shell use); the latter is for moving around the command line and the history file.
When you are in input mode, you can type commands in and hit RETURN to run them. In addition, you
have minimal editing capabilities via control characters, which are summarized in Table 2.6.

Table 2.6: Editing Commands in vi Input Mode
Command Description
DEL Delete previous character
[CTRL-W] Erase previous word (i.e., erase until blank)
[CTRL-V] "Quote" the next character
ESC Enter control mode (see below)

Note that at least some of these-depending on which version of UNIX you have-are the same as the
editing commands provided by UNIX through its terminal interface. [9] Vi-mode will use your "erase"
character as the "delete previous character" key; usually it is set to DEL or [CTRL-H] (BACKSPACE).
[CTRL-V] will cause the next character you type to appear in the command line as is; i.e., if it is an
editing command (or an otherwise special character like [CTRL-D]), it will be stripped of its special
meaning.

[9] In particular, versions of UNIX derived from 4.x BSD have all of these commands built
in.

Under normal circumstances, you just stay in input mode. But if you want to go back and make changes
to your command line, or if you want to recall previous commands, you need to go into control mode. To
do this, hit ESC.

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (1 of 9) [2/8/2001 4:54:04 PM]

2.4.1 Simple Control Mode Commands

A full range of vi editing commands are available to you in control mode. The simplest of these move
you around the command line and are summarized in Table 2.7. Vi-mode contains two "word" concepts.
The simplest is any sequence of non-blank characters; we'll call this a non-blank word. The other is any
sequence of only alphanumeric characters (letters and digits) or any sequence of only non-alphanumeric
characters; we'll just call this a word. [10]

[10] Neither of these definitions is the same as the definition of a word in emacs-mode.

Table 2.7: Basic vi Control Mode Commands
Command Description
h Move left one character
l Move right one character
w Move right one word
b Move left one word
W Move to beginning of next non-blank word
B Move to beginning of preceding non-blank word
e Move to end of current word
E Move to end of current non-blank word
0 Move to beginning of line
^ Move to first non-blank character in line
$ Move to end of line

All of these commands except the last three can be preceded by a number that acts as a repeat count. The
last two will be familiar to users of UNIX utilities (such as grep) that use regular expressions, as well as
to vi users.

Time for a few examples. Let's say you type in this line and, before you hit RETURN, decide you want
to change it:

$ fgrep -l Bob < ~pete/wk/names

As shown, your cursor is beyond the last character of the line. First, type ESC to enter control mode;
your cursor will move back one space so that it is on the s. Then if you type h, your cursor will move
back to the e. If you type 3h from the e, you will end up at the n.

Now we will see the difference between the two "word" concepts. Go back to the end of the line by
typing $. If you type b, the word in question is "names", and the cursor will end up on the n:

$ fgrep -l Bob < ~pete/wk/names

If you type b again, the next word is the slash (it's a "sequence" of non-alphanumeric characters), so the
cursor ends up over it:

$ fgrep -l Bob < ~pete/wk/names

However, if you typed B instead of b, the non-blank word would be the entire pathname, and the cursor
would end up at the beginning of it-that is, over the tilde:

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (2 of 9) [2/8/2001 4:54:04 PM]

$ fgrep -l Bob < ~pete/wk/names

You would have had to type b four times-or just 4b-to get the same effect, since there are four "words" in
the part of the pathname to the left of /names: wk, slash, pete, and the leading tilde.

At this point, w and W do the opposite: typing w gets you over the p, since the tilde is a "word", while
typing W brings you to the end of the line. But whereas w and W take you to the beginning of the next
word, e and E take you to the end of the current word. Thus, if you type w with the cursor on the tilde,
you get to:

$ fgrep -l Bob < ~pete/wk/names

Then typing e gets you to

$ fgrep -l Bob < ~pete/wk/names

And typing an additional w gets you to:

$ fgrep -l Bob < ~pete/wk/names

On the other hand, E gets you to the end of the current non-blank word-in this case, the end of the line.
(If you find these commands non-mnemonic, you're right. The only way to assimilate them is through
lots of practice.)

2.4.2 Entering and Changing Text

Now that you know how to enter control mode and move around on the command line, you need to know
how to get back into input mode so you can make changes and type in additional commands. A number
of commands take you from control mode into input mode; they are listed in Table 2.8 All of them enter
input mode a bit differently.

Table 2.8: Commands for Entering vi Input Mode
Command Description
i Text inserted before current character (insert)
a Text inserted after current character (append)
I Text inserted at beginning of line
A Text inserted at end of line
R Text overwrites existing text

Most likely, you will use either i or a consistently, and you may use R occasionally. I and A are
abbreviations for 0i and $a respectively. To illustrate the difference between i, a, and R, say we start out
with our example line:

$ fgrep -l Bob < ~pete/wk/names

If you type i followed by end, you will get:

$ fgrep -l Bob < ~pete/wkend/names

That is, the cursor will always appear to be under the / before names. But if you type a instead of i, you
will notice the cursor move one space to the right. Then if you type nick, you will get:

$ fgrep -l Bob < ~pete/wk/nicknames

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (3 of 9) [2/8/2001 4:54:04 PM]

That is, the cursor will always be just after the last character you typed, until you type ESC to end your
input. Finally, if you go back to the n in names, type R instead, and then type task, you will see:

$ fgrep -l Bob < ~pete/wk/tasks

In other words, you will be replacing (hence R) instead of inserting text.

Why capital R instead of lowercase r? The latter is a slightly different command, which replaces only
one character and does not enter input mode. With r, the next single character overwrites the character
under the cursor. So if we start with the original command line and type r followed by a semicolon, we
get:

$ fgrep -l Bob < ~pete/wk;names

If you precede r with a number N, it will allow you to replace the next N existing characters on the
line-but still not enter input mode. Lowercase r is effective for fixing erroneous option letters, I/O
redirection characters, punctuation, etc.

2.4.3 Deletion Commands

Now that you know how to enter commands and move around the line, you need to know how to delete.
The basic deletion command in vi-mode is d followed by one other letter. This letter determines what the
unit and direction of deletion is, and it corresponds to a motion command, as listed previously in Table
2.7. Table 2.9 shows some commonly-used examples.

Table 2.9: Some vi-mode Deletion Commands
Command Description
dh Delete one character backwards
dl Delete one character forwards
db Delete one word backwards
dw Delete one word forwards
dB Delete one non-blank word backwards
dW Delete one non-blank word forwards
d$ Delete to end of line
d0 Delete to beginning of line

These commands have a few variations and abbreviations. If you use a c instead of d, you will enter
input mode after it does the deletion. You can supply a numeric repeat count either before or after the d
(or c). Table 2.10 lists the available abbreviations.

Most people tend to use D to delete to end of line, dd to delete an entire line, and x (as "backspace") to
delete single characters. If you aren't a hardcore vi user, you may find it difficult to get some of the more
esoteric deletion commands under your fingers.

Table 2.10: Abbreviations for vi-mode Delete Commands
Command Description
D Equivalent to d$ (delete to end of line)
dd Equivalent to 0d$ (delete entire line)

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (4 of 9) [2/8/2001 4:54:04 PM]

C Equivalent to c$ (delete to end of line, enter input mode)
cc Equivalent to 0c$ (delete entire line, enter input mode)
X Equivalent to dh (delete character backwards)
x Equivalent to dl (delete character forwards)

Every good editor provides "un-delete" commands as well as delete commands, and vi-mode is no
exception. Vi-mode maintains a delete buffer that stores all of the modifications to text on the current line
only (note that this is different from the full vi editor). The command u undoes the last text modification
command only, while U undoes all such commands on the current line. So if you make one change but
want to undo it, type u; but if you make lots of changes and find that the original is closer to what you
want, you can undo everything by typing U. A related command is . (dot), which redoes the last text
modification command.

There is also a way to save text in the delete buffer without having deleted it in the first place: just type in
a delete command but use y ("yank") instead of d. This does not modify anything, but it allows you to
retrieve the yanked text as many times as you like later on. The command to retrieve yanked text is p,
which inserts the text on the current line to the left of the cursor. The y and p commands are powerful but
far better suited to "real vi" tasks like making global changes to documents or programs than to shell
commands, so we doubt you'll use them very often.

2.4.4 Moving Around in the History File

The next group of vi control mode commands we will cover allows you to move around in and search
your history file. This is the all-important functionality that lets you go back and fix an erroneous
command without retyping the entire line. These commands are summarized in Table 2.11.

Table 2.11: Vi Control Mode Commands for Searching the
History File

Command Description
k or - Move backward one line
j or + Move forward one line
G Move to line given by repeat count
?string Search backward for string
/string Search forward for string
n Repeat search in same direction as previous
N Repeat search in opposite direction of previous

The first three can be preceded by repeat counts (e.g., 3k or 3- moves back three lines in the history file).

If you aren't familiar with vi and its cultural history, you may be wondering at the wisdom of choosing
such seemingly poor mnemonics as h, j, k, and l for backward character, forward line, backward line,
and forward character, respectively. Well, there actually is a rationale for the choices-other than that they
are all together on the standard keyboard.

Bill Joy originally developed vi to run on Lear-Siegler ADM-3a terminals, which were the first popular
models with addressable cursors (meaning that a program could send an ADM-3a a command to move

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (5 of 9) [2/8/2001 4:54:04 PM]

the cursor to a specified location on the screen). The ADM-3a's h, j, k, and l keys had little arrows on
them, so Joy decided to use those keys for appropriate commands in vi.

Another (partial) rationale for the command choices is that [CTRL-H] is the traditional backspace key,
and [CTRL-J] denotes linefeed.

Perhaps + and - are better mnemonics than j and k, but the latter have the advantage of being more easily
accessible to touch typists. In either case, these commands are the most basic ones for moving around the
history file. To see how they work, let's take the same examples we used when discussing emacs-mode
above.

You enter the example command (RETURN works in both input and control modes, as does LINEFEED
or [CTRL-J]):

$ fgrep -l Bob < ~pete/wk/names

but you get an error message saying that your option letter was wrong. You want to change it to -s
without having to retype the entire command. Assuming you are in control mode (you may have to type
ESC to put yourself in control mode), you type k or - to get the command back. Your cursor will be at
the beginning of the line:

$ fgrep -l Bob < ~pete/wk/names

Type w to get to the -, then l to get to the l. Now you can replace it by typing rs; press RETURN to run
the command.

Now let's say you get another error message, and you finally decide to look at the manual page for the
fgrep command. You remember having done this a while ago today, so rather than typing in the entire
man(1) command, you search for the last one you used. To do this, type ESC to enter control mode (if
you are already in control mode, this will have no effect), then type / followed by man or ma. To be on
the safe side, you can also type ^ma; the ^ means match only lines that begin with ma. [11]

[11] Fans of vi and search utilities like grep should note that caret (^) for beginning-of-line
is the only context operator vi-mode provides for search strings.

But typing /^ma doesn't give you what you want: instead, the shell gives you:

$ make myprogram

To search for "man" again, you can type n, which does another backward search using the last search
string. Typing / again without an argument and hitting RETURN will accomplish the same thing.

The G command retrieves the command whose number is the same as the numeric prefix argument you
supply. G depends on the command numbering scheme described in Chapter 3 in the section "Prompting
Variables." Without a prefix argument, it goes to command number 1. This may be useful to former C
shell users who still want to use command numbers.

2.4.5 Character-finding Commands

There are some additional motion commands in vi-mode, although they are less useful than the ones we
saw earlier in the chapter. These commands allow you to move to the position of a particular character in

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (6 of 9) [2/8/2001 4:54:04 PM]

the line. They are summarized in Table 2.12, in which x denotes any character.

All of these commands can be preceded by a repeat count.

Table 2.12: Vi-mode Character-finding Commands
Command Description
fx Move right to next occurrence of x
Fx Move left to previous occurrence of x
tx Move right to next occurrence of x, then back one space
Tx Move left to previous occurrence of x, then forward one space
; Redo last character-finding command
, Redo last character-finding command in opposite direction

Starting with the previous example: let's say you want to change Bob to Rob. Make sure that you're at the
end of the line (or, in any case, to the left of the B in Bob); then, if you type FB, your cursor will move to
the B:

$ fgrep -l Bob < ~pete/wk/names

At this point, you could type r to replace the B with R. But let's say you wanted to change Bob to Blob.
You would need to move one space to the right of the B. Of course, you could just type l. But, given that
you're somewhere to the right of Bob, the fastest way to move to the o would be to type TB instead of FB
followed by l.

As an example of how the repeat count can be used with character-finding commands, let's say you want
to change the filename from names to namfile. In this case, assuming your cursor is still on the B, you
need to get to the third e to the right, so you can type 3te, followed by l to put the cursor back on the e in
names.

The character-finding commands also have associated delete commands. Read the command definitions
in the previous table and mentally substitute "delete" for move. You'll get what happens when you
precede the given character-finding command with a d. The deletion includes the character given as
argument. For example, assume that your cursor is under the n in names:

$ fgrep -l Bob < ~pete/wk/names

If you want to change names to aides, one possibility is to type dfm. This means "delete right to next
occurrence of m," i.e., delete "nam." Then you can type i (to enter input mode) and then "aid" to
complete the change.

One final command rounds out the vi control mode commands for getting around on the current line: you
can use the pipe character (|) for moving to a specific column, whose number is given by a numeric
prefix argument. Column counts start at 1; count only your input, not the space taken up by the prompt
string. The default repeat count is 1, of course, which means that typing | by itself is equivalent to 0 (see
Table 2.7).

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (7 of 9) [2/8/2001 4:54:04 PM]

2.4.6 Filename Completion

Although the character-finding commands and | are not particularly useful, vi-mode provides one
additional feature that we think you will use quite often: filename completion. This feature is not part of
the real vi editor, and it was undoubtedly inspired by similar features in emacs and, originally, in the
TOPS-20 operating system for DEC mainframes.

The rationale behind filename completion is simple: you should have to type only as much of a filename
as is necessary to distinguish it from other filenames in the same directory. Backslash (\) is the command
that tells the Korn shell to do filename completion in vi-mode. If you type in a word, type ESC to enter
control mode, and then type \, one of four things will happen; they are the same as for ESC ESC in
emacs-mode:

If there is no file whose name begins with the word, the shell will beep and nothing further will
happen.

1.

If there is exactly one way to complete the filename and the file is a regular file, the shell will type
the rest of the filename, followed by a space in case you want to type in more command
arguments.

2.

If there is exactly one way to complete the filename and the file is a directory, the shell will
complete the filename, followed by a slash.

3.

If there is more than one way to complete the filename, the shell will complete out to the longest
common prefix among the available choices.

4.

A related command is *, which is the same as ESC * in emacs-mode as described earlier in this chapter.
[12] It behaves similarly to ESC \, but if there is more than one completion possibility (number four in
the list above), it lists all of them and allows you to type further. Thus, it resembles the * shell wildcard
character.

[12] If you count the ESC needed to get out of input mode, the vi-mode command is
identical to emacs-mode.

Less useful is the command =, which does the same kind of filename expansion as the * shell wildcard,
but in a different way. Instead of expanding the filenames onto the command line, it prints them in a
numbered list with one filename on each line. Then it gives you your shell prompt back and retypes
whatever was on your command line before you typed =. For example, if the files in your directory
include program.c and problem.c, and you type pro followed by ESC and then =, you will see this:

$ cc pro
1) problem.c
2) program.c

2.4.7 Miscellaneous Commands

Several miscellaneous commands round out vi-mode; some of them are quite esoteric. They are listed in
Table 2.13.

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (8 of 9) [2/8/2001 4:54:04 PM]

Table 2.13: Miscellaneous vi-mode Commands
Command Description
~ Invert ("twiddle") case of current character(s).
_ Append last word of previous command, enter input mode.
v Run the fc command on the current line (actually, run the command fc -e

${VISUAL:-${EDITOR:-vi}}); usually this means run the full vi on the current line.
CTRL-L Start a new line and redraw the current line on it; good for when your screen becomes

garbled.
Prepend # (comment character) to the line and send it to the history file;[13] useful for

saving a command to be executed later without having to retype it.
@x Insert expansion of alias _x (see below).

[13] The line is also "executed" by the shell. However, # is the shell's comment character, so
the shell ignores it.

The first of these can be preceded by a repeat count. A repeat count of n preceding the ~ changes the case
of the next n characters. [14] The cursor will advance accordingly.

[14] This, in our opinion, is a design flaw in the vi editor that the Korn shell authors might
have corrected. Letting the user append a motion command to ~ and having it behave
analogously to d or y would have been much more useful; that way, a word could be
case-twiddled with only two keystrokes.

A repeat count preceding _ causes the n-th word in the previous command to be inserted in the current
line; without the count, the last word is used. Omitting the repeat count is useful because a filename is
usually the last thing on a UNIX command line, and because users often run several commands in a row
on the same file. With this feature, you can type all of the commands (except the first) followed by ESC
_, and the shell will insert the filename.

Finally, the command @ allows you to create keyboard shortcuts by interacting with the shell's alias
facility (see Chapter 3). If you create an alias called _x, where x is a letter, then the shell will expand the
alias on the current line (but not run it) if you type @ followed by x. As with the similar facility in
emacs-mode, we don't find this particularly useful.

2.3 Emacs Editing Mode 2.5 The fc Command

[Chapter 2] 2.4 Vi Editing Mode

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_04.htm (9 of 9) [2/8/2001 4:54:04 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 2
Command-line Editing

2.5 The fc Command
fc is a shell built-in command that provides a superset of the C shell history mechanism. You can use it
to examine the most recent commands you entered, to edit one or more commands with your favorite
"real" editor, and to run old commands with changes without having to type the entire command in again.
We'll look at each of these uses.

The -l option to fc lists previous commands. It takes arguments that refer to commands in the history file.
Arguments can be numbers or alphanumeric strings; numbers refer to the commands in the history file,
while strings refer to the most recent command beginning with the string. fc treats arguments in a rather
complex way:

If you give two arguments, they serve as the first and last commands to be shown.●

If you specify one number argument, only the command with that number is shown.●

With a single string argument, it searches for the most recent command starting with that string
and shows you everything from that command to the most recent command.

●

If you specify no arguments, you will see the last 16 commands you entered. Thus, fc -l by itself is
equivalent to the C shell history command, and indeed the Korn shell defines a built-in alias
history as:

alias history=fc -l

As you will find out in Chapter 3, this means that you can type history and the Korn shell will run
the command fc -l.

●

A few examples should make these options clearer. Let's say you logged in and entered these commands:

ls -l
more myfile
vi myfile
wc -l myfile
pr myfile | lp -h

If you type fc -l (or history) with no arguments, you will see the above list with command numbers, as
in:

1 ls -l

[Chapter 2] 2.5 The fc Command

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_05.htm (1 of 3) [2/8/2001 4:54:06 PM]

2 more myfile
3 vi myfile
4 wc -l myfile
5 pr myfile | lp -h

The option -n suppresses the line numbers. If you want to see only commands 2 through 4, type fc -l 2 4.
If you want to see only the vi command, type fc -l 3. To see everything from the vi command up to the
present, type fc -l v. Finally, if you want to see commands between more and wc, you can type fc -l m w,
fc -l m 4, fc -l 2 4, etc.

The -l option to fc is not particularly useful, except as a quick way of remembering what commands you
typed recently. Use the history alias if you are an experienced C shell user.

The other important option to fc is -e for "edit." This is useful as an "escape hatch" from vi- and
emacs-modes if you aren't used to either of those editors. You can specify the pathname of your favorite
editor and edit commands from your history file; then when you have made the changes, the shell will
actually execute the new lines.

Let's say your favorite editor is a little home-brew gem called zed. You could edit your commands by
typing:

$ fc -e /usr/local/bin/zed

This seems like a lot of work just to fix a typo in your previous command; fortunately, there is a better
way. You can set the environment variable FCEDIT to the pathname of the editor you want fc to use. If
you put a line in your .profile or environment file saying:

FCEDIT=/usr/local/bin/zed

you will get zed when you invoke fc. FCEDIT defaults to the old line editor ed, so that the overall default
is also ed.

fc is usually used to fix a recent command. Therefore it handles arguments a bit differently than it does
for the fc -l variation above:

With no arguments, fc loads the editor with the most recent command.●

With a numeric argument, fc loads the editor with the command with that number.●

With a string argument, fc loads the most recent command starting with that string.●

With two arguments to fc, the arguments specify the beginning and end of a range of commands,
as above.

●

Remember that fc actually runs the command(s) after you edit them. Therefore the last-named choice can
be dangerous. The Korn shell will attempt to execute all commands in the range you specify when you
exit your editor. If you have typed in any multiline constructs (like those we will cover in Chapter 5,
Flow Control) the results could be even more dangerous. Although these might seem like valid ways of
generating "instant shell programs," a far better strategy would be to direct the output of fc -l with the
same arguments to a file; then edit that file and execute the commands when you're satisfied with them:

$ fc -l cp > lastcommands

[Chapter 2] 2.5 The fc Command

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_05.htm (2 of 3) [2/8/2001 4:54:06 PM]

$ vi lastcommands
$. lastcommands

In this case, the shell will not try to execute the file when you leave the editor!

There is one final use for fc. If you specify the editor - (i.e., type fc -e -), the Korn shell will skip the
editing part and just run the command(s) specified by the argument(s). Why is this useful? For one thing,
just typing fc -e - causes the previous command to repeat, just like the C shell !! command. The Korn
shell provides the built-in alias r for this, so that if you type r and hit RETURN, you will repeat the last
command.

This form of fc allows yet another type of argument, of the form old=new, meaning "change occurrences
of old in the specified previous command to new and then run it." For example, if you wanted to run a
complex command like the following on two sets of files:

$ tbl ch2.tbl | nroff -mS -Tepson > ch2.out

you can enter the command and then type fc -e - 2=3. (You could also use the alias, r 2=3.) This
command would then run:

tbl ch3.tbl | nroff -mS -Tepson > ch3.out

2.4 Vi Editing Mode 2.6 Finger Habits

[Chapter 2] 2.5 The fc Command

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_05.htm (3 of 3) [2/8/2001 4:54:06 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 2
Command-line Editing

2.6 Finger Habits
To paraphrase the old adage, old finger habits die hard. In fact, that is the primary reason for the choices
of vi and emacs for the Korn shell's editing modes. If you are an experienced user of one of these editors,
by all means use the corresponding Korn shell editing mode. If you are a vi wizard, you probably know
how to navigate between any two points on a line in three keystrokes or less.

But if you're not, you should seriously consider adopting emacs-mode finger habits. Because it is based
on control keys, just like the minimal editing support you may have already used with the Bourne or C
shell, you will find emacs-mode easier to assimilate. Although the full emacs is an extremely powerful
editor, its command structure lends itself very well to small subsetting: there are several "mini-emacs"
style editors floating around for UNIX, MS-DOS, and other systems.

The same cannot be said for vi, because its command structure is really meant for use in a full-screen
editor. vi is quite powerful too, in its way, but its power becomes evident only when it is used for
purposes similar to that for which it was designed: editing source code in C and LISP. A vi user has the
power to move mountains in few keystrokes-but at the cost of doing anything meaningful in very few
keystrokes. Unfortunately, the latter is most desired in a command interpreter, especially nowadays when
users are spending more time within applications and less time working with the shell.

Both Korn shell editing modes have quite a few commands; you will undoubtedly develop finger habits
that include just a few of them. If you use emacs-mode and you aren't familiar with the full emacs, here is
a subset that is easy to learn yet enables you to do just about anything:

For cursor motion around a command line, stick to [CTRL-A] and [CTRL-E] for beginning and
end of line, and [CTRL-F] and [CTRL-B] for moving around.

●

Delete using DEL (or whatever your "erase" key is) and [CTRL-D]; as with [CTRL-F] and
[CTRL-B], hold down to repeat if necessary. Use [CTRL-C] to erase the entire line.

●

Use [CTRL-P] to retrieve the last command when you make a mistake.●

Use [CTRL-R] to search for a command you need to run again.●

Definitely use ESC ESC for filename completion.●

After a few hours spent learning these finger habits, you will wonder how you ever got along without
command-line editing.

[Chapter 2] 2.6 Finger Habits

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_06.htm (1 of 2) [2/8/2001 4:54:07 PM]

2.5 The fc Command 3. Customizing Your
Environment

[Chapter 2] 2.6 Finger Habits

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch02_06.htm (2 of 2) [2/8/2001 4:54:07 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 7

7. Input/Output and Command-line
Processing
Contents:
I/O Redirectors
String I/O
Command-line Processing

The past few chapters have gone into detail about various shell programming techniques, mostly focused on the flow
of data and control through shell programs. In this chapter, we'll switch the focus to two related topics. The first is
the shell's mechanisms for doing file-oriented input and output. We'll present information that expands on what you
already know about the shell's basic I/O redirectors.

Second, we'll "zoom in" and talk about I/O at the line and word level. This is a fundamentally different topic, since it
involves moving information between the domains of files/terminals and shell variables. print and command
substitution are two ways of doing this that we've seen so far.

Our discussion of line and word I/O will lead into a more detailed explanation of how the shell processes command
lines. This information is necessary so that you can understand exactly how the shell deals with quotation, and so
that you can appreciate the power of an advanced command called eval, which we will cover at the end of the
chapter.

7.1 I/O Redirectors
In Chapter 1, Korn Shell Basics you learned about the shell's basic I/O redirectors, >, <, and |. Although these are
enough to get you through 95% of your UNIX life, you should know that the Korn shell supports a total of 16 I/O
redirectors. Table 7.1 lists them, including the three we've already seen. Although some of the rest are useful, others
are mainly for systems programmers. We will wait until the next chapter to discuss the last three, which, along with
>|, are not present in most Bourne shell versions.

Table 7.1: I/O Redirectors
Redirector Function
> file Direct standard output to file
< file Take standard input from file
cmd1 | cmd2 Pipe; take standard output of cmd1 as standard input to cmd2
>> file Direct standard output to file; append to file if it already exists
>| file Force standard output to file even if noclobber set
<> file Use file as both standard input and standard output

[Chapter 7] Input/Output and Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_01.htm (1 of 5) [2/8/2001 4:54:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm

<< label Here-document; see text
n> file Direct file descriptor n to file
n< file Set file as file descriptor n
>&n Duplicate standard output to file descriptor n
<&n Duplicate standard input from file descriptor n
<&- Close the standard input
>&- Close the standard output
|& Background process with I/O from parent shell
>&p Direct background process' standard output to the parent shell's standard output
<&p Direct parent shell's standard input to background process' standard input

Notice that some of the redirectors in Table 7.1 contain a digit n, and that their descriptions contain the term file
descriptor; we'll cover that in a little while.

The first two new redirectors, >> and >|, are simple variations on the standard output redirector >. The >> appends to
the output file (instead of overwriting it) if it already exists; otherwise it acts exactly like >. A common use of >> is
for adding a line to an initialization file (such as .profile or .mailrc) when you don't want to bother with a text editor.
For example:

cat >> .mailrc
alias fred frederick@longmachinename.longcompanyname.com
^D

As we saw in Chapter 1, cat without an argument uses standard input as its input. This allows you to type the input
and end it with [CTRL-D] on its own line. The alias line will be appended to the file .mailrc if it already exists; if it
doesn't, the file is created with that one line.

Recall from Chapter 3, Customizing Your Environment that you can prevent the shell from overwriting a file with >
file by typing set -o noclobber. >| overrides noclobber - it's the "Do it anyway, dammit!" redirector.

The redirector <> is mainly meant for use with device files (in the /dev directory), i.e., files that correspond to
hardware devices such as terminals and communication lines. Low-level systems programmers can use it to test
device drivers; otherwise, it's not very useful. But if you use a windowing system like X, you can try the following to
see how it works:

Create two terminal windows (e.g., xterms).1.

In one of them, type who am i to find out the name of the window's "pseudo-device." This will be the second
word in the output.

2.

In the other, type cat <> /dev/pty, where pty is the name you found in the last step.3.

Back in the first window, type some characters. You will see them appear in alternate windows.4.

Type [CTRL-C] in both windows to end the process.5.

7.1.1 Here-documents

The << label redirector essentially forces the input to a command to be the shell's standard input, which is read until
there is a line that contains only label. The input in between is called a here-document. Here-documents aren't very
interesting when used from the command prompt. In fact, it's the same as the normal use of standard input except for
the label. We could have used a here-document in the previous example of >>, like this (EOF, for "end of file," is an
often-used label):

cat >> .mailrc << EOF

[Chapter 7] Input/Output and Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_01.htm (2 of 5) [2/8/2001 4:54:10 PM]

alias fred frederick@longmachinename.longcompanyname.com
EOF

Here-documents are meant to be used from within shell scripts; they let you specify "batch" input to programs. A
common use of here-documents is with simple text editors like ed(1). Here is a programming task that uses a
here-document in this way:

Task 7.1

The s file command in mail(1) saves the current message in file. If the message came over a network
(such as the Internet), then it has several header lines prepended that give information about network
routing. Write a shell script that deletes the header lines from the file.

We can use ed to delete the header lines. To do this, we need to know something about the syntax of mail messages;
specifically, that there is always a blank line between the header lines and the message text. The ed command
1,/^[]*$/d does the trick: it means, "Delete from line 1 until the first blank line." We also need the ed commands w
(write the changed file) and q (quit). Here is the code that solves the task:

ed $1 << EOF
1,/^[]*$/d
w
q
EOF

The shell does parameter (variable) substitution and command substitution on text in a here-document, meaning that
you can use shell variables and commands to customize the text. Here is a simple task for system administrators that
shows how this works:

Task 7.2

Write a script that sends a mail message to a set of users saying that a new version of a certain program
has been installed in a certain directory.

You can get a list of all users on the system in various ways; perhaps the easiest is to use cut to extract the first field
of /etc/passwd, the file that contains all user account information. Fields in this file are separated by colons (:). [1]

[1] There are a few possible problems with this; for example, /etc/passwd usually contains information
on "accounts" that aren't associated with people, like uucp, lp, and daemon. We'll ignore such problems
for the purpose of this example.

Given such a list of users, the following code does the trick:

pgmname=$1
for user in $(cut -f1 -d: /etc/passwd); do
 mail $user << EOF
Dear $user,

A new version of $pgmname has been installed in $(whence pgmname).

Regards,
Your friendly neighborhood sysadmin.
EOF
done

The shell will substitute the appropriate values for the name of the program and its directory.

[Chapter 7] Input/Output and Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_01.htm (3 of 5) [2/8/2001 4:54:10 PM]

The redirector << has two variations. First, you can prevent the shell from doing parameter and command
substitution by surrounding the label in single or double quotes. In the above example, if you used the line mail
$user << 'EOF', then $pgmname and $(whence pgmname) would remain untouched.

The second variation is <<-, which deletes leading TABs (but not blanks) from the here-document and the label line.
This allows you to indent the here-document's text, making the shell script more readable:

pgmname=$1
for user in $(cut -f1 -d: /etc/passwd); do
 mail $user <<- EOF
 Dear user,

 A new version of $pgmname has been installed in $(whence pgmname).

 Regards,

 Your friendly neighborhood sysadmin.
EOF
done

Of course, you need to choose your label so that it doesn't appear as an actual input line.

7.1.2 File Descriptors

The next few redirectors in Table 7.1 depend on the notion of a file descriptor. Like the device files used with <>,
this is a low-level UNIX I/O concept that is of interest only to systems programmers - and then only occasionally.
File descriptors are historical relics that really should be banished from the realm of shell use. [2] You can get by
with a few basic facts about them; for the whole bloody story, look at the entries for read(), write(), fcntl(), and
others in Section 2 of the UNIX manual.

[2] The C shell's set of redirectors contains no mention of file descriptors whatsoever.

File descriptors are integers starting at 0 that index an array of file information within a process. When a process
starts, it usually has three file descriptors open. These correspond to the three standards: standard input (file
descriptor 0), standard output (1), and standard error (2). If a process opens UNIX files for input or output, they are
assigned to the next available file descriptors, starting with 3.

By far the most common use of file descriptors with the Korn shell is in saving standard error in a file. For example,
if you want to save the error messages from a long job in a file so that they don't scroll off the screen, append 2> file
to your command. If you also want to save standard output, append > file1 2> file2.

This leads to another programming task.

Task 7.3

You want to start a long job in the background (so that your terminal is freed up) and save both standard
output and standard error in a single log file. Write a script that does this.

We'll call this script start. The code is very terse:

"$@" > logfile 2>&1 &

This line executes whatever command and parameters follow start. (The command cannot contain pipes or output
redirectors.) It sends the command's standard output to logfile.

[Chapter 7] Input/Output and Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_01.htm (4 of 5) [2/8/2001 4:54:10 PM]

Then, the redirector 2>&1 says, "send standard error (file descriptor 2) to the same place as standard output (file
descriptor 1)." 2>&1 is actually a combination of two redirectors in Table 7.1: n> file and >&n. Since standard
output is redirected to logfile, standard error will go there too. The final & puts the job in the background so that you
get your shell prompt back.

As a small variation on this theme, we can send both standard output and standard error into a pipe instead of a file:
command 2>&1 | ... does this. (Make sure you understand why.) Here is a script that sends both standard output and
standard error to the logfile (as above) and to the terminal:

"$@" 2>&1 | tee logfile &

The command tee(1) takes its standard input and copies it to standard output and the file given as argument.

These scripts have one shortcoming: you must remain logged in until the job completes. Although you can always
type jobs (see Chapter 1) to check on progress, you can't leave your office for the day unless you want to risk a
breach of security or waste electricity. We'll see how to solve this problem in the next chapter.

The other file-descriptor-oriented redirectors (e.g., <&n) are usually used for reading input from (or writing output
to) more than one file at the same time. We'll see an example later in this chapter. Otherwise, they're mainly meant
for systems programmers, as are <&- (force standard input to close) and >&- (force standard output to close).

Before we leave this topic, we should just note that 1> is the same as >, and 0< is the same as <. If you understand
this, then you probably know all you need to know about file descriptors.

6.3 Arrays 7.2 String I/O

[Chapter 7] Input/Output and Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_01.htm (5 of 5) [2/8/2001 4:54:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 3

3. Customizing Your Environment
Contents:
The .profile File
Aliases
Options
Shell Variables
Customization and Subprocesses
Customization Hints

A common synonym for a UNIX shell, or for the interface any computer program presents, is an
environment. An environment is typically a collection of concepts that expresses the things a computer
does in terms designed to be understandable and coherent, and a look and feel that is comfortable.

For example, your desk at work is an environment. Concepts involved in desk work usually include
memos, phone calls, letters, forms, etc. The tools on or in your desk that you use to deal with these things
include paper, staples, envelopes, pens, a telephone, a calculator, etc. Every one of these has a set of
characteristics that express how you use it; such characteristics range from location on your desk or in a
drawer (for simple tools) to more sophisticated things like which numbers the memory buttons on your
phone are set to. Taken together, these characteristics make up your desk's look and feel.

You customize the look and feel of your desk environment by putting pens where you can most easily
reach them, programming your phone buttons, etc. In general, the more customization you have done, the
more tailored to your personal needs-and therefore the more productive-your environment is.

Similarly, UNIX shells present you with such concepts as files, directories, and standard input and
output, while UNIX itself gives you tools to work with these, such as file manipulation commands, text
editors, and print queues. Your UNIX environment's look and feel is determined by your keyboard and
display, of course, but also by how you set up your directories, where you put each kind of file, and what
names you give to files, directories, and commands. There are also more sophisticated ways of
customizing your shell environment.

The most basic means of customization that the Korn shell provides are these:

Aliases

Synonyms for commands or command strings that you can define for convenience.

[Chapter 3] Customizing Your Environment

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_01.htm (1 of 3) [2/8/2001 4:54:20 PM]

Options

Controls for various aspects of your environment, which you can turn on and off.

Variables

Place-holders for information that tell the shell and other programs how to behave under various
circumstances.

There are also more complex ways to customize your environment, mainly the ability to program the
shell, which we will see in later chapters. In this chapter, we will cover the techniques listed above.

While most of the customizations obtainable with the above techniques are straightforward and apply to
everyday UNIX use, others are rather arcane and require in-depth technical knowledge to understand.
Most of this chapter will concentrate on the former. Because we want to explain things from the
perspective of tasks you may want to perform, rather than that of the specific features of the Korn shell, a
few little details may fall through the cracks (such as miscellaneous options to certain commands). We
suggest you look in Appendix B, Reference Lists for this type of information.

3.1 The .profile File
If you want to customize your environment, it is most important to know about a file called .profile in
your home (login) directory. This is a file of shell commands, also called a shell script, that the Korn
shell reads and runs whenever you log in to your system.

If you use a large machine in an office or department, the odds are good that your system administrator
has already set up a .profile file for you that contains a few standard things. This is one of the "hidden"
files mentioned in Chapter 1, Korn Shell Basics; other common hidden files include .X11Startup (for the
X Window System), .emacs (for the GNU Emacs editor), and .mailrc (for the UNIX mail program).

Your .profile, together with the environment file that we will see towards the end of this chapter, will be
the source of practically all of the customizations we will discuss here as well as in subsequent chapters.
Therefore it is very important for you to become comfortable with a text editor like vi or emacs so that
you can try whatever customization techniques strike your fancy.

Bear in mind, however, that if you add commands to your .profile, they will not take effect until you log
out and log back in again, or type the command login. [1] Of course, you need not immediately add
customization commands to your .profile-you can always just test them by typing them in yourself.

[1] This has the same effect as logging out and logging in again, although it actually
replaces your login session with a new one without explicitly terminating the old session.

If you already have a .profile, it's likely to contain lines similar to some of these:

PATH=/sbin:/usr/sbin:/usr/bin:/etc:/usr/ucb:/local/bin:
stty stop ^S intr ^C erase ^?
EDITOR=/usr/local/bin/emacs
SHELL=/bin/ksh
export EDITOR

[Chapter 3] Customizing Your Environment

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_01.htm (2 of 3) [2/8/2001 4:54:20 PM]

These commands set up a basic environment for you, so you probably shouldn't change them until you
learn about what they do-which you will by the end of this chapter. When you edit your .profile, just put
your additional lines in afterwards.

2.6 Finger Habits 3.2 Aliases

[Chapter 3] Customizing Your Environment

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_01.htm (3 of 3) [2/8/2001 4:54:20 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 3
Customizing Your Environment

3.2 Aliases
Perhaps the easiest and most popular type of customization is the alias, which is a synonym for a
command or command string. This is one of several Korn shell features that were appropriated from the
C shell. [2] You define an alias by entering (or adding to your .profile) a line with the following form:

[2] C shell users should note that the Korn shell's alias feature does not support arguments in
alias expansions, as C shell aliases do.

alias new=original

(Notice that there are no spaces on either side of the equal sign (=); this is required syntax.) The alias
command defines new to be an alias for original, so that whenever you type new, the Korn shell
substitutes original internally.

There are a few basic ways to use an alias. The first, and simplest, is as a more mnemonic name for an
existing command. Many commonly-used UNIX commands have names that are poor mnemonics and
therefore are excellent candidates for aliasing, but the classic example is:

alias search=grep

grep, the UNIX file-searching utility, was named as an acronym for something like "Generalized Regular
Expression Parser." [3] This acronym may mean something to a computer scientist, but not to the office
administrator who has to find Fred in a list of phone numbers. If you have to find Fred and you have the
word search defined as an alias for grep, you can type:

[3] Another theory has it that grep stands for the command "g/re/p", in the old ed text editor,
which does essentially the same thing as grep.

$ search Fred phonelist

Another popular alias eschews exit in favor of a more widely-used command for ending a login session:

alias logout=exit

If you are a C shell user, you may be used to having a .logout file of commands that the shell executes
just before you log out. The Korn shell doesn't have this feature as such, but you can mimic it quite easily
using an alias:

alias logout='. ~/.ksh_logout; exit'

This reads commands in from the file .ksh_logout in your home directory and then logs you out. The

[Chapter 3] 3.2 Aliases

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_02.htm (1 of 4) [2/8/2001 4:54:29 PM]

semicolon acts as a statement separator, allowing you to have more than one command on the same line.

You might want the file .logout to "clean up" your history files, as we discussed in the last chapter.
Recall that we created history files with the filename .hist$$, which guarantees a unique name for every
shell. To remove these files when the shells exit, just put this line in your .logout file:

rm ~/.hist$$

Some people who aren't particularly good typists like to use aliases for typographical errors they make
often. For example:

alias emcas=emacs
alias mali=mail
alias gerp=grep

This can be handy, but we feel you're probably better off suffering with the error message and getting the
correct spelling under your fingers. Another common way to use an alias is as a shorthand for a longer
command string. For example, you may have a directory to which you need to go often. It's buried deeply
in your directory hierarchy, so you want to set up an alias that will allow you to cd there without typing
(or even remembering) the entire pathname:

alias cdcm='cd work/projects/devtools/windows/confman'

Notice the quotes around the full cd command; these are necessary if the string being aliased consists of
more than one word. [4]

[4] This contrasts with C shell aliases, in which the quotes aren't required.

As another example, a useful option to the ls command is -F: it puts a slash (/) after directory files and an
asterisk (*) after executable files. Since typing a dash followed by a capital letter is inconvenient, many
people like to define an alias like this:

alias lf='ls -F'

A few things about aliases are important to remember. First, the Korn shell makes a textual substitution
of the alias for that which it is aliasing; it may help to imagine ksh passing your command through a text
editor or word processor and issuing a "change" or "substitute" command before interpreting and
executing it.

This, in turn, means that any special characters (such as wildcards like * and ?) that result when the alias
is expanded are interpreted properly by the shell. [5] For example, to make it easier to print all of the files
in your directory, you could define the alias:

[5] An important corollary: wildcards and other special characters cannot be used in the
names of aliases, i.e., on the left side of the equal sign.

alias printall='pr * | lpr'

Second, keep in mind that aliases are recursive, which means that it is possible to alias an alias. A
legitimate objection to the previous example is that the alias, while mnemonic, is too long and doesn't
save enough typing. If we want to keep this alias but add a shorter abbreviation, we could define:

alias pa=printall

[Chapter 3] 3.2 Aliases

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_02.htm (2 of 4) [2/8/2001 4:54:29 PM]

Recursive aliasing makes it possible to set up an "infinite loop" of definitions, wherein an alias ends up
(perhaps after several lookups) being defined as itself. For example, the command:

alias ls='ls -l'

sets up a possible infinite loop. Luckily, the shell has a mechanism to guard against such dangers. The
above command will work as expected (typing ls produces a long list with permissions, sizes, owners,
etc.), while in more pathological situations such as:

alias listfile=ls
alias ls=listfile

the alias listfile is ignored.

Aliases can only be used for the beginning of a command string-albeit with certain exceptions. In the cd
example above, you might want to define an alias for the directory name alone, not for the entire
command. But if you define:

alias cm=work/projects/devtools/windows/confman

and then type cd cm, the Korn shell will probably print a message like ksh: cm: not found.

An obscure, rather ugly feature of the Korn shell's alias facility-one not present in the analogous C shell
feature-provides a way around this problem. If the value of an alias (the right side of the equal sign) ends
in a blank, then the Korn shell tries to do alias substitution on the next word on the command line. To
make the value of an alias end in a blank, you need to surround it with quotes.

Here is how you would use this capability to allow aliases for directory names, at least for use with the
cd command. Just define:

alias cd='cd '

This causes the Korn shell to search for an alias for the directory name argument to cd, which in the
previous example would enable it to expand the alias cm correctly.

3.2.1 Tracked Aliases

Another rather obscure feature of the alias facility is the tracked alias, which can shorten the time it takes
the shell to invoke commands. If you specify this option (as shown under "Options" below), then for all
subsequent alias definitions, the shell will internally substitute the full pathname of each command for
which an alias is defined. You can also define individual tracked aliases with the option -t to the alias
command, and you can list all tracked aliases by typing alias -t by itself.

As you will see later in this chapter, a tracked alias cuts down the number of steps the shell has to take to
find the command when you want to run it. More important, however, are its implications for system
security; see Chapter 10, Korn Shell Administration.

For example, assume that you have defined the alias em for the emacs editor, which is kept in the
executable file /usr/local/bin/emacs. If you specify that you want aliases tracked, then the first time you
type em myfile, the shell will substitute the full pathname, i.e., as if you had defined the alias as:

alias em=/usr/local/bin/emacs

[Chapter 3] 3.2 Aliases

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_02.htm (3 of 4) [2/8/2001 4:54:29 PM]

You'll see how this can save time when you read about the PATH environment variable later on.

Finally, there are a few useful adjuncts to the basic alias command. If you type alias name without an
equal sign (=) and value, the shell will print the alias' value or alias name not found if it is undefined. If
you type alias without any arguments, you get a list of all the aliases you have defined as well as several
that are built-in. The command unalias name removes any alias definition for its argument.

Aliases are very handy for creating a comfortable environment, but they are really just kid stuff
compared to more advanced customization techniques like scripts and functions, which we will see in the
next chapter. These give you everything aliases do plus much more, so if you become proficient at them,
you may find that you don't need aliases anymore. However, aliases are ideal for novices who find UNIX
to be a rather forbidding place, full of terseness and devoid of good mnemonics.

3.1 The .profile File 3.3 Options

[Chapter 3] 3.2 Aliases

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_02.htm (4 of 4) [2/8/2001 4:54:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 3
Customizing Your Environment

3.3 Options
While aliases let you create convenient names for commands, they don't really let you change the shell's
behavior. Options are one way of doing this. A shell option is a setting that is either "on" or "off." While
several options relate to arcane shell features that are of interest only to programmers, those that we will
cover here are of interest to all users.

The basic commands that relate to options are set -o optionnames and set +o optionnames, where
optionnames is a list of option names separated by blanks. The use of plus (+) and minus (-) signs is
counterintuitive: the - turns the named option on, while the + turns it off. The reason for this incongruity
is that the dash (-) is the conventional UNIX way of specifying options to a command, while the use of +
is an afterthought.

Most options also have one-letter abbreviations that can be used in lieu of the set -o command; for
example, set -o noglob can be abbreviated set -f. These abbreviations are carry-overs from the Bourne
shell. Like several other "extra" Korn shell features, they exist to ensure upward compatibility; otherwise,
their use is not encouraged.

Table 3.1 lists the options that are useful to general UNIX users. All of them are off by default except as
noted.

Table 3.1: Basic Shell Options
Option Description
bgnice Run background jobs at lower priority (on by default)
emacs Enter emacs editing mode
ignoreeof Don't allow use of [CTRL-D] to log off; require the exit command
markdirs When expanding filename wildcards, append a slash (/) to directories
noclobber Don't allow output redirection (>) to clobber an existing file
noglob Don't expand filename wildcards like * and ? (wildcard expansion is sometimes called

globbing)
nounset Indicate an error when trying to use a variable that is undefined
trackall Turn on alias tracking[6]
vi Enter vi editing mode

[6] Future releases will have alias tracking enabled at all times and won't support this option.

[Chapter 3] 3.3 Options

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_03.htm (1 of 2) [2/8/2001 4:54:30 PM]

There are several other options (22 in all; Appendix B lists them). To check the status of an option, just
type set -o. The Korn shell will print a list of all options along with their settings. There is no direct way
to test a single option, but here is a simple shell function to do it:

function testopt {
 if [[-o $1]] ; then
 print Option $1 is on.
 else
 print Option $1 is off.
 fi
}

Shell functions will be covered in the next chapter. For now, though, if you want to use the testopt
function, just type it into your .profile or environment file (see the section entitled "The Environment
File"), then type either login or . .profile. Then you can type testopt optionname to check the status of an
option.

3.2 Aliases 3.4 Shell Variables

[Chapter 3] 3.3 Options

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_03.htm (2 of 2) [2/8/2001 4:54:30 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 3
Customizing Your Environment

3.4 Shell Variables
There are several characteristics of your environment that you may want to customize but that cannot be
expressed as an on/off choice. Characteristics of this type are specified in shell variables. Shell variables
can specify everything from your prompt string to how often the shell checks for new mail.

Like an alias, a shell variable is a name that has a value associated with it. The Korn shell keeps track of
several built-in shell variables; shell programmers can add their own. By convention, built-in variables
have names in all capital letters. The syntax for defining variables is somewhat similar to the syntax for
aliases:

varname=value

There must be no space on either side of the equal sign, and if the value is more than one word, it must
be surrounded by quotes. To use the value of a variable in a command, precede its name by a dollar sign
($).

You can delete a variable with the command unset varname. Normally this isn't useful, since all
variables that don't exist are assumed to be null, i.e., equal to the empty string "". But if you use the
option nounset (see Table 3.1), which causes the shell to indicate an error when it encounters an
undefined variable, then you may be interested in unset.

The easiest way to check a variable's value is to use the print built-in command. [7] All print does is
print its arguments, but not until the shell has evaluated them. This includes-among other things that will
be discussed later-taking the values of variables and expanding filename wildcards. So, if the variable
fred has the value bob, typing:

[7] The Korn shell supports the old command echo, which does much the same thing, for
backward compatibility reasons. However, we strongly recommend print because its
options are the same on all UNIX systems, whereas echo's options differ between
BSD-derived and System V-derived UNIX versions.

$ print "$fred"

will cause the shell to simply print bob. If the variable is undefined, the shell will print a blank line. A
more verbose way to do this is:

$ print "The value of \$varname is \"$varname\"."

The first dollar sign and the inner double quotes are backslash-escaped (i.e., preceded with \ so the shell

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (1 of 9) [2/8/2001 4:54:35 PM]

doesn't try to interpret them; see Chapter 1) so that they appear literally in the output, which for the above
example would be:

The value of $fred is "bob".

3.4.1 Variables and Quoting

Notice that we used double quotes around variables (and strings containing them) in these print
examples. In Chapter 1 we said that some special characters inside double quotes are still interpreted
(while none are interepreted inside single quotes). We've seen one of these special characters already: the
tilde (~), which is expanded to your (or another user's) home directory.

Another special character that "survives" double quotes is the dollar sign - meaning that variables are
evaluated. It's possible to do without the double quotes in some cases; for example, we could have
written the above print command this way:

$ print The value of \$varname is \"$varname\".

But double quotes are more generally correct.

Here's why. Suppose we did this:

$ fred=>'Four spaces between these words.'

Then if we entered the command print $fred, the result would be:

Four spaces between these words.

What happened to the extra spaces? Without the double quotes, the shell split the string into words after
substituting the variable's value, as it normally does when it processes command lines. The double quotes
circumvent this part of the process (by making the shell think that the whole quoted string is a single
word).

Therefore the command print "$fred" prints this:

Four spaces between these words.

This becomes particularly important when we start dealing with variables that contain user or file input
later on.

Double quotes also allow other special characters to work, as we'll see in Chapters 4, 6, and 7. But for
now, we'll revise the "When in doubt, use single quotes" rule in Chapter 1 by adding, "...unless a string
contains a variable, in which case you should use double quotes."

3.4.2 Built-in Variables

As with options, some built-in shell variables are meaningful to general UNIX users, while others are
arcana for hackers. We'll look at the more generally useful ones here, and we'll save some of the more
obscure ones for later chapters. Again, Appendix B contains a complete list.

3.4.2.1 Editing mode variables

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (2 of 9) [2/8/2001 4:54:35 PM]

Several shell variables relate to the command-line editing modes that we saw in the previous chapter.
These are listed in Table 3.2.

The first two of these are sometimes used by text editors and other screen-oriented programs, which rely
on the variables being set correctly. Although the Korn shell and most windowing systems should know
how to set them correctly, you should look at the values of COLUMNS and LINES if you are having
display trouble with a screen-oriented program.

Table 3.2: Editing Mode Variables
Variable Meaning
COLUMNS Width, in character columns, of your terminal. The standard value is 80 (sometimes 132),

though if you are using a windowing system like X, you could give a terminal window any
size you wish.

LINES Length of your terminal in text lines. The standard value for terminals is 24, but for IBM
PC-compatible monitors it's 25; once again, if you are using a windowing system, you can
usually resize to any amount.

HISTFILE Name of history file, on which the editing modes operate.
EDITOR Pathname of your favorite text editor; the suffix (macs or vi) determines which editing

mode to use.
VISUAL Similar to EDITOR; used if EDITOR is not set or vice versa.
FCEDIT Pathname of editor to use with the fc command.

3.4.2.2 Mail Variables

Since the mail program is not running all the time, there is no way for it to inform you when you get new
mail; therefore the shell does this instead. [8] The shell can't actually check for incoming mail, but it can
look at your mail file periodically and determine whether the file has been modified since the last check.
The variables listed in Table 3.3 let you control how this works.

[8] BSD UNIX users should note that the biff command on those systems does a better job
of this; while the Korn shell only prints "you have mail" messages right before it prints
command prompts, biff can do so at any time.

Table 3.3: Mail Variables
Variable Meaning
MAIL Name of file to check for incoming mail (i.e., your mail file)
MAILCHECK How often, in seconds, to check for new mail (default 600 seconds, or 10 minutes)
MAILPATH List of filenames, separated by colons (:), to check for incoming mail

Under the simplest scenario, you use the standard UNIX mail program, and your mail file is
/usr/mail/yourname or something similar. In this case, you would just set the variable MAIL to this
filename if you want your mail checked:

MAIL=/usr/mail/yourname

If your system administrator hasn't already done it for you, put a line like this in your .profile.

However, some people use nonstandard mailers that use multiple mail files; MAILPATH was designed

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (3 of 9) [2/8/2001 4:54:35 PM]

to accommodate this. The Korn shell will use the value of MAIL as the name of the file to check, unless
MAILPATH is set, in which case the shell will check each file in the MAILPATH list for new mail.
You can use this mechanism to have the shell print a different message for each mail file: for each mail
filename in MAILPATH, append a question mark followed by the message you want printed.

For example, let's say you have a mail system that automatically sorts your mail into files according to
the username of the sender. You have mail files called /usr/mail/you/fritchie, /usr/mail/you/droberts,
/usr/mail/you/jphelps, etc. You define your MAILPATH as follows:

MAILPATH=/usr/mail/you/fritchie:/usr/mail/you/droberts:\
/usr/mail/you/jphelps

If you get mail from Jennifer Phelps, then the file /usr/mail/you/jphelps will change. The Korn shell will
notice the change within 10 minutes and print the message:

you have mail in /usr/mail/you/jphelps.

If you are in the middle of running a command, the shell will wait until the command finishes (or is
suspended) to print the message. To customize this further, you could define MAILPATH to be:

MAILPATH=\
/usr/mail/you/fritchie?You have mail from Fiona.:\
/usr/mail/you/droberts?Mail from Dave has arrived.:\
/usr/mail/you/jphelps?There is new mail from Jennifer.

The backslashes at the end of each line allow you to continue your command on the next line. But be
careful: you can't indent subsequent lines. Now, if you get mail from Jennifer, the shell will print:

There is new mail from Jennifer.

3.4.2.3 Prompting Variables

If you have seen enough experienced UNIX users at work, you may already have realized that the shell's
prompt is not engraved in stone. It seems as though one of the favorite pastimes of UNIX hackers is
thinking of cute or innovative prompt strings. We'll give you some of the information you need to do
your own here; the rest will come in the next chapter.

Actually, the Korn shell uses four prompt strings. They are stored in the variables PS1, PS2, PS3, and
PS4. The first of these is called the primary prompt string; it is your usual shell prompt, and its default
value is "$ " (a dollar sign followed by a space). Many people like to set their primary prompt string to
something containing their login name. Here is one way to do this:

PS1="($LOGNAME)-> "

LOGNAME is another built-in shell variable, which is set to your login name when you log in. So, PS1
becomes a left parenthesis, followed by your login name, followed by ")-> ". If your login name is fred,
your prompt string will be "(fred)-> ". If you are a C shell user and, like many such people, are used to
having a command number in your prompt string, the Korn shell can do this similarly to the C shell: if
there is an exclamation point in the prompt string, it will substitute the command number. Thus, if you
define your prompt string to be:

PS1="($LOGNAME !)->"

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (4 of 9) [2/8/2001 4:54:35 PM]

then your prompts will be like (fred 1)->, (fred 2)->, and so on.

But perhaps the most useful way to set up your prompt string is so that it always contains your current
directory. This way, you needn't type pwd to remember where you are. Putting your directory in the
prompt is more complicated than the above examples, because your current directory changes during
your login session, whereas your login name and the name of your machine don't. But we can
accommodate this by taking advantage of some of the shell's arcane quoting rules. Here's how:

PS1='($PWD)-> '

The difference is the single quotes, instead of double quotes, surrounding the string on the right side of
the assignment. Notice that this string is evaluated twice: once when the assignment to PS1 is done (in
your .profile or environment file) and then again after every command you enter. Here's what each of
these evaluations does:

The first evaluation just observes the single quotes and returns what is inside them without further
processing. As a result, PS1 contains the string ($PWD)-> .

1.

After every command, the shell evaluates ($PWD)->. PWD is a built-in variable that is always
equal to the current directory, so the result is a primary prompt that always contains the current
directory.

2.

We'll add to this example in Chapter 7, Input/Output and Command-line Processing. PS2 is called the
secondary prompt string; its default value is >. It is used when you type an incomplete line and hit
RETURN, as an indication that you must finish your command. For example, assume that you start a
quoted string but don't close the quote. Then if you hit RETURN, the shell will print > and wait for you
to finish the string:

$ print "This is a long line, # PS1 for the command
> which is terminated down here" # PS2 for the continuation
$ # PS1 for the next command

PS3 and PS4 relate to shell programming and debugging, respectively; they will be explained in Chapter
5, Flow Control and Chapter 9, Debugging Shell Programs.

3.4.2.4 Terminal Types

The shell variable TERM is vitally important for any program that uses your entire screen or window,
like a text editor. Such programs include all screen editors (such as vi and emacs), more, and countless
third-party applications.

Because users are spending more and more time within programs, and less and less using the shell itself,
it is extremely important that your TERM is set correctly. It's really your system administrator's job to
help you do this (or to do it for you), but in case you need to do it yourself, here are a few guidelines.

The value of TERM must be a short character string with lowercase letters that appears as a filename in
the terminfo database. [9] This database is a two-tiered directory of files under the root directory
/usr/lib/terminfo. This directory contains subdirectories with single-character names; these in turn contain
files of terminal information for all terminals whose names begin with that character. Each file describes
how to tell the terminal in question to do certain common things like position the cursor on the screen, go

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (5 of 9) [2/8/2001 4:54:35 PM]

into reverse video, scroll, insert text, and so on. The descriptions are in binary form (i.e., not readable by
humans).

[9] Versions of UNIX not derived from System V use termcap, an older-style database of
terminal capabilities that uses the single file /etc/termcap for all terminal descriptions.

Names of terminal description files are the same as that of the terminal being described; sometimes an
abbreviation is used. For example, the DEC VT100 has a description in the file /usr/lib/terminfo/v/vt100;
a monitor for a 386-based PC/AT has a description in the file /usr/lib/terminfo/A/AT-386M. An xterm
terminal window under the X Window System has a description in /usr/lib/terminfo/x/xterm.

Sometimes your UNIX software will set up TERM correctly; this usually happens for X terminals and
PC-based UNIX systems. Therefore, you should check the value of TERM by typing print $TERM
before going any further. If you find that your UNIX system isn't setting the right value for you
(especially likely if your terminal is of a different make than your computer), you need to find the
appropriate value of TERM yourself.

The best way to find the TERM value-if you can't find a local guru to do it for you-is to guess the
terminfo name and search for a file of that name under /usr/lib/terminfo by using ls. For example, if your
terminal is a Blivitz BL-35A, you could try:

$ cd /usr/lib/terminfo
$ ls b/bl*

If you are successful, you will see something like this:

bl35a blivitz35a

In this case, the two names are likely to be synonyms for (links to) the same terminal description, so you
could use either one as a value of TERM. In other words, you could put either of these two lines in your
.profile:

TERM=bl35a
TERM=blivitz35a

If you aren't successful, ls won't print anything, and you will have to make another guess and try again. If
you find that terminfo contains nothing that resembles your terminal, all is not lost. Consult your
terminal's manual to see if the terminal can emulate a more popular model; nowadays the odds of this are
excellent.

Conversely, terminfo may have several entries that relate to your terminal, for submodels, special modes,
etc. If you have a choice of which entry to use as your value of TERM, we suggest you test each one out
with your text editor or any other screen-oriented programs you use and see which one works best.

The process is much simpler if you are using a windowing system, in which your "terminals" are logical
portions of the screen rather than physical devices. In this case, operating system-dependent software was
written to control your terminal window(s), so the odds are very good that if it knows how to handle
window resizing and complex cursor motion, then it is capable of dealing with simple things like TERM.
The X Window System, for example, automatically sets "xterm" as its value for TERM in an xterm
terminal window.

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (6 of 9) [2/8/2001 4:54:35 PM]

3.4.2.5 Command Search Path

Another important variable is PATH, which helps the shell find the commands you enter.

As you probably know, every command you use is actually a file that contains code for your machine to
run. [10] These files are called executable files or just executables for short. They are stored in various
different directories. Some directories, like /bin or /usr/bin, are standard on all UNIX systems; some
depend on the particular version of UNIX you are using; some are unique to your machine; if you are a
programmer, some may even be your own. In any case, there is no reason why you should have to know
where a command's executable file is in order to run it.

[10] Unless it's a built-in command (one of those shown in boldface, like cd and print), in
which case the code is simply part of the executable file for the entire shell.

That is where PATH comes in. Its value is a list of directories that the shell searches every time you
enter a command; [11] the directory names are separated by colons (:), just like the files in
MAILPATH. For example, if you type print $PATH, you will see something like this:

[11] Unless the command name contains a slash (/), in which case the search does not take
place.

/sbin:/usr/sbin:/usr/bin:/etc:/usr/ucb:/local/bin

Why should you care about your path? There are two main reasons. First, once you have read the later
chapters of this book and you try writing your own shell programs, you will want to test them and
eventually set aside a directory for them. Second, your system may be set up so that certain "restricted"
commands' executable files are kept in directories that are not listed in PATH. For example, there may
be a directory /usr/games in which there are executables that are verboten during regular working hours.

Therefore you may want to add directories to your PATH. Let's say you have created a bin directory
under your login directory, which is /home/you, for your own shell scripts and programs. To add this
directory to your PATH so that it is there every time you log in, put this line in your .profile:

PATH=$PATH":/home/you/bin"

This sets PATH to whatever it was before, followed immediately by a colon and /home/you/bin.

This is the "safe" way of doing it. When you enter a command, the shell searches directories in the order
they appear in PATH until it finds an executable file. Therefore, if you have a shell script or program
whose name is the same as an existing command, the shell will use the existing command-unless you
type in the command's full pathname to disambiguate. For example, if you have created your own version
of the more command in the above directory and your PATH is set up as in the last example, you will
need to type /home/you/bin/more (or just ~/bin/more) to get your version.

The more reckless way of resetting your path is to tell the shell to look in your directory first by putting it
before the other directories in your PATH:

PATH="/home/you/bin:"$PATH

This is less safe because you are trusting that your own version of the more command works properly.
But it is also risky for a more important reason: system security. If your PATH is set up in this way, you
leave open a "hole" that is well known to computer crackers and mischief makers: they can install

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (7 of 9) [2/8/2001 4:54:35 PM]

"Trojan horses" and do other things to steal files or do damage. (See Chapter 10 for more details.)
Therefore, unless you have complete control of (and confidence in) everyone who uses your system, use
the first of the two methods of adding your own command directory.

If you need to know which directory a command comes from, you need not look at directories in your
PATH until you find it. The shell built-in command whence prints the full pathname of the command
you give it as argument, or just the command's name if it's a built-in command itself (like cd), an alias, or
a function (as we'll see in Chapter 4, Basic Shell Programming).

3.4.2.6 PATH and Tracked Aliases

It is worth noting that a search through the directories in your PATH can take time. You won't exactly
die if you hold your breath for the length of time it takes for most computers to search your PATH, but
the large number of disk I/O operations involved in some PATH searches can take longer than the
command you invoked takes to run!

The Korn shell provides a way to circumvent PATH searches: the tracked alias mechanism we saw
earlier in this chapter. First, notice that if you specify a command by giving its full pathname, the shell
won't even use your PATH-instead, it will just go directly to the executable file.

Tracked aliases do this for you automatically. If you have alias tracking turned on, then the first time you
invoke an alias, the shell looks for the executable in the normal way (through PATH). Then it stores the
full pathname as if it were the alias, so that the next time you invoke the command, the shell will use the
full pathname and not bother with PATH at all. If you ever change your PATH, the shell marks tracked
aliases as "undefined," so that it will search for the full pathnames again when you invoke the
corresponding commands.

In fact, you can add tracked aliases for the sole purpose of avoiding PATH lookup of commands that you
use particularly often. Just put a "trivial alias" of the form alias -t command =command in your .profile
or environment file; the shell will substitute the full pathname itself. [12]

[12] Actually, the shell predefines tracked aliases for most widely-used UNIX utilities.

3.4.3 Directory Search Path

CDPATH is a variable whose value, like that of PATH, is a list of directories separated by colons. Its
purpose is to augment the functionality of the cd built-in command.

By default, CDPATH isn't set (meaning that it is null), and when you type cd dirname, the shell will
look in the current directory for a subdirectory called dirname. [13] If you set CDPATH, you give the
shell a list of places to look for dirname; the list may or may not include the current directory.

[13] As with PATH, this search is disabled when dirname starts with a slash.

Here is an example. Consider the alias for the long cd command from earlier in this chapter:

alias cdcm="cd work/projects/devtools/windows/confman"

Now suppose there were a few directories under this directory to which you need to go often; they are
called src, bin, and doc. You define your CDPATH like this:

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (8 of 9) [2/8/2001 4:54:35 PM]

CDPATH=:~/work/projects/devtools/windows/confman

In other words, you define your CDPATH to be the empty string (meaning the current directory,
wherever you happen to be) followed by ~/work/projects/devtools/windows/confman.

With this setup, if you type cd doc, then the shell will look in the current directory for a (sub)directory
called doc. Assuming that it doesn't find one, it looks in the directory
~/work/projects/devtools/windows/confman. The shell finds the dirname directory there, so you go
directly there.

This feature gives you yet another way to save typing when you need to cd often to directories that are
buried deep in your file hierarchy. You may find yourself going to a specific group of directories often as
you work on a particular project, and then changing to another set of directories when you switch to
another project. This implies that the CDPATH feature is only useful if you update it whenever your
work habits change; if you don't, you may occasionally find yourself where you don't want to be.

3.4.3.1 Miscellaneous Variables

We have covered the shell variables that are important from the standpoint of customization. There are
also several that serve as status indicators and for various other miscellaneous purposes. Their meanings
are relatively straightforward; the more basic ones are summarized in Table 3.4.

The shell sets the values of these variables (the first three at login time, the last two whenever you change
directories). Although you can also set their values, just like any other variables, it is difficult to imagine
any situation where you would want to.

Table 3.4: Status Variables
Variable Meaning
HOME Name of your home (login) directory
SECONDS Number of seconds since the shell was invoked
SHELL Pathname of the shell you are running
PWD Current directory
OLDPWD Previous directory before the last cd command

3.3 Options 3.5 Customization and
Subprocesses

[Chapter 3] 3.4 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_04.htm (9 of 9) [2/8/2001 4:54:35 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 3
Customizing Your Environment

3.5 Customization and Subprocesses
Some of the variables discussed above are used by commands you may run-as opposed to the shell
itself-so that they can determine certain aspects of your environment. The majority, however, are not
even known outside the shell.

This dichotomy begs an important question: which shell "things" are known outside the shell, and which
are only internal? This question is at the heart of many misunderstandings about the shell and shell
programming. Before we answer, we'll ask it again in a more precise way: which shell "things" are
known to subprocesses? Remember that whenever you enter a command, you are telling the shell to run
that command in a subprocess; furthermore, some complex programs may start their own subprocesses.

Now for the answer, which (like many UNIX concepts) is unfortunately not as simple as you might like.
A few things are known to subprocesses, but the reverse is not true: subprocesses can never make these
things known to the processes that created them.

Which things are known depends on whether the subprocess in question is a Korn shell program (see
Chapter 4) or interactive shell. If the subprocess is a Korn shell program, then it's possible to propagate
every type of thing we've seen in this chapter-aliases, options, and variables-plus a few we'll see later.

3.5.1 Environment Variables

By default, only one kind of thing is known to all kinds of subprocesses: a special class of shell variables
called environment variables. Some of the built-in variables we have seen are actually environment
variables: HISTFILE, HOME, LOGNAME, MAIL, MAILPATH, PATH, PWD, SHELL, and
TERM.

It should be clear why these and other variables need to be known by subprocesses. We have already
seen the most obvious example: text editors like vi and emacs need to know what kind of terminal you
are using; TERM is their way of determining this. As another example, most UNIX mail programs allow
you to edit a message with your favorite text editor. How does mail know which editor to use? The value
of EDITOR (or sometimes VISUAL).

Any variable can become an environment variable. First it must be defined as usual; then it must be
exported with the command:

export varnames

[Chapter 3] 3.5 Customization and Subprocesses

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_05.htm (1 of 3) [2/8/2001 4:54:38 PM]

(varnames can be a list of variable names separated by blanks.)

You can also define variables to be in the environment of a particular subprocess (command) only, by
preceding the command with the variable assignment, like this:

varname=value command

You can put as many assignments before the command as you want. [14] For example, assume that
you're using the emacs editor. You are having problems getting it to work with your terminal, so you're
experimenting with different values of TERM. You can do this most easily by entering commands that
look like:

[14] There is an obscure option, keyword, that (if turned on) lets you put this type of
environment variable definition anywhere on the command line, not just at the beginning.
Future releases, however, won't support this option.

TERM=trythisone emacs filename

emacs will have trythisone defined as its value of TERM, yet the environment variable in your shell will
keep whatever value (if any) it had before. This syntax is not very widely used, so we won't see it very
often throughout the remainder of this book.

Nevertheless, environment variables are important. Most .profile files include definitions of environment
variables; the sample built-in .profile earlier in this chapter contained two such definitions:

EDITOR=/usr/local/bin/emacs
SHELL=/bin/ksh
export EDITOR

For some reason, the Korn shell doesn't make EDITOR an environment variable by default. This means,
among other things, that mail will not know which editor to use when you want to edit a message. [15]
Therefore you would have to export it yourself by using the above export command in your .profile.

[15] Actually, it will default to the line editor ed. You don't want that, now do you?

The second line in the above code is meant for systems that do not have the Korn shell installed as the
default shell, i.e., as /bin/sh. Some programs run shells as subprocesses within themselves (e.g., many
mail programs and the emacs editor's shell mode); by convention they use the SHELL variable to
determine which shell to use.

You can find out which variables are environment variables and what their values are by typing export
without arguments.

3.5.2 The Environment File

Although environment variables will always be known to subprocesses, the shell must be explicitly told
which other variables, options, aliases, etc., are to be communicated to subprocesses. The way to do this
is to put all such definitions in a special file called the environment file instead of your .profile.

You can call the environment file anything you like, as long as you set the environment variable ENV to
the file's name. The usual way to do this is as follows:

[Chapter 3] 3.5 Customization and Subprocesses

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_05.htm (2 of 3) [2/8/2001 4:54:38 PM]

Decide which definitions in your .profile you want to propagate to subprocesses. Remove them
from .profile and put them in a file you will designate as your environment file.

1.

Put a line in your .profile that tells the shell where your environment file is:

ENV=envfilename

2.

For the changes to take effect, type either . .profile or login. [16] In either case, your environment
file will be run when the shell encounters the ENV= statement.

[16] The latter assumes that the Korn shell is defined as your login shell. If it isn't,
you must do the former - or better yet, have your system administrator install it as
your login shell!

3.

The idea of the environment file comes from the C shell's .cshrc file; thus, many Korn shell users who
came from the C shell world call their environment files .kshrc. (The rc suffix for initialization files is
practically universal throughout the UNIX world. According to the folklore, it stands for "run
commands" and has origins in old DEC operating systems.)

As a general rule, you should put as few definitions as possible in .profile and as many as possible in
your environment file. Because definitions add to rather than take away from an environment, there is
little chance that they will cause something in a subprocess not to work properly. (An exception might be
name clashes if you go overboard with aliases.)

The only things that really need to be in .profile are commands that aren't definitions but actually run or
produce output when you log in. Option and alias definitions should go into the environment file. In fact,
there are many Korn shell users who have tiny .profile files, e.g.:

stty stop ^S intr ^C erase ^?
date
from
export ENV=~/.kshrc

(The from command, in some versions of UNIX, checks if you have any mail and prints a list of message
headers if you do.) Although this is a small .profile, this user's environment file could be huge.

3.4 Shell Variables 3.6 Customization Hints

[Chapter 3] 3.5 Customization and Subprocesses

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_05.htm (3 of 3) [2/8/2001 4:54:38 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 3
Customizing Your Environment

3.6 Customization Hints
You should feel free to try any of the techniques presented in this chapter. The best strategy is to test
something out by typing it into the shell during your login session; then if you decide you want to make it
a permanent part of your environment, add it to your .profile.

A nice, painless way to add to your .profile without going into a text editor makes use of the print
command and one of the Korn shell's editing modes. If you type a customization command in and later
decide to add it to your .profile, you can recall it via [CTRL-P] or [CTRL-R] (in emacs-mode) or j, -, or
? (vi-mode). Let's say the line is:

PS1="($LOGNAME !)->"

After you recall it, edit it so that it is preceded by a print command, surrounded by single quotes, and
followed by an I/O redirector that (as you will see in Chapter 7) appends the output to ~/.profile:

$ print 'PS1="($LOGNAME !)->"' >> ~/.profile

Remember that the single quotes are important because they prevent the shell from trying to interpret
things like dollar signs, double quotes, and exclamation points.

You should also feel free to snoop around other peoples' .profiles for customization ideas. A quick way
to examine everyone's .profile is as follows: let's assume that all login directories are under /home. Then
you can type:

$ cat /home/*/.profile > ~/other_profiles

and examine other people's .profiles with a text editor at your leisure (assuming you have read
permission on them). If other users have environment files, the file you just created will show what they
are, and you can examine them as well.

3.5 Customization and
Subprocesses

4. Basic Shell Programming

[Chapter 3] 3.6 Customization Hints

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch03_06.htm [2/8/2001 4:54:39 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 4

4. Basic Shell Programming
Contents:
Shell Scripts and Functions
Shell Variables
String Operators
Command Substitution
Advanced Examples: pushd and popd

If you have become familiar with the customization techniques we presented in the previous chapter, you
have probably run into various modifications to your environment that you want to make but can't-yet.
Shell programming makes these possible.

The Korn shell has some of the most advanced programming capabilities of any command interpreter of
its type. Although its syntax is nowhere near as elegant or consistent as that of most conventional
programming languages, its power and flexibility are comparable. In fact, the Korn shell can be used as a
complete environment for writing software prototypes.

Some aspects of Korn shell programming are really extensions of the customization techniques we have
already seen, while others resemble traditional programming language features. We have structured this
chapter so that if you aren't a programmer, you can read this chapter and do quite a bit more than you
could with the information in the previous chapter. Experience with a conventional programming
language like Pascal or C is helpful (though not strictly necessary) for subsequent chapters. Throughout
the rest of the book, we will encounter occasional programming problems, called tasks, whose solutions
make use of the concepts we cover.

4.1 Shell Scripts and Functions
A script, or file that contains shell commands, is a shell program. Your .profile and environment files,
discussed in Chapter 7, Input/Output and Command-line Processing are shell scripts.

You can create a script using the text editor of your choice. Once you have created one, there are two
ways to run it. One, which we have already covered, is to type . scriptname (i.e., the command is a dot).
This causes the commands in the script to be read and run as if you typed them in.

[Chapter 4] Basic Shell Programming

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_01.htm (1 of 6) [2/8/2001 4:54:48 PM]

The second way to run a script is simply to type its name and hit RETURN, just as if you were invoking
a built-in command. This, of course, is the more convenient way. This method makes the script look just
like any other UNIX command, and in fact several "regular" commands are implemented as shell scripts
(i.e., not as programs originally written in C or some other language), including spell, man on some
systems, and various commands for system administrators. The resulting lack of distinction between
"user command files" and "built-in commands" is one factor in UNIX's extensibility and, hence, its
favored status among programmers.

You can run a script by typing its name only if . (the current directory) is part of your command search
path, i.e., is included in your PATH variable (as discussed in Chapter 3, Customizing Your
Environment). If . isn't on your path, you must type ./scriptname, which is really the same thing as
typing the script's absolute pathname (see Chapter 1, Korn Shell Basics).

Before you can invoke the shell script by name, you must also give it "execute" permission. If you are
familiar with the UNIX filesystem, you know that files have three types of permissions (read, write, and
execute) and that those permissions apply to three categories of user (the file's owner, a group of users,
and everyone else). Normally, when you create a file with a text editor, the file is set up with read and
write permission for you and read-only permission for everyone else.

Therefore you must give your script execute permission explicitly, by using the chmod(1) command. The
simplest way to do this is to type:

$ chmod +x scriptname

Your text editor will preserve this permission if you make subsequent changes to your script. If you don't
add execute permission to the script and you try to invoke it, the shell will print the message:

scriptname: cannot execute.

But there is a more important difference between the two ways of running shell scripts. While the "dot"
method causes the commands in the script to be run as if they were part of your login session, the "just
the name" method causes the shell to do a series of things. First, it runs another copy of the shell as a
subprocess; this is called a subshell. The subshell then takes commands from the script, runs them, and
terminates, handing control back to the parent shell.

Figure 4.1 shows how the shell executes scripts. Assume you have a simple shell script called fred that
contains the commands bob and dave. In Figure 4.1.a, typing .fred causes the two commands to run in
the same shell, just as if you had typed them in by hand. Figure 4.1.b shows what happens when you type
just fred: the commands run in the subshell while the parent shell waits for the subshell to finish.

You may find it interesting to compare this with the situation in Figure 4-1.c, which shows what happens
when you type fred &. As you will recall from Chapter 1 the & makes the command run in the
background, which is really just another term for "subprocess." It turns out that the only significant
difference between Figure 4.1.c and Figure 4-1.b is that you have control of your terminal or workstation
while the command runsmdash;you need not wait until it finishes before you can enter further
commands.

Figure 4.1: Ways to run a shell script

[Chapter 4] Basic Shell Programming

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_01.htm (2 of 6) [2/8/2001 4:54:48 PM]

There are many ramifications to using subshells. An important one is that the exported environment
variables that we saw in the last chapter (e.g., TERM, LOGNAME, PWD) are known in subshells,
whereas other shell variables (such as any that you define in your .profile without an export statement)
are not.

Other issues involving subshells are too complex to go into now; see Chapter 7, and Chapter 8, Process
Handling, for more details about subshell I/O and process characteristics, respectively. For now, just bear
in mind that a script normally runs in a subshell.

4.1.1 Functions

The Korn shell's function feature is an expanded version of a similar facility in the System V Bourne
shell and a few other shells. A function is sort of a script-within-a-script; you use it to define some shell
code by name and store it in the shell's memory, to be invoked and run later.

Functions improve the shell's programmability significantly, for two main reasons. First, when you
invoke a function, it is already in the shell's memory (except for autoloaded functions; see section titled
"Autoloaded Functions"); therefore a function runs faster. Modern computers have plenty of memory, so
there is no need to worry about the amount of space a typical function takes up. For this reason, most
people define as many functions as possible rather than keep lots of scripts around.

The other advantage of functions is that they are ideal for organizing long shell scripts into modular
"chunks" of code that are easier to develop and maintain. If you aren't a programmer, ask one what life
would be like without functions (also called procedures or subroutines in other languages) and you'll
probably get an earful.

To define a function, you can use either one of two forms:

function functname {

[Chapter 4] Basic Shell Programming

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_01.htm (3 of 6) [2/8/2001 4:54:48 PM]

 shell commands
}

or:

functname () {
 shell commands
}

There is no difference between the two. Perhaps the first form was created to appeal to Pascal, Modula,
and Ada programmers, while the second resembles C; in any case, we will use the first form in this book.
You can also delete a function definition with the command unset -f functname.

When you define a function, you tell the shell to store its name and definition (i.e., the shell commands it
contains) in memory. If you want to run the function later, just type in its name followed by any
arguments, as if it were a shell script.

You can find out what functions are defined in your login session by typing functions. [1] The shell will
print not just the names but the definitions of all functions, in alphabetical order by function name. Since
this may result in long output, you might want to pipe the output through more or redirect it to a file for
examination with a text editor.

[1] This is actually an alias for typeset -f; see Chapter 6, Command-line Options and Typed
Variables.

Apart from the advantages, there are two important differences betweeen functions and scripts. First,
functions do not run in separate processes, as scripts are when you invoke them by name; the "semantics"
of running a function are more like those of your .profile when you log in or any script when invoked
with the "dot" command. Second, if a function has the same name as a script or executable program, the
function takes precedence.

This is a good time to show the order of precedence for the various sources of commands. When you
type a command to the shell, it looks in the following places until it finds a match:

Keywords such as function and several others, like if and for, that we will see in Chapter 5, Flow
Control

1.

Aliases [2]

[2] However, it is possible to define an alias for a keyword, e.g., alias
aslongas=while. See Chapter 7 for more details.

2.

Built-ins like cd and whence3.

Functions4.

Scripts and executable programs, for which the shell searches in the directories listed in the PATH
environment variable

5.

We'll examine this process in more detail in the section on command-line processing in Chapter 7.

[Chapter 4] Basic Shell Programming

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_01.htm (4 of 6) [2/8/2001 4:54:48 PM]

If you need to know the exact source of a command, there is an option to the whence built-in command
that we saw in Chapter 3. whence by itself will print the pathname of a command if the command is a
script or executable program, but it will only parrot the command's name back if it is anything else. But if
you type whence -v commandname, you get more complete information, such as:

$ whence -v cd
cd is a shell builtin
$ whence -v function
function is a keyword
$ whence -v man
man is /usr/bin/man
$ whence -v ll
ll is an alias for ls -l

We will refer mainly to scripts throughout the remainder of this book, but unless we note otherwise, you
should assume that whatever we say applies equally to functions.

4.1.1.1 Autoloaded functions

The simplest place to put your function definitions is in your .profile or environment file. This is fine for
a small number of functions, but if you accumulate lots of them-as many shell programmers eventually
do-you may find that logging in or invoking shell scripts (both of which involve processing your
environment file) takes an unacceptably long time, and that it's hard to navigate so many function
definitions in a single file.

The Korn shell's autoload feature addresses these problems. If you put the command autoload fname [3]
in your .profile or environment file, instead of the function's definition, then the shell won't read in the
definition of fname until it's actually called. autoload can take more than one argument.

[3] autoload is actually an alias for typeset -fu; see Chapter 6.

How does the shell know where to get the definition of an autoloaded function? It uses the built-in
variable FPATH, which is a list of directories like PATH. The shell looks for a file called fname that
contains the definition of function fname in each of the directories in FPATH.

For example, assume this code is in your environment file:

FPATH=~/funcs
autoload dave

When you invoke the command dave, the shell will look in the directory ~/funcs for a file called dave
that has the definition of function dave. If it doesn't find the file, or if the file exists but doesn't contain
the proper function definition, the shell will complain with a "not found" message, just as if the command
didn't exist at all.

Function autoloading and FPATH are also useful tools for system administrators who need to set up
system-wide Korn shell environments. See Chapter 10, Korn Shell Administration.

[Chapter 4] Basic Shell Programming

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_01.htm (5 of 6) [2/8/2001 4:54:48 PM]

3.6 Customization Hints 4.2 Shell Variables

[Chapter 4] Basic Shell Programming

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_01.htm (6 of 6) [2/8/2001 4:54:48 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 4
Basic Shell Programming

4.2 Shell Variables
A major piece of the Korn shell's programming functionality relates to shell variables. We've already
seen the basics of variables. To recap briefly: they are named places to store data, usually in the form of
character strings, and their values can be obtained by preceding their names with dollar signs ($). Certain
variables, called environment variables, are conventionally named in all capital letters, and their values
are made known (with the export statement) to subprocesses.

If you are a programmer, you already know that just about every major programming language uses
variables in some way; in fact, an important way of characterizing differences between languages is
comparing their facilities for variables.

The chief difference between the Korn shell's variable schema and those of conventional languages is
that the Korn shell's places heavy emphasis on character strings. (Thus it has more in common with a
special-purpose language like SNOBOL than a general-purpose one like Pascal.) This is also true of the
Bourne shell and the C shell, but the Korn shell goes beyond them by having additional mechanisms for
handling integers (explicitly) and simple arrays.

4.2.1 Positional Parameters

As we have already seen, you can define values for variables with statements of the form
varname=value, e.g.:

$ fred=bob
$ print "$fred"
bob

Some environment variables are predefined by the shell when you log in. There are other built-in
variables that are vital to shell programming. We will look at a few of them now and save the others for
later.

The most important special, built-in variables are called positional parameters. These hold the
command-line arguments to scripts when they are invoked. Positional parameters have names 1, 2, 3,
etc., meaning that their values are denoted by $1, $2, $3, etc. There is also a positional parameter 0,
whose value is the name of the script (i.e., the command typed in to invoke it).

Two special variables contain all of the positional parameters (except positional parameter 0): * and @.

[Chapter 4] 4.2 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_02.htm (1 of 5) [2/8/2001 4:54:59 PM]

The difference between them is subtle but important, and it's apparent only when they are within double
quotes.

"$*" is a single string that consists of all of the positional parameters, separated by the first character in
the environment variable IFS (internal field separator), which is a space, TAB, and NEWLINE by
default. On the other hand, "$@" is equal to "$1" "$2"... "$N", where N is the number of positional
parameters. That is, it's equal to N separate double-quoted strings, which are separated by spaces. We'll
explore the ramifications of this difference in a little while.

The variable # holds the number of positional parameters (as a character string). All of these variables are
"read-only," meaning that you can't assign new values to them within scripts.

For example, assume that you have the following simple shell script:

print "fred: $@"
print "$0: $1 and $2"
print "$# arguments"

Assume further that the script is called fred. Then if you type fred bob dave, you will see the following
output:

fred: bob dave
fred: bob and dave
2 arguments

In this case, $3, $4, etc., are all unset, which means that the shell will substitute the empty (or null) string
for them. [4]

[4] Unless the option nounset is turned on.

4.2.1.1 Positional parameters in functions

Shell functions use positional parameters and special variables like * and # in exactly the same way as
shell scripts do. If you wanted to define fred as a function, you could put the following in your .profile or
environment file:

function fred {
 print "fred: $*"
 print "$0: $1 and $2"
 print "$# arguments"
}

You will get the same result if you type fred bob dave.

Typically, several shell functions are defined within a single shell script. Therefore each function will
need to handle its own arguments, which in turn means that each function needs to keep track of
positional parameters separately. Sure enough, each function has its own copies of these variables (even
though functions don't run in their own subshells, as scripts do); we say that such variables are local to
the function.

However, other variables defined within functions are not local [5] (they are global), meaning that their

[Chapter 4] 4.2 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_02.htm (2 of 5) [2/8/2001 4:54:59 PM]

values are known throughout the entire shell script. For example, assume that you have a shell script
called ascript that contains this:

[5] However, see the section on typeset in Chapter 6 for a way of making variables local to
functions.

function afunc {
 print in function $0: $1 $2
 var1="in function"
}
var1="outside of function"
print var1: $var1
print $0: $1 $2
afunc funcarg1 funcarg2
print var1: $var1
print $0: $1 $2

If you invoke this script by typing ascript arg1 arg2, you will see this output:

var1: outside of function
ascript: arg1 arg2
in function afunc: funcarg1 funcarg2
var1: in function
ascript: arg1 arg2

In other words, the function afunc changes the value of the variable var1 from "outside of function" to
"in function," and that change is known outside the function, while $0, $1, and $2 have different values
in the function and the main script. Figure 4.2 shows this graphically.

Figure 4.2: Functions have their own positional parameters

[Chapter 4] 4.2 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_02.htm (3 of 5) [2/8/2001 4:54:59 PM]

It is possible to make other variables local to functions by using the typeset command, which we'll see in
Chapter 6. Now that we have this background, let's take a closer look at "$@" and "$*". These
variables are two of the shell's greatest idiosyncracies, so we'll discuss some of the most common sources
of confusion.

Why are the elements of "$*" separated by the first character of IFS instead of just spaces? To
give you output flexibility. As a simple example, let's say you want to print a list of positional
parameters separated by commas. This script would do it:

IFS=,
print $*

Changing IFS in a script is fairly risky, but it's probably OK as long as nothing else in the script
depends on it. If this script were called arglist, then the command arglist bob dave ed would
produce the output bob,dave,ed. Chapter 10 contains another example of changing IFS.

●

Why does "$@" act like N separate double-quoted strings? To allow you to use them again as
separate values. For example, say you want to call a function within your script with the same list
of positional parameters, like this:

function countargs {
 print "$# args."
}

Assume your script is called with the same arguments as arglist above. Then if it contains the
command countargs "$*", the function will print 1 args. But if the command is countargs

●

[Chapter 4] 4.2 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_02.htm (4 of 5) [2/8/2001 4:54:59 PM]

"$@", the function will print 3 args.

4.2.2 More on Variable Syntax

Before we show the many things you can do with shell variables, we have to make a confession: the
syntax of $varname for taking the value of a variable is not quite accurate. Actually, it's the simple form
of the more general syntax, which is ${varname}.

Why two syntaxes? For one thing, the more general syntax is necessary if your code refers to more than
nine positional parameters: you must use ${10} for the tenth instead of $10. Aside from that, consider the
example, from Chapter 3, of setting your primary prompt variable (PS1) to your login name:

PS1="($LOGNAME)-> "

This happens to work because the right parenthesis immediately following LOGNAME is "special" (in
the sense of the special characters introduced in Chapter 1) so that the shell doesn't mistake it for part of
the variable name. Now suppose that, for some reason, you want your prompt to be your login name
followed by an underscore. If you type:

PS1="$LOGNAME_ "

then the shell will try to use "LOGNAME_" as the name of the variable, i.e., to take the value of
$LOGNAME_. Since there is no such variable, the value defaults to null (the empty string, ""), and PS1
is set to just a single space.

For this reason, the full syntax for taking the value of a variable is ${varname}. So if we used

PS1="${LOGNAME}_ "

we would get the desired $yourname_. It is safe to omit the curly brackets ({}) if the variable name is
followed by a character that isn't a letter, digit, or underscore.

4.1 Shell Scripts and
Functions

4.3 String Operators

[Chapter 4] 4.2 Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_02.htm (5 of 5) [2/8/2001 4:54:59 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 4
Basic Shell Programming

4.3 String Operators
The curly-bracket syntax allows for the shell's string operators. String operators allow you to manipulate
values of variables in various useful ways without having to write full-blown programs or resort to
external UNIX utilities. You can do a lot with string-handling operators even if you haven't yet mastered
the programming features we'll see in later chapters.

In particular, string operators let you do the following:

Ensure that variables exist (i.e., are defined and have non-null values)●

Set default values for variables●

Catch errors that result from variables not being set●

Remove portions of variables' values that match patterns●

4.3.1 Syntax of String Operators

The basic idea behind the syntax of string operators is that special characters that denote operations are
inserted between the variable's name and the right curly brackets. Any argument that the operator may
need is inserted to the operator's right.

The first group of string-handling operators tests for the existence of variables and allows substitutions of
default values under certain conditions. These are listed in Table 4.1. [6]

[6] The colon (:) in each of these operators is actually optional. If the colon is omitted, then
change "exists and isn't null" to "exists" in each definition, i.e., the operator tests for
existence only.

Table 4.1: Substitution Operators
Operator Substitution
${varname:-word} If varname exists and isn't null, return its value; otherwise return word.
Purpose: Returning a default value if the variable is undefined.
Example: ${count:-0} evaluates to 0 if count is undefined.
${varname:=word} If varname exists and isn't null, return its value; otherwise set it to word and then

return its value.[7]

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (1 of 10) [2/8/2001 4:55:05 PM]

Purpose: Setting a variable to a default value if it is undefined.
Example: ${count:=0} sets count to 0 if it is undefined.
${varname:?message} If varname exists and isn't null, return its value; otherwise print varname:

followed by message, and abort the current command or script. Omitting
message produces the default message parameter null or not set.

Purpose: Catching errors that result from variables being undefined.
Example: {count:?" undefined!" } prints "count: undefined!" and exits if count is

undefined.
${varname:+word} If varname exists and isn't null, return word; otherwise return null.
Purpose: Testing for the existence of a variable.
Example: ${count:+1} returns 1 (which could mean "true") if count is defined.

[7] Pascal, Modula, and Ada programmers may find it helpful to recognize the similarity of
this to the assignment operators in those languages.

The first two of these operators are ideal for setting defaults for command-line arguments in case the user
omits them. We'll use the first one in our first programming task.

Task 4.1

You have a large album collection, and you want to write some software to keep track of it.
Assume that you have a file of data on how many albums you have by each artist. Lines in
the file look like this:

14 Bach, J.S.
1 Balachander, S.
21 Beatles
6 Blakey, Art

Write a program that prints the N highest lines, i.e., the N artists by whom you have the most
albums. The default for N should be 10. The program should take one argument for the
name of the input file and an optional second argument for how many lines to print.

By far the best approach to this type of script is to use built-in UNIX utilities, combining them with I/O
redirectors and pipes. This is the classic "building-block" philosophy of UNIX that is another reason for
its great popularity with programmers. The building-block technique lets us write a first version of the
script that is only one line long:

sort -nr $1 | head -${2:-10}

Here is how this works: the sort(1) program sorts the data in the file whose name is given as the first
argument ($1). The -n option tells sort to interpret the first word on each line as a number (instead of as a
character string); the -r tells it to reverse the comparisons, so as to sort in descending order.

The output of sort is piped into the head(1) utility, which, when given the argument -N, prints the first N
lines of its input on the standard output. The expression -${2:-10} evaluates to a dash (-) followed by the
second argument if it is given, or to -10 if it's not; notice that the variable in this expression is 2, which is
the second positional parameter.

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (2 of 10) [2/8/2001 4:55:05 PM]

Assume the script we want to write is called highest. Then if the user types highest myfile, the line that
actually runs is:

sort -nr myfile | head -10

Or if the user types highest myfile 22, the line that runs is:

sort -nr myfile | head -22

Make sure you understand how the :- string operator provides a default value.

This is a perfectly good, runnable script-but it has a few problems. First, its one line is a bit cryptic.
While this isn't much of a problem for such a tiny script, it's not wise to write long, elaborate scripts in
this manner. A few minor changes will make the code more readable.

First, we can add comments to the code; anything between # and the end of a line is a comment. At a
minimum, the script should start with a few comment lines that indicate what the script does and what
arguments it accepts. Second, we can improve the variable names by assigning the values of the
positional parameters to regular variables with mnemonic names. Finally, we can add blank lines to
space things out; blank lines, like comments, are ignored. Here is a more readable version:

#
highest filename [howmany]
#
Print howmany highest-numbered lines in file filename.
The input file is assumed to have lines that start with
numbers. Default for howmany is 10.
#

filename=$1

howmany=${2:-10}
sort -nr $filename | head -$howmany

The square brackets around howmany in the comments adhere to the convention in UNIX
documentation that square brackets denote optional arguments.

The changes we just made improve the code's readability but not how it runs. What if the user were to
invoke the script without any arguments? Remember that positional parameters default to null if they
aren't defined. If there are no arguments, then $1 and $2 are both null. The variable howmany ($2) is set
up to default to 10, but there is no default for filename ($1). The result would be that this command runs:

sort -nr | head -10

As it happens, if sort is called without a filename argument, it expects input to come from standard input,
e.g., a pipe (|) or a user's terminal. Since it doesn't have the pipe, it will expect the terminal. This means
that the script will appear to hang! Although you could always type [CTRL-D] or [CTRL-C] to get out of
the script, a naive user might not know this.

Therefore we need to make sure that the user supplies at least one argument. There are a few ways of
doing this; one of them involves another string operator. We'll replace the line:

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (3 of 10) [2/8/2001 4:55:05 PM]

filename=$1

with:

filename=${1:?"filename missing."}

This will cause two things to happen if a user invokes the script without any arguments: first the shell
will print the somewhat unfortunate message:

highest: 1: filename missing.

to the standard error output. Second, the script will exit without running the remaining code.

With a somewhat "kludgy" modification, we can get a slightly better error message. Consider this code:

filename=$1
filename=${filename:?"missing."}

This results in the message:

highest: filename: missing.

(Make sure you understand why.) Of course, there are ways of printing whatever message is desired;
we'll find out how in Chapter 5.

Before we move on, we'll look more closely at the two remaining operators in Table 4.1 and see how we
can incorporate them into our task solution. The := operator does roughly the same thing as :-, except
that it has the "side effect" of setting the value of the variable to the given word if the variable doesn't
exist.

Therefore we would like to use := in our script in place of :-, but we can't; we'd be trying to set the value
of a positional parameter, which is not allowed. But if we replaced:

howmany=${2:-10}

with just:

howmany=$2

and moved the substitution down to the actual command line (as we did at the start), then we could use
the := operator:

sort -nr $filename | head -${howmany:=10}

Using := has the added benefit of setting the value of howmany to 10 in case we need it afterwards in
later versions of the script.

The final substitution operator is :+. Here is how we can use it in our example: Let's say we want to give
the user the option of adding a header line to the script's output. If he or she types the option -h, then the
output will be preceded by the line:

ALBUMS ARTIST

Assume further that this option ends up in the variable header, i.e., $header is -h if the option is set or
null if not. (Later we will see how to do this without disturbing the other positional parameters.)

The expression:

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (4 of 10) [2/8/2001 4:55:05 PM]

${header:+"ALBUMS ARTIST\n"}

yields null if the variable header is null, or ALBUMS ARTIST\n if it is non-null. This means that we
can put the line:

print -n ${header:+"ALBUMS ARTIST\n"}

right before the command line that does the actual work. The -n option to print causes it not to print a
LINEFEED after printing its arguments. Therefore this print statement will print nothing-not even a
blank line-if header is null; otherwise it will print the header line and a LINEFEED (\n).

4.3.2 Patterns and Regular Expressions

We'll continue refining our solution to Task 4-1 later in this chapter. The next type of string operator is
used to match portions of a variable's string value against patterns. Patterns, as we saw in Chapter 1 are
strings that can contain wildcard characters (*, ?, and [] for character sets and ranges).

Wildcards have been standard features of all UNIX shells going back (at least) to the Version 6 Bourne
shell. But the Korn shell is the first shell to add to their capabilities. It adds a set of operators, called
regular expression (or regexp for short) operators, that give it much of the string-matching power of
advanced UNIX utilities like awk(1), egrep(1) (extended grep(1)) and the emacs editor, albeit with a
different syntax. These capabilities go beyond those that you may be used to in other UNIX utilities like
grep, sed(1) and vi(1).

Advanced UNIX users will find the Korn shell's regular expression capabilities occasionally useful for
script writing, although they border on overkill. (Part of the problem is the inevitable syntactic clash with
the shell's myriad other special characters.) Therefore we won't go into great detail about regular
expressions here. For more comprehensive information, the "last word" on practical regular expressions
in UNIX is sed & awk, an O'Reilly Nutshell Handbook by Dale Dougherty. If you are already
comfortable with awk or egrep, you may want to skip the following introductory section and go to "Korn
Shell Versus awk/egrep Regular Expressions" below, where we explain the shell's regular expression
mechanism by comparing it with the syntax used in those two utilities. Otherwise, read on.

4.3.2.1 Regular expression basics

Think of regular expressions as strings that match patterns more powerfully than the standard shell
wildcard schema. Regular expressions began as an idea in theoretical computer science, but they have
found their way into many nooks and crannies of everyday, practical computing. The syntax used to
represent them may vary, but the concepts are very much the same.

A shell regular expression can contain regular characters, standard wildcard characters, and additional
operators that are more powerful than wildcards. Each such operator has the form x(exp), where x is the
particular operator and exp is any regular expression (often simply a regular string). The operator
determines how many occurrences of exp a string that matches the pattern can contain. See Table 4.2 and
Table 4.3.

Table 4.2: Regular Expression Operators
Operator Meaning

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (5 of 10) [2/8/2001 4:55:05 PM]

*(exp) 0 or more occurrences of exp
+(exp) 1 or more occurrences of exp
?(exp) 0 or 1 occurrences of exp
@(exp1|exp2|...) exp1 or exp2 or...
!(exp) Anything that doesn't match exp [8]

[8] Actually, !(exp) is not a regular expression operator by the standard technical definition,
though it is a handy extension.

Table 4.3: Regular Expression
Operator Examples

Expression Matches
x x
*(x) Null string, x, xx, xxx, ...
+(x) x, xx, xxx, ...
?(x) Null string, x
!(x) Any string except x
@(x) x (see below)

Regular expressions are extremely useful when dealing with arbitrary text, as you already know if you
have used grep or the regular-expression capabilities of any UNIX editor. They aren't nearly as useful for
matching filenames and other simple types of information with which shell users typically work.
Furthermore, most things you can do with the shell's regular expression operators can also be done
(though possibly with more keystrokes and less efficiency) by piping the output of a shell command
through grep or egrep.

Nevertheless, here are a few examples of how shell regular expressions can solve filename-listing
problems. Some of these will come in handy in later chapters as pieces of solutions to larger tasks.

The emacs editor supports customization files whose names end in .el (for Emacs LISP) or .elc
(for Emacs LISP Compiled). List all emacs customization files in the current directory.

1.

In a directory of C source code, list all files that are not necessary. Assume that "necessary" files
end in .c or .h, or are named Makefile or README.

2.

Filenames in the VAX/VMS operating system end in a semicolon followed by a version number,
e.g., fred.bob;23. List all VAX/VMS-style filenames in the current directory.

3.

Here are the solutions:

In the first of these, we are looking for files that end in .el with an optional c. The expression that
matches this is *.el?(c).

1.

The second example depends on the four standard subexpressions *.c, *.h, Makefile, and
README. The entire expression is !(*.c|*.h|Makefile|README), which matches anything that
does not match any of the four possibilities.

2.

The solution to the third example starts with * \;: the shell wildcard * followed by a3.

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (6 of 10) [2/8/2001 4:55:05 PM]

backslash-escaped semicolon. Then, we could use the regular expression +([0-9]), which matches
one or more characters in the range [0-9], i.e., one or more digits. This is almost correct (and
probably close enough), but it doesn't take into account that the first digit cannot be 0. Therefore
the correct expression is *\;[1-9]*([0-9]), which matches anything that ends with a semicolon, a
digit from 1 to 9, and zero or more digits from 0 to 9.

Regular expression operators are an interesting addition to the Korn shell's features, but you can get
along well without them-even if you intend to do a substantial amount of shell programming.

In our opinion, the shell's authors missed an opportunity to build into the wildcard mechanism the ability
to match files by type (regular, directory, executable, etc., as in some of the conditional tests we will see
in Chapter 5) as well as by name component. We feel that shell programmers would have found this
more useful than arcane regular expression operators.

The following section compares Korn shell regular expressions to analogous features in awk and egrep.
If you aren't familiar with these, skip to the section entitled "Pattern-matching Operators."

4.3.2.2 Korn shell versus awk/egrep regular expressions

Table 4.4 is an expansion of Table 4.2: the middle column shows the equivalents in awk/egrep of the
shell's regular expression operators.

Table 4.4: Shell Versus egrep/awk Regular Expression
Operators

Korn Shell egrep/awk Meaning
(exp) exp 0 or more occurrences of exp
+(exp) exp+ 1 or more occurrences of exp
?(exp) exp? 0 or 1 occurrences of exp
@(exp1|exp2|...) exp1|exp2|... exp1 or exp2 or...
!(exp) (none) Anything that doesn't match exp

These equivalents are close but not quite exact. Actually, an exp within any of the Korn shell operators
can be a series of exp1|exp2|... alternates. But because the shell would interpret an expression like
dave|fred|bob as a pipeline of commands, you must use @(dave|fred|bob) for alternates by themselves.

For example:

@(dave|fred|bob) matches dave, fred, or bob.●

*(dave|fred|bob) means, "0 or more occurrences of dave, fred, or bob". This expression matches
strings like the null string, dave, davedave, fred, bobfred, bobbobdavefredbobfred, etc.

●

+(dave|fred|bob) matches any of the above except the null string.●

?(dave|fred|bob) matches the null string, dave, fred, or bob.●

!(dave|fred|bob) matches anything except dave, fred, or bob.●

It is worth re-emphasizing that shell regular expressions can still contain standard shell wildcards. Thus,

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (7 of 10) [2/8/2001 4:55:05 PM]

the shell wildcard ? (match any single character) is the equivalent to . in egrep or awk, and the shell's
character set operator [...] is the same as in those utilities. [9] For example, the expression +([0-9])
matches a number, i.e., one or more digits. The shell wildcard character * is equivalent to the shell
regular expression * (?).

[9] And, for that matter, the same as in grep, sed, ed, vi, etc.

A few egrep and awk regexp operators do not have equivalents in the Korn shell. These include:

The beginning- and end-of-line operators ^ and $.●

The beginning- and end-of-word operators \< and \>.●

Repeat factors like \{N \} and \{M , N \}.●

The first two pairs are hardly necessary, since the Korn shell doesn't normally operate on text files and
does parse strings into words itself.

4.3.3 Pattern-matching Operators

Table 4.5 lists the Korn shell's pattern-matching operators.

Table 4.5: Pattern-matching Operators
Operator Meaning
${variable#pattern} If the pattern matches the beginning of the variable's value, delete the shortest

part that matches and return the rest.
${variable##pattern} If the pattern matches the beginning of the variable's value, delete the longest

part that matches and return the rest.
${variable%pattern} If the pattern matches the end of the variable's value, delete the shortest part that

matches and return the rest.
${variable%%pattern} If the pattern matches the end of the variable's value, delete the longest part that

matches and return the rest.

These can be hard to remember, so here's a handy mnemonic device: # matches the front because number
signs precede numbers; % matches the rear because percent signs follow numbers.

The classic use for pattern-matching operators is in stripping off components of pathnames, such as
directory prefixes and filename suffixes. With that in mind, here is an example that shows how all of the
operators work. Assume that the variable path has the value /home /billr/mem/long.file.name; then:

Expression Result
${path##/*/} long.file.name
${path#/*/} billr/mem/long.file.name
$path /home/billr/mem/long.file.name
${path%.*} /home/billr/mem/long.file
${path%%.*} /home/billr/mem/long

The two patterns used here are /*/, which matches anything between two slashes, and .*, which
matches a dot followed by anything.

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (8 of 10) [2/8/2001 4:55:05 PM]

We will incorporate one of these operators into our next programming task.

Task 4.2

You are writing a C compiler, and you want to use the Korn shell for your front-end.[10]

[10] Don't laugh-many UNIX compilers have shell scripts as front-ends.

Think of a C compiler as a pipeline of data processing components. C source code is input to the
beginning of the pipeline, and object code comes out of the end; there are several steps in between. The
shell script's task, among many other things, is to control the flow of data through the components and to
designate output files.

You need to write the part of the script that takes the name of the input C source file and creates from it
the name of the output object code file. That is, you must take a filename ending in .c and create a
filename that is similar except that it ends in .o.

The task at hand is to strip the .c off the filename and append .o. A single shell statement will do it:

objname=${filename%.c}.o

This tells the shell to look at the end of filename for .c. If there is a match, return $filename with the
match deleted. So if filename had the value fred.c, the expression ${filename%.c} would return fred.
The .o is appended to make the desired fred.o, which is stored in the variable objname.

If filename had an inappropriate value (without .c) such as fred.a, the above expression would evaluate
to fred.a.o: since there was no match, nothing is deleted from the value of filename, and .o is appended
anyway. And, if filename contained more than one dot-e.g., if it were the y.tab.c that is so infamous
among compiler writers-the expression would still produce the desired y.tab.o. Notice that this would not
be true if we used %% in the expression instead of %. The former operator uses the longest match
instead of the shortest, so it would match .tab.o and evaluate to y.o rather than y.tab.o. So the single % is
correct in this case.

A longest-match deletion would be preferable, however, in the following task.

Task 4.3

You are implementing a filter that prepares a text file for printer output. You want to put the
file's name-without any directory prefix-on the "banner" page. Assume that, in your script,
you have the pathname of the file to be printed stored in the variable pathname.

Clearly the objective is to remove the directory prefix from the pathname. The following line will do it:

bannername=${pathname##*/}

This solution is similar to the first line in the examples shown before. If pathname were just a filename,
the pattern */ (anything followed by a slash) would not match and the value of the expression would be
pathname untouched. If pathname were something like fred/bob, the prefix fred/ would match the
pattern and be deleted, leaving just bob as the expression's value. The same thing would happen if
pathname were something like /dave/pete/fred/bob: since the ## deletes the longest match, it deletes the
entire /dave/pete/fred/.

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (9 of 10) [2/8/2001 4:55:05 PM]

If we used #*/ instead of ##*/, the expression would have the incorrect value dave/pete/fred/bob,
because the shortest instance of "anything followed by a slash" at the beginning of the string is just a
slash (/).

The construct ${variable##*/} is actually equivalent to the UNIX utility basename(1). basename takes a
pathname as argument and returns the filename only; it is meant to be used with the shell's command
substitution mechanism (see below). basename is less efficient than ${variable##/*} because it runs in
its own separate process rather than within the shell. Another utility, dirname(1), does essentially the
opposite of basename: it returns the directory prefix only. It is equivalent to the Korn shell expression
${variable%/*} and is less efficient for the same reason.

4.3.4 Length Operator

There are two remaining operators on variables. One is ${#varname}, which returns the length of the
value of the variable as a character string. (In Chapter 6 we will see how to treat this and similar values
as actual numbers so they can be used in arithmetic expressions.) For example, if filename has the value
fred.c, then ${#filename} would have the value 6. The other operator (${#array[*]}) has to do with
array variables, which are also discussed in Chapter 6.

4.2 Shell Variables 4.4 Command Substitution

[Chapter 4] 4.3 String Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_03.htm (10 of 10) [2/8/2001 4:55:05 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 4
Basic Shell Programming

4.4 Command Substitution
From the discussion so far, we've seen two ways of getting values into variables: by assignment
statements and by the user supplying them as command-line arguments (positional parameters). There is
another way: command substitution, which allows you to use the standard output of a command as if it
were the value of a variable. You will soon see how powerful this feature is.

The syntax of command substitution is: [11]

[11] Bourne and C shell users should note that the command substitution syntax of those
shells, `UNIX command` (with backward quotes, a.k.a. grave accents), is also supported by
the Korn shell for backward compatibility reasons. However, Korn shell documentation
considers this syntax archaic. It is harder to read and less conducive to nesting.

$(UNIX command)

The command inside the parenthesis is run, and anything the command writes to standard output is
returned as the value of the expression. These constructs can be nested, i.e., the UNIX command can
contain command substitutions.

Here are some simple examples:

The value of $(pwd) is the current directory (same as the environment variable $PWD).●

The value of $(ls) is the names of all files in the current directory, separated by NEWLINEs.●

To find out detailed information about a command if you don't know where its file resides, type ls
-l $(whence -p command). The -p option forces whence to do a pathname lookup and not consider
keywords, built-ins, etc.

●

To get the contents of a file into a variable, you can use varname=$(< filename). $(cat filename)
will do the same thing, but the shell catches the former as a built-in shorthand and runs it more
efficiently.

●

If you want to edit (with emacs) every chapter of your book on the Korn shell that has the phrase
"command substitution," assuming that your chapter files all begin with ch, you could type:

emacs $(grep -l 'command substitution' ch*)

The -l option to grep prints only the names of files that contain matches.

●

[Chapter 4] 4.4 Command Substitution

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_04.htm (1 of 5) [2/8/2001 4:55:08 PM]

Command substitution, like variable and tilde expansion, is done within double quotes. Therefore, our
rule in Chapter 1 and Chapter 3, about using single quotes for strings unless they contain variables will
now be extended: "When in doubt, use single quotes, unless the string contains variables or command
substitutions, in which case use double quotes."

You will undoubtedly think of many ways to use command substitution as you gain experience with the
Korn shell. One that is a bit more complex than those mentioned previously relates to a customization
task that we saw in Chapter 3: personalizing your prompt string.

Recall that you can personalize your prompt string by assigning a value to the variable PS1. If you are on
a network of computers, and you use different machines from time to time, you may find it handy to have
the name of the machine you're on in your prompt string. Most newer versions of UNIX have the
command hostname(1), which prints the network name of the machine you are on to standard output. (If
you do not have this command, you may have a similar one like gethostname.) This command enables
you to get the machine name into your prompt string by putting a line like this in your .profile or
environment file:

PS1="$(hostname) \$ "

(The second dollar sign must be preceded by a backslash so that the shell will take it literally.) For
example, if your machine had the name coltrane, then this statement would set your prompt string to
"coltrane $ ".

Command substitution helps us with the solution to the next programming task, which relates to the
album database in Task 4-1.

Task 4.4

The file used in Task 4-1 is actually a report derived from a bigger table of data about
albums. This table consists of several columns, or fields, to which a user refers by names
like "artist," "title," "year," etc. The columns are separated by vertical bars (|, the same as the
UNIX pipe character). To deal with individual columns in the table, field names need to be
converted to field numbers.

Suppose there is a shell function called getfield that takes the field name as argument and
writes the corresponding field number on the standard output. Use this routine to help
extract a column from the data table.

The cut(1) utility is a natural for this task. cut is a data filter: it extracts columns from tabular data. [12] If
you supply the numbers of columns you want to extract from the input, cut will print only those columns
on the standard output. Columns can be character positions or-relevant in this example-fields that are
separated by TAB characters or other delimiters.

[12] Some older BSD-derived systems don't have cut, but you can use awk instead.
Whenever you see a command of the form:

cut -fN -dC filename

Use this instead:

awk -FC '{print $N}' filename

[Chapter 4] 4.4 Command Substitution

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_04.htm (2 of 5) [2/8/2001 4:55:08 PM]

Assume that the data table in our task is a file called albums and that it looks like this:

Coltrane, John|Giant Steps|Atlantic|1960|Ja
Coltrane, John|Coltrane Jazz|Atlantic|1960|Ja
Coltrane, John|My Favorite Things|Atlantic|1961|Ja
Coltrane, John|Coltrane Plays the Blues|Atlantic|1961|Ja
...

Here is how we would use cut to extract the fourth (year) column:

cut -f4 -d\| albums

The -d argument is used to specify the character used as field delimiter (TAB is the default). The vertical
bar must be backslash-escaped so that the shell doesn't try to interpret it as a pipe.

From this line of code and the getfield routine, we can easily derive the solution to the task. Assume that
the first argument to getfield is the name of the field the user wants to extract. Then the solution is:

fieldname=$1
cut -f$(getfield $fieldname) -d\| albums

If we called this script with the argument year, the output would be:

1960
1960
1961
1961
...

Here's another small task that makes use of cut.

Task 4.5

Send a mail message to everyone who is currently logged in.

The command who(1) tells you who is logged in (as well as which terminal they're on and when they
logged in). Its output looks like this:

billr console May 22 07:57
fred tty02 May 22 08:31
bob tty04 May 22 08:12

The fields are separated by spaces, not TABs. Since we need the first field, we can get away with using a
space as the field separator in the cut command. (Otherwise we'd have to use the option to cut that uses
character columns instead of fields.) To provide a space character as an argument on a command line,
you can surround it by quotes:

$ who | cut -d' ' -f1

With the above who output, this command's output would look like this:

billr
fred

[Chapter 4] 4.4 Command Substitution

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_04.htm (3 of 5) [2/8/2001 4:55:08 PM]

bob

This leads directly to a solution to the task. Just type:

$ mail $(who | cut -d' ' -f1)

The command mail billr fred bob will run and then you can type your message.

Here is another task that shows how useful command pipelines can be in command substitution.

Task 4.6

The ls command gives you pattern-matching capability with wildcards, but it doesn't allow
you to select files by modification date. Devise a mechanism that lets you do this.

This task was inspired by the feature of the VAX/VMS operating system that lets you specify files by
date with BEFORE and SINCE parameters. We'll do this in a limited way now and add features in the
next chapter.

Here is a function that allows you to list all files that were last modified on the date you give as
argument. Once again, we choose a function for speed reasons. No pun is intended by the function's
name:

function lsd {
 date=$1
 ls -l | grep -i '^.\{41\}$date' | cut -c55-
}

This function depends on the column layout of the ls -l command. In particular, it depends on dates
starting in column 42 and filenames starting in column 55. If this isn't the case in your version of UNIX,
you will need to adjust the column numbers. [13]

[13] For example, ls -l on SunOS 4.1.x has dates starting in column 33 and filenames
starting in column 46.

We use the grep search utility to match the date given as argument (in the form Mon DD, e.g., Jan 15 or
Oct 6, the latter having two spaces) to the output of ls -l. This gives us a long listing of only those files
whose dates match the argument. The -i option to grep allows you to use all lowercase letters in the
month name, while the rather fancy argument means, "Match any line that contains 41 characters
followed by the function argument." For example, typing lsd 'jan 15' causes grep to search for lines
that match any 41 characters followed by jan 15 (or Jan 15). [14]

[14] Some older BSD-derived versions of UNIX (without System V extensions) do not
support the \{N\} option. For this example, use 41 periods in a row instead of .\{41\}.

The output of grep is piped through our ubiquitous friend cut to retrieve the filenames only. The
argument to cut tells it to extract characters in column 55 through the end of the line.

With command substitution, you can use this function with any command that accepts filename
arguments. For example, if you want to print all files in your current directory that were last modified
today, and today is January 15th, you could type:

[Chapter 4] 4.4 Command Substitution

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_04.htm (4 of 5) [2/8/2001 4:55:08 PM]

$ lp $(lsd 'jan 15')

The output of lsd is on multiple lines (one for each filename), but LINEFEEDs are legal field separators
for the lp command, because the environment variable IFS (see earlier in this chapter) contains
LINEFEED by default.

4.3 String Operators 4.5 Advanced Examples:
pushd and popd

[Chapter 4] 4.4 Command Substitution

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_04.htm (5 of 5) [2/8/2001 4:55:08 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 4
Basic Shell Programming

4.5 Advanced Examples: pushd and popd
We will conclude this chapter with a couple of functions that you may find handy in your everyday UNIX
use.

Task 4.7

The functions pushd and popd implement a stack of directories that enable you to move to
another directory temporarily and have the shell remember where you were. The C shell
includes these functions, but for some reason the Korn shell omits them. Implement them as
shell functions.

We will start by implementing a significant subset of their capabilities and finish the implementation in
Chapter 6.

If you don't know what a stack is, think of a spring-loaded dish receptacle in a cafeteria. When you place
dishes on the receptacle, the spring compresses so that the top stays at roughly the same level. The dish
most recently placed on the stack is the first to be taken when someone wants food; thus, the stack is
known as a "last-in, first-out" or LIFO structure. [15] Putting something onto a stack is known in
computer science parlance as pushing, and taking something off the top is called popping.

[15] Victims of the early-90s recession will also recognize this mechanism in the context of
corporate layoff policies.

A stack is very handy for remembering directories, as we will see; it can "hold your place" up to an
arbitrary number of times. The cd - form of the cd command does this, but only to one level. For example:
if you are in firstdir and then you change to seconddir, you can type cd - to go back. But if you start out in
firstdir, then change to seconddir, and then go to thirddir, you can use cd - only to go back to seconddir. If
you type cd - again, you will be back in thirddir, because it is the previous directory. [16]

[16] Think of cd - as a synonym for cd $OLDPWD; see the previous chapter.

If you want the "nested" remember-and-change functionality that will take you back to firstdir, you need a
stack of directories along with the pushd and popd commands. Here is how these work: [17]

[17] More accurately, this is how the C shell does it, and yes, it is somewhat counterintuitive.
A more intuitive way would be:

The first time pushd dir is called, pushd cds to dir and pushes the current directory followed by dir●

[Chapter 4] 4.5 Advanced Examples: pushd and popd

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_05.htm (1 of 3) [2/8/2001 4:55:10 PM]

onto the stack.

Subsequent calls to pushd cd to dir and push dir only onto the stack.●

popd removes the top directory off the stack, revealing a new top. Then it cds to the new top
directory.

●

For example, consider the series of events in Table 4.6. Assume that you have just logged in, and that you
are in your home directory (/home/you).

We will implement a stack as an environment variable containing a list of directories separated by spaces.

Table 4.6: pushd/popd Example
Command Stack Contents Result Directory
pushd fred /home/you/fred /home/you /home/you/fred
pushd /etc /etc /home/you/fred /home/you /etc
popd /home/you/fred /home/you /home/you/fred
popd /home/you /home/you
popd <empty> (error)

Your directory stack should be initialized to the null string when you log in. To do this, put this in your
.profile:

DIRSTACK=""
export DIRSTACK

Do not put this in your environment file if you have one. The export statement guarantees that
DIRSTACK is known to all subprocesses; you want to initialize it only once. If you put this code in an
environment file, it will get reinitialized in every subshell, which you probably don't want.

Next, we need to implement pushd and popd as functions. Here are our initial versions:

function pushd { # push current directory onto stack
 dirname=$1
 cd ${dirname:?"missing directory name."}
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print "$DIRSTACK"
}

function popd { # pop directory off stack, cd to new top
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
}

Notice that there isn't much code! Let's go through the two functions and see how they work, starting with
pushd. The first line merely saves the first argument in the variable dirname for readability reasons.

The second line's main purpose is to change to the new directory. We use the :? operator to handle the
error when the argument is missing: if the argument is given, then the expression ${dirname:?"missing

[Chapter 4] 4.5 Advanced Examples: pushd and popd

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_05.htm (2 of 3) [2/8/2001 4:55:10 PM]

directory name."} evaluates to $dirname, but if it is not given, the shell will print the message pushd:
dirname: missing directory name and exit from the function.

The third line of the function pushes the new directory onto the stack. The expression ${DIRSTACK
:-$PWD} evaluates to $DIRSTACK if it is non-null or $PWD (the current directory) if it is null. The
expression within double quotes, then, consists of the argument given, followed by a single space,
followed by DIRSTACK or the current directory. The double quotes ensure that all of this is packaged
into a single string for assignment back to DIRSTACK. Thus, this line of code handles the special initial
case (when the stack is empty) as well as the more usual case (when it's not empty).

The last line merely prints the contents of the stack, with the implication that the leftmost directory is both
the current directory and at the top of the stack. (This is why we chose spaces to separate directories,
rather than the more customary colons as in PATH and MAILPATH.)

The popd function makes yet another use of the shell's pattern-matching operators. Its first line uses the #
operator, which tries to delete the shortest match of the pattern "*" (anything followed by a space) from
the value of DIRSTACK. The result is that the top directory (and the space following it) is deleted from
the stack.

The second line of popd uses the pattern-matching operator %% to delete the longest match to the pattern
" *" (a space followed by anything) from DIRSTACK. This extracts the top directory as argument to cd,
but doesn't affect the value of DIRSTACK because there is no assignment. The final line just prints a
confirmation message.

This code is deficient in three ways: first, it has no provision for errors. For example:

What if the user tries to push a directory that doesn't exist or is invalid?●

What if the user tries popd and the stack is empty?●

Test your understanding of the code by figuring out how it would respond to these error conditions. The
second deficiency is that it implements only some of the functionality of the C shell's pushd and popd
commands-albeit the most useful parts. In the next chapter, we will see how to overcome both of these
deficiencies.

The third problem with the code is that it will not work if, for some reason, a directory name contains a
space. The code will treat the space as a separator character. We'll accept this deficiency for now.
However, when you read about arrays in Chapter 6, Command-line Options and Typed Variables, think
about how you might use them to rewrite this code and eliminate the problem.

4.4 Command Substitution 5. Flow Control

[Chapter 4] 4.5 Advanced Examples: pushd and popd

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch04_05.htm (3 of 3) [2/8/2001 4:55:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 5

5. Flow Control
Contents:
if/else
for
case
select
while and until

If you are a programmer, you may have read the last chapter-with its claim at the outset that the Korn shell has an
advanced set of programming capabilities - and wondered where many features from conventional languages are.
Perhaps the most glaringly obvious "hole" in our coverage thus far concerns flow control constructs like if, for,
while, and so on.

Flow control gives a programmer the power to specify that only certain portions of a program run, or that certain
portions run repeatedly, according to conditions such as the values of variables, whether or not commands execute
properly, and others. We call this the ability to control the flow of a program's execution.

Almost every shell script or function shown thus far has had no flow control-they have just been lists of
commands to be run! Yet the Korn shell, like the C and Bourne shells, has all of the flow control abilities you
would expect and more; we will examine them in this chapter. We'll use them to enhance the solutions to some of
the programming tasks we saw in the last chapter and to solve tasks that we will introduce here.

Although we have attempted to explain flow control so that non-programmers can understand it, we also
sympathize with programmers who dread having to slog through yet another tabula rasa explanation. For this
reason, some of our discussions relate the Korn shell's flow-control mechanisms to those that programmers should
know already. Therefore you will be in a better position to understand this chapter if you already have a basic
knowledge of flow control concepts.

The Korn shell supports the following flow control constructs:

if/else

Execute a list of statements if a certain condition is/is not true

for

Execute a list of statements a fixed number of times

while

Execute a list of statements repeatedly while a certain condition holds true

until

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (1 of 13) [2/8/2001 4:55:24 PM]

Execute a list of statements repeatedly until a certain condition holds true

case

Execute one of several lists of statements depending on the value of a variable

In addition, the Korn shell provides a new type of flow-control construct:

select

Allow the user to select one of a list of possibilities from a menu

We will cover each of these, but be warned: the syntax is not pretty.

5.1 if/else
The simplest type of flow control construct is the conditional, embodied in the Korn shell's if statement. You use
a conditional when you want to choose whether or not to do something, or to choose among a small number of
things to do, according to the truth or falsehood of conditions. Conditions test values of shell variables,
characteristics of files, whether or not commands run successfully, and other factors. The shell has a large set of
built-in tests that are relevant to the task of shell programming.

The if construct has the following syntax:

if condition
then
 statements
[elif condition
 then statements...]
[else
 statements]
fi

The simplest form (without the elif and else parts, a.k.a. clauses) executes the statements only if the condition is
true. If you add an else clause, you get the ability to execute one set of statements if a condition is true or another
set of statements if the condition is false. You can use as many elif (a contraction of "else if") clauses as you wish;
they introduce more conditions, and thus more choices for which set of statements to execute. If you use one or
more elifs, you can think of the else clause as the "if all else fails" part.

5.1.1 Exit Status and Return

Perhaps the only aspect of this syntax that differs from that of conventional languages like C and Pascal is that the
"condition" is really a list of statements rather than the more usual Boolean (true or false) expression. How is the
truth or falsehood of the condition determined? It has to do with a general UNIX concept that we haven't covered
yet: the exit status of commands.

Every UNIX command, whether it comes from source code in C, some other language, or a shell script/function,
returns an integer code to its calling process-the shell in this case-when it finishes. This is called the exit status. 0
is usually the "OK" exit status, while anything else (1 to 255) usually denotes an error. [1]

[1] Because this is a "convention" and not a "law," there are exceptions. For example, diff (1) (find
differences between two files) returns 0 for "no differences," 1 for "differences found," or 2 for an
error such as an invalid filename argument.

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (2 of 13) [2/8/2001 4:55:24 PM]

if checks the exit status of the last statement in the list following the if keyword. [2] (The list is usually just a
single statement.) If the status is 0, the condition evaluates to true; if it is anything else, the condition is
considered false. The same is true for each condition attached to an elif statement (if any).

[2] LISP programmers will find this idea familiar.

This enables us to write code of the form:

if command ran successfully
then
 normal processing
else
 error processing
fi

More specifically, we can now improve on the pushd function that we saw in the last chapter:

function pushd { # push current directory onto stack
 dirname=$1
 cd ${dirname:?"missing directory name."}
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print $DIRSTACK
}

This function requires a valid directory as its argument. Let's look at how it handles error conditions: if no
argument is given, the second line of code prints an error message and exits. This is fine.

However, the function reacts deceptively when an argument is given that isn't a valid directory. In case you didn't
figure it out when reading the last chapter, here is what happens: the cd fails, leaving you in the same directory
you were in. This is also appropriate. But then the third line of code pushes the bad directory onto the stack
anyway, and the last line prints a message that leads you to believe that the push was successful.

We need to prevent the bad directory from being pushed and to print an error message. Here is how we can do
this:

function pushd { # push current directory onto stack
 dirname=$1
 if cd ${dirname:?"missing directory name."} # if cd was successful
 then
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print $DIRSTACK
 else
 print still in $PWD.
 fi
}

The call to cd is now inside an if construct. If cd is successful, it will return 0; the next two lines of code are run,
finishing the pushd operation. But if the cd fails, it returns with exit status 1, and pushd will print a message
saying that you haven't gone anywhere.

You can usually rely on built-in commands and standard UNIX utilities to return appropriate exit statuses, but
what about your own shell scripts and functions? For example, what if you wrote a cd function that overrides the
built-in command?

Let's say you have the following code in your .profile or environment file:

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (3 of 13) [2/8/2001 4:55:24 PM]

function _cd {
 "cd" $*
 print $OLDPWD -> $PWD
}
alias cd=_cd

The function _cd simply changes directories and prints a message saying where you were and where you are now.
Because functions have lower priority than built-in commands in the shell's order of command lookup, we need to
define cd itself as an alias so that it overrides the built-in cd.

The function calls the built-in cd command, but notice that it's surrounded in double quotes: that prevents the
shell from looking it up as an alias. (This may seem like a kludge in the aliasing mechanism, but it's really just a
ramification of the shell's command-line processing rules, which we list in Chapter 7, Input/Output and
Command-line Processing.) [3] If it did find cd as an alias, the shell would go into an "infinite recursion" in
which the alias is expanded to _cd, which runs the function, which calls cd, which the shell expands to the alias
again, etc.

[3] A related result of command-line processing is that if you surround a command with single
quotes, the shell won't look it up as an alias or as a function.

Anyway, we want this function to return the same exit status that the built-in cd returns. The problem is that the
exit status is reset by every command, so it "disappears" if you don't save it immediately. In this function, the
built-in cd's exit status disappears when the print statement runs (and sets its own exit status).

Therefore, we need to save the status that cd sets and use it as the entire function's exit status. Two shell features
we haven't seen yet provide the way. First is the special shell variable ?, whose value ($?) is the exit status of the
last command that ran. For example:

cd baddir
print $?

causes the shell to print 1, while:

cd gooddir
print $?

causes the shell to print 0.

5.1.1.1 Return

The second feature we need is the statement return N, which causes the surrounding script or function to exit
with exit status N. N is actually optional; it defaults to 0. Scripts that finish without a return statement (i.e., every
one we have seen so far) return whatever the last statement returns. If you use return within a function, it will
just exit the function. (In contrast, the statement exit N exits the entire script, no matter how deeply you are nested
in functions.)

Getting back to our example: if the call to "real" cd were last in our _cd function, it would behave properly.
Unfortunately, we really need the assignment statement where it is, so that we can avoid lots of ugly error
processing. Therefore we need to save cd's exit status and return it as the function's exit status. Here is how to do
it:

function _cd {
 "cd" $*
 es=$?
 print $OLDPWD -> $PWD

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (4 of 13) [2/8/2001 4:55:24 PM]

 return $es
}

The second line saves the exit status of cd in the variable es; the fourth returns it as the function's exit status. We'll
see a more substantial "wrapper" for cd in Chapter 7.

Exit statuses aren't very useful for anything other than their intended purpose. In particular, you may be tempted
to use them as "return values" of functions, as you would with functions in C or Pascal. That won't work; you
should use variables or command substitution instead to simulate this effect.

5.1.2 Combinations of Exit Statuses

One of the more obscure parts of Korn shell syntax allows you to combine exit statuses logically, so that you can
test more than one thing at a time.

The syntax statement1 && statement2 means, "execute statement1, and if its exit status is 0, execute statement2."
The syntax statement1 || statement2 is the converse: it means, "execute statement1, and if its exit status is not 0,
execute statement2."

At first, these look like "if/then" and "if not/then" constructs, respectively. But they are really intended for use
within conditions of if constructs-as C programmers will readily understand.

It's much more useful to think of these constructs as "and" and "or," respectively. Consider this:

if statement1 && statement2
then
 ...
fi

In this case, statement1 is executed. If it returns a 0 status, then presumably it ran without error. Then statement2
runs. The then clause is executed if statement2 returns a 0 status. Conversely, if statement1 fails (returns a non-0
exit status), then statement2 doesn't even run; the "last statement" in the condition was statement1, which
failed-so the then clause doesn't run. Taken all together, it's fair to conclude that the then clause runs if
statement1 and statement2 both succeeded.

Similarly, consider this:

if statement1 || statement2
then
 ...
fi

If statement1 succeeds, then statement2 does not run. This makes statement1 the last statement, which means that
the then clause runs. On the other hand, if statement1 fails, then statement2 runs, and whether the then clause
runs or not depends on the success of statement2. The upshot is that the then clause runs if statement1 or
statement2 succeeds.

As a simple example, assume that we need to write a script that checks a file for the presence of two words and
just prints a message saying whether either word is in the file or not. We can use grep for this: it returns exit
status 0 if it found the given string in its input, non-0 if not:

filename=$1
word1=$2
word2=$3
if grep $word1 $filename || grep $word2 $filename

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (5 of 13) [2/8/2001 4:55:24 PM]

then
 print "$word1 or $word2 is in $filename."
fi

The then clause of this code runs if either grep statement succeeds. Now assume that we want the script to say
whether or not the input file contains both words. Here's how to do it:

filename=$1
word1=$2
word2=$3
if grep $word1 $filename && grep $word2 $filename
then
 print "$word1 and $word2 are both in $filename."
fi

We'll see more examples of these logical operators later in this chapter and in the code for the kshdb debugger in
Chapter 9, Debugging Shell Programs.

5.1.3 Condition Tests

Exit statuses are the only things an if construct can test. But that doesn't mean you can check only whether or not
commands ran properly. The shell provides a way of testing a variety of conditions with the [[]] construct. [4]

[4] The Korn shell also accepts the external [] and test commands. The [[]] construct has many more
options and is better integrated into the Korn shell language: specifically, word splitting and wildcard
expansion aren't done within [[and]], making quoting less necessary.

You can use the construct to check many different attributes of a file (whether it exists, what type of file it is,
what its permissions and ownership are, etc.), compare two files to see which is newer, do comparisons and
pattern matching on strings, and more.

[[condition]] is actually a statement just like any other, except that the only thing it does is return an exit status
that tells whether condition is true or not. Thus it fits within the if construct's syntax of if statements.

5.1.3.1 String comparisons

The double square brackets ([[]]) surround expressions that include various types of operators. We will start with
the string comparison operators, which are listed in Table 5.1. (Notice that there are no operators for "greater than
or equal" or "less than or equal.") In the table, str refers to an expression with a string value, and pat refers to a
pattern that can contain wildcards (just like the patterns in the string-handling operators we saw in the last
chapter).

Table 5.1: String Comparison Operators
Operator True if...
str = pat[5] str matches pat.
str != pat str does not match pat.
str1 < str2 str1 is less than str2.
str1 > str2 str1 is greater than str2.
-n str str is not null (has length greater than 0).
-z str str is null (has length 0).

[5] Note that there is only one equal sign (=). This is a common source of errors.

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (6 of 13) [2/8/2001 4:55:24 PM]

We can use one of these operators to improve our popd function, which reacts badly if you try to pop and the
stack is empty. Recall that the code for popd is:

function popd { # pop directory off the stack, cd there
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
}

If the stack is empty, then $DIRSTACK is the null string, as is the expression ${DIRSTACK%% *}. This
means that you will change to your home directory; instead, we want popd to print an error message and do
nothing.

To accomplish this, we need to test for an empty stack, i.e., whether $DIRSTACK is null or not. Here is one way
to do it:

function popd { # pop directory off the stack, cd there
 if [[-n $DIRSTACK]]; then
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
 else
 print "stack empty, still in $PWD."
 fi
}

Notice that instead of putting then on a separate line, we put it on the same line as the if after a semicolon, which
is the shell's standard statement separator character.

We could have used operators other than -n. For example, we could have used -z and switched the code in the
then and else clauses. We also could have used: [6]

[6] Note that this code does not work under the older [] or test syntax, which will complain about a
missing argument if the variable is null. This means that it is no longer necessary to surround both
sides with double quotes (or to use hacks like [x$DIRSTACK = x]) as you had to with the Bourne
shell; the Korn shell's [[/]] syntax handles null values correctly.

if [[$DIRSTACK = ""]]; then
 ...

While we're cleaning up code we wrote in the last chapter, let's fix up the error handling in the highest script
(Task 4-1). The code for that script is:

filename=${1:?"filename missing."}
howmany=${2:-10}
sort -nr $filename | head -$howmany

Recall that if you omit the first argument (the filename), the shell prints the message highest: 1: filename
missing. We can make this better by substituting a more standard "usage" message:

if [[-z $1]]; then
 print 'usage: howmany filename [-N]'
else
 filename=$1
 howmany=${2:-10}

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (7 of 13) [2/8/2001 4:55:24 PM]

 sort -nr $filename | head -$howmany
fi

It is considered better programming style to enclose all of the code in the if-then-else, but such code can get
confusing if you are writing a long script in which you need to check for errors and bail out at several points along
the way. Therefore, a more usual style for shell programming is this:

if [[-z $1]]; then
 print 'usage: howmany filename [-N]'
 return 1
fi
filename=$1
howmany=${2:-10}
sort -nr $filename | head -$howmany

The return statement informs any calling program that needs to know whether it ran successfully or not.

As an example of the = and != operators, we can add the shell script front end to a C compiler to our solution for
Task 4-2. Recall that we are given a filename ending in .c (the source code file), and we need to construct a
filename that is the same but ends in .o (the object code file). The modifications we will make have to do with
other types of files that can be passed to a C compiler.

5.1.3.2 About C Compilers

Before we get to the shell code, it is necessary to understand a few things about C compilers. We already know
that they translate C source code into object code. Actually, they are part of compilation systems that also perform
several other tasks. The term "compiler" is often used instead of "compilation system," so we'll use it in both
senses.

We're interested here in two tasks that compilers perform other than compiling C code: they can translate
assembly language code into object code, and they can link object code files together to form an executable
program.

Assembly language works at a level that is close to the bare computer; each assembly statement is directly
translatable into a statement of object code-as opposed to C or other higher-level languages, in which a single
source statement could translate to dozens of object code instructions. Translating a file of assembly language
code into object code is called, not surprisingly, assembling the code.

Although many people consider assembly language to be quaintly old-fashioned - like a typewriter in this age of
WYSIWYG word processing and desktop publishing-some programmers still need to use it when dealing with
precise details of computer hardware. It's not uncommon for a program to consist of several files' worth of code in
a higher-level language (such as C) and a few low-level routines in assembly language.

The other task we'll worry about is called linking. Most real-world programs, unlike those assigned for a first-year
programming class, consist of several files of source code, possibly written by several different programmers.
These files are compiled into object code; then the object code must be combined to form the final, runnable
program, known as an executable. The task of combining is often called "linking": each object code component
usually contains references to other components, and these references must be resolved or "linked" together.

C compilation systems are capable of assembling files of assembly language into object code and linking object
code files into executables. In particular, a compiler calls a separate assembler to deal with assembly code and a
linker (also known as a "loader," "linking loader," or "link editor") to deal with object code files. These separate
tools are known in the UNIX world as as and ld, respectively. The C compiler itself is invoked with the command

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (8 of 13) [2/8/2001 4:55:24 PM]

cc.

We can express all of these steps in terms of the suffixes of files passed as arguments to the C compiler.
Basically, the compiler does the following:

If the argument ends in .c it's a C source file; compile into a .o object code file.1.

If the argument ends in .s, it's assembly language; assemble into a .o file.2.

If the argument ends in .o, do nothing; save for the linking step later.3.

If the argument ends in some other suffix, print an error message and exit. [7]

[7] For the purposes of this example. We know this isn't strictly true in real life.

4.

Link all .o object code files into an executable file called a.out. This file is usually renamed to something
more descriptive.

5.

Step 3 allows object code files that have already been compiled (or assembled) to be re-used to build other
executables. For example, an object code file that implements an interface to a CD-ROM drive could be useful in
any program that reads from CD-ROMS.

Figure 5.1 should make the compilation process clearer; it shows how the compiler processes the C source files
a.c and b.c, the assembly language file c.s, and the already-compiled object code file d.o. In other words, it shows
how the compiler handles the command cc a.c b.c c.s d.o.

Figure 5.1: Files produced by a C compiler

Here is how we would begin to implement this behavior in a shell script. Assume that the variable filename holds
the argument in question, and that ccom is the name of the program that actually compiles a C source file into
object code. Assume further that ccom and as (assembler) take arguments for the names of the source and object
files:

if [[$filename = *.c]]; then
 objname=${filename%.c}.o
 ccom $filename $objname
elif [[$filename = *.s]]; then
 objname=${filename%.s}.o

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (9 of 13) [2/8/2001 4:55:24 PM]

 as $filename $objname
elif [[$filename != *.o]]; then
 print "error: $filename is not a source or object file."
 return 1
fi
further processing...

Recall from the previous chapter that the expression ${filename%.c}.o deletes .c from filename and appends .o;
${filename%.s}.o does the analogous thing for files ending in .s.

The "further processing" is the link step, which we will see when we complete this example later in the chapter.

5.1.3.3 File Attribute Checking

The other kind of operator that can be used in conditional expressions checks a file for certain properties. There
are 21 such operators. We will cover those of most general interest here; the rest refer to arcana like sticky bits,
sockets, and file descriptors, and thus are of interest only to systems hackers. Refer to Appendix B, Reference
Lists for the complete list. Table 5.2 lists those that we will examine.

Table 5.2: File Attribute Operators
Operator True if...
-a file file exists
-d file file is a directory
-f file file is a regular file (i.e., not a directory or other special type of file)
-r file You have read permission on file
-s file file exists and is not empty
-w file You have write permission on file
-x file You have execute permission on file, or directory search permission if it is a directory
-O file You own file
-G file Your group ID is the same as that of file
file1 -nt file2 file1 is newer than file2[8]
file1 -ot file2 file1 is older than file2

[8] Specifically, the -nt and -ot operators compare modification times of two files.

Before we get to an example, you should know that conditional expressions inside [[and]] can also be combined
using the logical operators && and ||, just as we saw with plain shell commands above, in the section entitled
"Combinations of Exit Statuses." It's also possible to combine shell commands with conditional expressions using
logical operators, like this:

if command && [[condition]]; then
 ...

Chapter 7 contains an example of this combination.

You can also negate the truth value of a conditional expression by preceding it with an exclamation point (!), so
that ! expr evaluates to true only if expr is false. Furthermore, you can make complex logical expressions of
conditional operators by grouping them with parentheses. [9]

[9] It turns out that this is true outside of the [[/]] construct as well. As we will see in Chapter 8,
Process Handling the construct (statement list) runs the statement list in a subshell, whose exit status
is that of the last statement in the list. However, there is no equivalent of the negation (!) operator

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (10 of 13) [2/8/2001 4:55:24 PM]

outside of the [[/]] construct, although there will be in future releases.

Here is how we would use two of the file operators to embellish (yet again) our pushd function. Instead of having
cd determine whether the argument given is a valid directory-i.e., by returning with a bad exit status if it's not-we
can do the checking ourselves. Here is the code:

function pushd { # push current directory onto stack
 dirname=$1
 if [[-d $dirname && -x $dirname]]; then
 cd $dirname
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print "$DIRSTACK"
 else
 print "still in $PWD."
 fi
}

The conditional expression evaluates to true only if the argument $1 is a directory (-d) and the user has
permission to change to it (-x). [10] Notice that this conditional also handles the case where the argument is
missing: $dirname is null, and since the null string isn't a valid directory name, the conditional will fail.

[10] Remember that the same permission flag that determines execute permission on a regular file
determines search permission on a directory. This is why the -x operator checks both things
depending on file type.

Here is a more comprehensive example of the use of file operators.

Task 5.1

Write a script that prints essentially the same information as ls -l but in a more user-friendly way.

Although this task requires relatively long-winded code, it is a straightforward application of many of the file
operators:

if [[! -a $1]]; then
 print "file $1 does not exist."
 return 1
fi
if [[-d $1]]; then
 print -n "$1 is a directory that you may "
 if [[! -x $1]]; then
 print -n "not "
 fi
 print "search."
elif [[-f $1]]; then
 print "$1 is a regular file."
else
 print "$1 is a special type of file."
fi
if [[-O $1]]; then
 print 'you own the file.'
else
 print 'you do not own the file.'

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (11 of 13) [2/8/2001 4:55:24 PM]

fi
if [[-r $1]]; then
 print 'you have read permission on the file.'
fi
if [[-w $1]]; then
 print 'you have write permission on the file.'
fi
if [[-x $1 && ! -d $1]]; then
 print 'you have execute permission on the file.'
fi

We'll call this script fileinfo. Here's how it works:

The first conditional tests if the file given as argument does not exist (the exclamation point is the "not"
operator; the spaces around it are required). If the file does not exist, the script prints an error message and
exits with error status.

●

The second conditional tests if the file is a directory. If so, the first print prints part of a message; remember
that the -n option tells print not to print a LINEFEED at the end. The inner conditional checks if you do not
have search permission on the directory. If you don't have search permission, the word "not" is added to the
partial message. Then, the message is completed with "search." and a LINEFEED.

●

The elif clause checks if the file is a regular file; if so, it prints a message.●

The else clause accounts for the various special file types on recent UNIX systems, such as sockets,
devices, FIFO files, etc. We assume that the casual user isn't interested in details of these.

●

The next conditional tests to see if the file is owned by you (i.e., if its owner ID is the same as your login
ID). If so, it prints a message saying that you own it.

●

The next two conditionals test for your read and write permission on the file.●

The last conditional checks if you can execute the file. It checks to see if you have execute permission and
that the file is not a directory. (If the file were a directory, execute permission would really mean directory
search permission.)

●

As an example of fileinfo's output, assume that you do an ls -l of your current directory and it contains these lines:

-rwxr-xr-x 1 billr other 594 May 28 09:49 bob
-rw-r-r- 1 billr other 42715 Apr 21 23:39 custom.tbl
drwxr-xr-x 2 billr other 64 Jan 12 13:42 exp
-r-r-r- 1 root other 557 Mar 28 12:41 lpst

custom.tbl and lpst are regular text files, exp is a directory, and bob is a shell script. Typing fileinfo bob produces
this output:

bob is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.
you have execute permission on the file.

Typing fileinfo custom.tbl results in this:

custom.tbl is a regular file.
you own the file.

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (12 of 13) [2/8/2001 4:55:24 PM]

you have read permission on the file.
you have write permission on the file.

Typing fileinfo exp results in this:

exp is a directory that you may search.
you own the file.
you have read permission on the file.
you have write permission on the file.

Finally, typing fileinfo lpst produces this:

lpst is a regular file.
you do not own the file.
you have read permission on the file.

Chapter 7 contains an example of the -nt test operator.

5.1.4 Integer Conditionals

The shell also provides a set of arithmetic tests. These are different from character string comparisons like < and
>, which compare lexicographic values of strings, not numeric values. For example, "6" is greater than "57"
lexicographically, just as "p" is greater than "ox," but of course the opposite is true when they're compared as
integers.

The integer comparison operators are summarized in Table 5.3. FORTRAN programmers will find their syntax
slightly familiar.

Table 5.3: Arithmetic Test
Operators

Test Comparison
-lt Less than
-le Less than or equal
-eq Equal
-ge Greater than or equal
-gt Greater than
-ne Not equal

You'll find these to be of the most use in the context of the integer variables we'll see in the next chapter. They're
necessary if you want to combine integer tests with other types of tests within the same conditional expression.

However, the shell has a separate syntax for conditional expressions that involve integers only. It's considerably
more efficient, so you should use it in preference to the arithmetic test operators listed above. Again, we'll cover
the shell's integer conditionals in the next chapter.

4.5 Advanced Examples:
pushd and popd

5.2 for

[Chapter 5] Flow Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_01.htm (13 of 13) [2/8/2001 4:55:24 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 5
Flow Control

5.2 for
The most obvious enhancement we could make to the previous script is the ability to report on multiple files instead of just one.
Tests like -a and -d only take single arguments, so we need a way of calling the code once for each file given on the command
line.

The way to do this-indeed, the way to do many things with the Korn shell-is with a looping construct. The simplest and most
widely applicable of the shell's looping constructs is the for loop. We'll use for to enhance fileinfo soon.

The for loop allows you to repeat a section of code a fixed number of times. During each time through the code (known as an
iteration), a special variable called a loop variable is set to a different value; this way each iteration can do something slightly
different.

The for loop is somewhat, but not entirely, similar to its counterparts in conventional languages like C and Pascal. The chief
difference is that the shell's for loop doesn't let you specify a number of times to iterate or a range of values over which to iterate;
instead, it only lets you give a fixed list of values. In other words, you can't do anything like this Pascal-type code, which
executes statements 10 times:

for x := 1 to 10 do
begin
 statements...
end

(You need the while construct, which we'll see soon, to construct this type of loop. You also need the ability to do integer
arithmetic, which we will see in Chapter 6, Command-line Options and Typed Variables.)

However, the for loop is ideal for working with arguments on the command line and with sets of files (e.g., all files in a given
directory). We'll look at an example of each of these. But first, we'll show the syntax for the for construct:

for name [in list]
do
 statements that can use $name...
done

The list is a list of names. (If in list is omitted, the list defaults to "$@", i.e., the quoted list of command-line arguments, but
we'll always supply the in list for the sake of clarity.) In our solutions to the following task, we'll show two simple ways to
specify lists.

Task 5.2

You work in an environment with several computers in a local network. Write a shell script that tells you who is
logged in to each machine on the network.

The command finger(1) can be used (among other things) to find the names of users logged into a remote system; the command
finger @systemname does this. Its output depends on the version of UNIX, but it looks something like this:

[motet.early.com]
Trying 127.146.63.17...
-User- -Full name- -What- Idle TTY -Console Location-
hildy Hildegard von Bingen ksh 2d5h p1 jem.cal (Telnet)

[Chapter 5] 5.2 for

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_02.htm (1 of 5) [2/8/2001 4:55:34 PM]

mikes Michael Schultheiss csh 1:21 r4 ncd2.cal (X display 0)
orlando Orlando di Lasso csh 28 r7 maccala (Telnet)
marin Marin Marais mush 1:02 pb mussell.cal (Telnet)
johnd John Dowland tcsh 17 p0 nugget.west.nobis. (X Window)

In this output, motet.early.com is the full network name of the remote machine.

Assume the systems in your network are called fred, bob, dave, and pete. Then the following code would do the trick:

for sys in fred bob dave pete
do
 finger @$sys
 print
done

This works no matter which of the systems you are currently logged into. It prints output for each machine similar to the above,
with blank lines in between.

A slightly better solution would be to store the names of the systems in an environment variable. This way, if systems are added
to your network and you need a list of their names in more than one script, you need change them in only one place. If a
variable's value is several words separated by blanks (or TABS), for will treat it as a list of words.

Here is the improved solution. First, put lines in your .profile or environment file that define the variable SYSNAMES and make
it an environment variable:

SYSNAMES="fred bob dave pete"
export SYSNAMES

Then, the script can look like this:

for sys in $SYSNAMES
do
 finger @$sys
 print
done

The foregoing illustrated a simple use of for, but it's much more common to use for to iterate through a list of command-line
arguments. To show this, we can enhance the fileinfo script above to accept multiple arguments. First, we write a bit of "wrapper"
code that does the iteration:

for filename in "$@" ; do
 finfo $filename
 print
done

Next, we make the original script into a function called finfo: [11]

function finfo {
 if [[! -a $1]]; then
 print "file $1 does not exist."
 return 1
 fi
 ...
}

[11] A function can have the same name as a script; however, this isn't good programming practice.

The complete script consists of the for loop code and the above function, in either order; good programming style dictates that
the function definition should go first.

The fileinfo script works as follows: in the for statement, "$@" is a list of all positional parameters. For each argument, the body
of the loop is run with filename set to that argument. In other words, the function fileinfo is called once for each value of
$filename as its first argument ($1). The call to print after the call to fileinfo merely prints a blank line between sets of
information about each file.

[Chapter 5] 5.2 for

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_02.htm (2 of 5) [2/8/2001 4:55:34 PM]

Given a directory with the same files as the previous example, typing fileinfo * would produce the following output:

bob is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.
you have execute permission on the file.

custom.tbl is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.

exp is a directory that you may search.
you own the file.
you have read permission on the file.
you have write permission on the file.

lpst is a regular file.
you do not own the file.
you have read permission on the file.

Here is a programming task that exploits the other major use of for.

Task 5.3

Your UNIX system has the ability to transfer files from an MS-DOS system, but it leaves the DOS filenames intact.
Write a script that translates the filenames in a given directory from DOS format to a more UNIX-friendly format.

DOS filenames have the format FILENAME.EXT. FILENAME can be up to eight characters long; EXT is an extension that can be
up to three characters. The dot is required even if the extension is null; letters are all uppercase. We want to do the following:

Translate letters from uppercase to lowercase.1.

If the extension is null, remove the dot.2.

The first tool we will need for this job is the UNIX tr(1) utility, which translates characters on a one-to-one basis. Given the
arguments charset1 and charset2, it will translate characters in the standard input that are members of charset1 into
corresponding characters in charset2. The two sets are ranges of characters enclosed in square brackets ([] in standard
regular-expression form in the manner of grep, awk, ed, etc.). More to the point, tr [A-Z] [a-z] takes its standard input, converts
uppercase letters to lowercase, and writes the converted text to the standard output.

That takes care of the first step in the translation process. We can use a Korn shell string operator to handle the second. Here is
the code for a script we'll call dosmv:

for filename in ${1:+$1/}* ; do
 newfilename=$(print $filename | tr [A-Z] [a-z])
 newfilename=${newfilename%.}
 print "$filename -> $newfilename"
 mv $filename $newfilename
done

The * in the for construct is not the same as $*. It's a wildcard, i.e., all files in a directory.

This script accepts a directory name as argument, the default being the current directory. The expression ${1:+$1/} evaluates to
the argument ($1) with a slash appended if the argument is supplied, or the null string if it isn't supplied. So the entire expression
${1:+$1/}* evaluates to all files in the given directory, or all files in the current directory if no argument is given.

Therefore, filename takes on the value of each filename in the list. filename gets translated into newfilename in two steps. (We
could have done it in one, but readability would have suffered.) The first step uses tr in a pipeline within a command substitution
construct. Our old friend print makes the value of filename the standard input to tr. tr's output becomes the value of the

[Chapter 5] 5.2 for

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_02.htm (3 of 5) [2/8/2001 4:55:34 PM]

command substitution expression, which is assigned to newfilename. Thus, if $filename were DOSFILE.TXT, newfilename
would become dosfile.txt.

The second step uses one of the shell's pattern-matching operators, the one that deletes the shortest match it finds at the end of the
string. The pattern here is ., which means a dot at the end of the string. [12] This means that the expression ${newfilename%.}
will delete a dot from $newfilename only if it's at the end of the string; otherwise the expression will leave $newfilename intact.
For example, if $newfilename is dosfile.txt, it will be untouched, but if it's dosfile., the expression will change it to dosfile
without the final dot. In either case, the new value is assigned back to newfilename.

[12] UNIX regular expression mavens should remember that this is shell wildcard syntax, in which dots are not
operators and therefore do not need to be backslash-escaped.

The last statement in the for loop body does the file renaming with the standard UNIX mv(1) command. Before that, a print
command simply informs the user of what's happening.

There is one little problem with the solution on the previous page: if there are any files in the given directory that aren't DOS
files (in particular, if there are files whose names don't contain uppercase letters and don't contain a dot), then the conversion will
do nothing to those filenames and mv will be called with two identical arguments. mv will complain with the message: mv:
filename and filename are identical. We can solve this problem by letting grep determine whether each file has a DOS filename
or not. The grep regular expression:

[^a-z]\{1,8\}\.[^a-z]\{0,3\}

is adequate (for these purposes) for matching DOS-format filenames. [13] The character class [^a-z] means "any character except
a lowercase letter." [14] So the entire regular expression means: "Between 1 and 8 non-lowercase letters, followed by a dot,
followed by 0 to 3 non-lowercase letters."

[13] As with the lsd function in Chapter 4, Basic Shell Programming older BSD-derived versions of UNIX don't
support the "repeat count" operator within grep. You must use this instead:

[^a-z][^a-z]?[^a-z]?[^a-z]?[^a-z]?[^a-z]?[^a-z]?[^a-z]?\.[^a-z]?[^a-z]?[^a-z]?

[14] To be completely precise, this class also excludes NEWLINEs.

When grep runs, it normally prints all of the lines in its standard input that match the pattern you give it as argument. But we
only need it to test whether or not the pattern is matched. Luckily, grep's exit status is "well-behaved": it's 0 if there is a match in
the input, 1 if not. Therefore, we can use the exit status to test for a match. We also need to discard grep's output; to do this, we
redirect it to the special file /dev/null, which is colloquially known as the "bit bucket." [15] Any output directed to /dev/null
effectively disappears. Thus, the command line:

print "$filename" | grep '[^a-z]\{1,8\}\.[^a-z]\{0,3\}' > /dev/null

[15] Some Berkeley-derived versions of UNIX have a -s ("silent") option to grep that suppresses standard output,
thereby making redirection to /dev/null unnecessary.

prints nothing and returns exit status 0 if the filename is in DOS format, 1 if not.

Now we can modify our dosmv script to incorporate this code:

dos_regexp='[^a-z]\{1,8\}\.[^a-z]\{0,3\}'
for filename in ${1:+$1/}* ; do
if print $filename | grep $dos_regexp > /dev/null; then
newfilename=$(print $filename | tr [A-Z] [a-z])
newfilename=${newfilename%.}
print "$filename -> $newfilename"
mv $filename $newfilename
fi
done

For readability reasons, we use the variable dos_regexp to hold the DOS filename-matching regular expression.

If you are familiar with an operating system other than DOS and UNIX, you may want to test your script-writing prowess at this
point by writing a script that translates filenames from that system's format into UNIX format. Use the above script as a
guideline.

[Chapter 5] 5.2 for

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_02.htm (4 of 5) [2/8/2001 4:55:34 PM]

In particular, if you know DEC's VAX/VMS operating system, here's a programming challenge:

Write a script called vmsmv that is similar to dosmv but works on VAX/VMS filenames instead of DOS filenames.
Remember that VAX/VMS filenames end with semicolons and version numbers.

1.

Modify your script so that if there are several versions of the same file, it renames only the latest version (with the highest
version number).

2.

Modify further so that your script erases old versions of files.3.

The first of these is a relatively straightforward modification of dosmv. Number 2 is difficult; here's a strategy hint:

Develop a regular expression that matches VAX/VMS filenames (you need this for No. 1 anyway).●

Get a list of base names (sans version numbers) of files in the given directory by piping ls through grep (with the above
regular expression), cut, and sort -u. Use cut with a semicolon as "field separator"; make sure that you quote the semicolon
so that the shell doesn't treat it as a statement separator. sort -u removes duplicates after sorting. Use command substitution
to save the resulting list in a variable.

●

Use a for loop on the list of base names. For each name, get the highest version number of the file (just the number, not the
whole name). Do this with another pipeline: pipe ls through cut, sort -n, and tail -1. sort -n sorts in numerical (not
lexicographical) order; tail -N outputs the last N lines of its input. Again, use command substitution to capture the output
of this pipeline in a variable.

●

Append the highest version number to the base name; this is the file to rename in UNIX format.●

Once you have completed No. 2, you can do No. 3 by adding a single line of code to your script; see if you can figure out how.

5.1 if/else 5.3 case

[Chapter 5] 5.2 for

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_02.htm (5 of 5) [2/8/2001 4:55:34 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 5
Flow Control

5.3 case
The next flow control construct we will cover is case. While the case statement in Pascal and the similar
switch statement in C can be used to test simple values like integers and characters, the Korn shell's case
construct lets you test strings against patterns that can contain wildcard characters. Like its conventional
language counterparts, case lets you express a series of if-then-else type statements in a concise way.

The syntax of case is as follows:

case expression in
 pattern1)
 statements ;;
 pattern2)
 statements ;;
 ...
esac

Any of the patterns can actually be several patterns separated by pipe characters (|). If expression matches
one of the patterns, its corresponding statements are executed. If there are several patterns separated by pipe
characters, the expression can match any of them in order for the associated statements to be run. The
patterns are checked in order until a match is found; if none is found, nothing happens.

This rather ungainly syntax should become clearer with an example. An obvious choice is to revisit our
solution to Task 4-2, the front-end for the C compiler. Earlier in this chapter, we wrote some code, that
processed input files according to their suffixes (.c .s, or .o for C, assembly, or object code, respectively).

We can improve upon this solution in two ways. First, we can use for to allow multiple files to be processed
at one time; second, we can use case to streamline the code:

for filename in $*; do
 case $filename in
 *.c)
 objname=${filename%.c}.o
 ccom $filename $objname ;;
 *.s)
 objname=${filename%.s}.o
 as $filename $objname ;;
 *.o) ;;
 *)

[Chapter 5] 5.3 case

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_03.htm (1 of 4) [2/8/2001 4:55:37 PM]

 print "error: $filename is not a source or object file."
 return 1 ;;
 esac
done

The case construct in this code handles four cases. The first two are similar to the if and first elif cases in
the code earlier in this chapter; they call the compiler or the assembler if the filename ends in .c or .s
respectively.

After that, the code is a bit different. Recall that if the filename ends in .o nothing is to be done (on the
assumption that the relevant files will be linked later). If the filename does not end in .o there is an error.
We handle this with the case *.o), which has no statements. There is nothing wrong with a "case" for
which the script does nothing.

The final case is *, which is a catchall for whatever didn't match the other cases. (In fact, a * case is
analogous to a default case in C and an otherwise case in some Pascal-derived languages.)

The surrounding for loop processes all command-line arguments properly. This leads to a further
enhancement: now that we know how to process all arguments, we should be able to write the code that
passes all of the object files to the linker (the program ld) at the end. We can do this by building up a string
of object file names, separated by spaces, and hand that off to the linker when we've processed all of the
input files. We initialize the string to null and append an object file name each time one is created, i.e.,
during each iteration of the for loop. The code for this is simple, requiring only minor additions:

objfiles=""
for filename in $*; do
 case $filename in
 *.c)
 objname=${filename%.c}.o
 ccom $filename $objname ;;
 *.s)
 objname=${filename%.s}.o
 as $filename $objname ;;
 *.o)
 objname=$filename ;;
 *)
 print "error: $filename is not a source or object file."
 return 1 ;;
 esac
 objfiles="$objfiles $objname"
done
ld $objfiles

The first line in this version of the script initializes the variable objfiles to null. [16] We added a line of
code in the *.o case to set objname equal to $filename, because we already know it's an object file. Thus,
the value of objname is set in every case-except for the error case, in which the routine prints a message
and bails out.

[16] This isn't strictly necessary, because all variables are assumed to be null if not explicitly
initialized (unless the nounset option is turned on). It just makes the code easier to read.

[Chapter 5] 5.3 case

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_03.htm (2 of 4) [2/8/2001 4:55:37 PM]

The last line of code in the for loop body appends a space and the latest $objname to objfiles. Calling this
script with the same arguments as in Figure 5.1 would result in $objfiles being equal to " a.o b.o c.o d.o"
when the for loop finishes (the leading space doesn't matter). This list of object filenames is given to ld as a
single argument, but the shell divides it up into multiple file names properly.

We'll return to this example once more in Chapter 6 when we discuss how to handle dash options on the
command line. Meanwhile, here is a new task whose initial solution will use case.

Task 5.4

You are a system administrator,[17] and you need to set up the system so that users' TERM
environment variables reflect correctly what type of terminal they are on. Write some code that
does this.

[17] Our condolences.

The code for the solution to this task should go into the file /etc/profile, which is the master startup file that
is run for each user before his or her .profile.

For the time being, we will assume that you have a traditional mainframe-style setup, in which terminals are
hard-wired to the computer. This means that you can determine which (physical) terminal is being used by
the line (or tty) it is on. This is typically a name like /dev/ttyNN, where NN is the line number. You can find
your tty with the command tty(1), which prints it on the standard output.

Let's assume that your system has ten lines plus a system console line (/dev/console), with the following
terminals:

Lines tty01, tty03, and tty04 are Givalt GL35a's (terminfo name "gl35a").●

Line tty07 is a Tsoris T-2000 ("t2000").●

Line tty08 and the console are Shande 531s ("s531").●

The rest are Vey VT99s ("vt99").●

Here is the code that does the job:

case $(tty) in
 /dev/tty0[134]) TERM=gl35a ;;
 /dev/tty07) TERM=t2000 ;;
 /dev/tty08 | /dev/console) TERM=s531 ;;
 *) TERM=vt99 ;;
esac

The value that case checks is the result of command substitution. Otherwise, the only thing new about this
code is the pipe character after /dev/tty08. This means that /dev/tty08 and /dev/console are alternate patterns
for the case that sets TERM to "s531".

Note that it is not possible to put alternate patterns on separate lines unless you use backslash continuation
characters at the end of all but the last line, i.e., the line:

/dev/tty08 | /dev/console) TERM=s531 ;;

[Chapter 5] 5.3 case

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_03.htm (3 of 4) [2/8/2001 4:55:37 PM]

could be changed to the slightly more readable:

/dev/tty08 | \
 /dev/console) TERM=s531 ;;

The backslash must be at the end of the line. If you omit it, or if there are characters (even blanks) following
it, the shell complains with a syntax error message.

This problem is actually better solved using a file that contains a table of lines and terminal types. We'll see
how to do it this way in Chapter 7.

5.2 for 5.4 select

[Chapter 5] 5.3 case

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_03.htm (4 of 4) [2/8/2001 4:55:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 5
Flow Control

5.4 select
All of the flow-control constructs we have seen so far are also available in the Bourne shell, and the C
shell has equivalents with different syntax. Our next construct, select, is new for the Korn shell;
moreover, it has no analog in conventional programming languages.

select allows you to generate simple menus easily. It has concise syntax, but it does quite a lot of work.
The syntax is:

select name [in list]
do
 statements that can use $name...
done

This is the same syntax as for except for the keyword select. And like for, you can omit the in list and it
will default to "$@", i.e., the list of quoted command-line arguments.

Here is what select does:

Generates a menu of each item in list, formatted with numbers for each choice●

Prompts the user for a number●

Stores the selected choice in the variable name and the selected number in the built-in variable
REPLY

●

Executes the statements in the body●

Repeats the process forever (but see below for how to exit)●

Once again, an example should help make this process clearer. Assume you need to write the code for
Task 5-4, but your life is not as simple. You don't have terminals hardwired to your computer; instead,
your users communicate through a terminal server. This means, among other things, that the tty number
does not determine the type of terminal.

Therefore, you have no choice but to prompt the user for his or her terminal type at login time. To do
this, you can put the following code in /etc/profile (assume you have the same choice of terminal types):

PS3='terminal? '
select term in gl35a t2000 s531 vt99; do

[Chapter 5] 5.4 select

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_04.htm (1 of 3) [2/8/2001 4:55:39 PM]

 if [[-n $term]]; then
 TERM=$term
 print TERM is $TERM
 break
 else
 print 'invalid.'
 fi
done

If you run this code, you will see this menu:

1) gl35a
2) t2000
3) s531
4) vt99
terminal?

The built-in shell variable PS3 contains the prompt string that select uses; its default value is the not
particularly useful "#? ". So the first line of the above code sets it to a more relevant value.

The select statement constructs the menu from the list of choices. If the user enters a valid number (from
1 to 4), then the variable term is set to the corresponding value; otherwise it is null. (If the user just
presses RETURN, the shell prints the menu again.)

The code in the loop body checks if term is non-null. If so, it assigns $term to the environment variable
TERM and prints a confirmation message; then the break statement exits the select loop. If term is null,
the code prints an error message and repeats the prompt (but not the menu).

The break statement is the usual way of exiting a select loop. Actually (like its analog in C), it can be
used to exit any surrounding control structure we've seen so far (except case, where the
double-semicolons act like break) as well as the while and until we will see soon. We haven't introduced
break until now because it is considered bad coding style to use it to exit a loop. However, it is necessary
for exiting select when the user makes a valid choice. [18]

[18] A user can also type [CTRL-D] (for end-of-input) to get out of a select loop. This gives
the user a uniform way of exiting, but it doesn't help the shell programmer much.

Let's refine our solution by making the menu more user-friendly, so that the user doesn't have to know
the terminfo name of his or her terminal. We do this by using quoted character strings as menu items and
then using case to determine the termcap name:

print 'Select your terminal type:'
PS3='terminal? '
select term in \
 'Givalt GL35a' \
 'Tsoris T-2000' \
 'Shande 531' \
 'Vey VT99'
do
 case $REPLY in

[Chapter 5] 5.4 select

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_04.htm (2 of 3) [2/8/2001 4:55:39 PM]

 1) TERM=gl35a ;;
 2) TERM=t2000 ;;
 3) TERM=s531 ;;
 4) TERM=vt99 ;;
 *) print 'invalid.' ;;
 esac
 if [[-n $term]]; then
 print TERM is $TERM
 break
 fi
done

This code looks a bit more like a menu routine in a conventional program, though select still provides the
shortcut of converting the menu choices into numbers. We list each of the menu choices on its own line
for reasons of readability, but once again we need continuation characters to keep the shell from
complaining about syntax.

Here is what the user will see when this code is run:

Select your terminal type:
1) Givalt GL35a
2) Tsoris T-2000
3) Shande 531
4) Vey VT99
terminal?

This is a bit more informative than the previous code's output.

When the body of the select loop is entered, $term equals one of the four strings (or is null if the user
made an invalid choice), while the built-in variable REPLY contains the number the user selects. We
need a case statement to assign the correct value to TERM; we use the value of REPLY as the case
selector.

Once the case statement is finished, the if checks to see if a valid choice was made, as in the previous
solution. If the choice was valid, then TERM has already been assigned, so the code just prints a
confirmation message and exits the select loop. If it wasn't valid, the select loop repeats the prompt and
goes through the process again.

5.3 case 5.5 while and until

[Chapter 5] 5.4 select

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_04.htm (3 of 3) [2/8/2001 4:55:39 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 5
Flow Control

5.5 while and until
The remaining two flow control constructs the Korn shell provides are while and until. These are
similar; they both allow a section of code to be run repetitively while (or until) a certain condition holds
true. They also resemble analogous constructs in Pascal (while/do and repeat/until) and C (while and
do/until).

while and until are actually most useful when combined with features we will see in the next chapter,
such as integer arithmetic, input/output of variables, and command-line processing. Yet we can show a
useful example even with the machinery we have covered so far.

The syntax for while is:

while condition
do
 statements...
done

For until, just substitute until for while in the above example. As with if, the condition is really a list of
statements that are run; the exit status of the last one is used as the value of the condition. You can use a
conditional with [[and]] here, just as you can with if.

Note that the only difference between while and until is the way the condition is handled. In while, the
loop executes as long as the condition is true; in until, it runs as long as the condition is false. So far, so
familiar. BUT: the until condition is checked at the top of the loop, not at the bottom as it is in analogous
constructs in C and Pascal.

The result is that you can convert any until into a while by simply negating the condition. The only place
where until might be better is something like this:

until command; do
 statements...
done

The meaning of this is essentially, "Do statements until command runs correctly." This is not, in our
opinion, a likely contingency. Therefore we will use while throughout the rest of this book.

Here is a task that is a good candidate for while.

[Chapter 5] 5.5 while and until

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_05.htm (1 of 4) [2/8/2001 4:55:41 PM]

Task 5.5

Implement a simplified version of the shell's built-in whence command.

By "simplified," we mean that we will implement only the part that checks all of the directories in your
PATH for the command you give as argument (we won't implement checking for aliases, built-in
commands, etc.).

We can do this by picking off the directories in PATH one by one, using one of the shell's
pattern-matching operators, and seeing if there is a file with the given name in the directory that you have
permission to execute. Here is the code:

path=$PATH:
dir=${path%%:*}
while [[-n $path]]; do
 if [[-x $dir/$1 && ! -d $dir/$1]]; then
 print "$dir/$1"
 return
 fi
 path=${path#*:}
 dir=${path%%:*}
done
return 1

The first line of this code saves $PATH in path, our own temporary copy. We append a colon to the end
so that every directory in $path ends in a colon (in $PATH, colons are used only between directories);
subsequent code depends on this being the case.

The next line picks the first directory off of $path by using the operator that deletes the longest match to
the pattern given. In this case, we delete the longest match to the pattern :*, i.e., a colon followed by
anything. This gives us the first directory in $path, which we store in the variable dir.

The condition in the while loop checks if $path is non-null. If it is not null, it constructs the full
pathname $dir/$1 and sees if there is a file by that name for which you have execute permission (and that
is not a directory). If so, it prints the full pathname and exits the routine with a 0 ("OK") exit status.

If a file is not found, then this code is run:

path=${path#*:}
dir=${path%%:*}

The first of these uses another shell string operator: this one deletes the shortest match to the pattern
given from the front of the string. By now, this type of operator should be familiar. This line deletes the
front directory from $path and assigns the result back to path. The second line is the same as before the
while: it finds the (new) front directory in $path and assigns it to dir. This sets up the loop for another
iteration.

Thus, the code loops through all of the directories in PATH. It exits when it finds a matching executable
file or when it has "eaten up" the entire PATH. If no matching executable file is found, it prints nothing
and exits with an error status.

[Chapter 5] 5.5 while and until

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_05.htm (2 of 4) [2/8/2001 4:55:41 PM]

We can enhance this script a bit by taking advantage of the UNIX utility file(1). file examines files given
as arguments and determines what type they are, based on the file's magic number and various heuristics
(educated guesses). A magic number is a field in the header of an executable file that the linker sets to
identify what type of executable it is.

If filename is an executable program (compiled from C or some other language), then typing file
filename produces output similar to this:

filename: ELF 32-bit LSB executable 80386 Version 1

However, if filename is not an executable program, it will examine the first few lines and try to guess
what kind of information the file contains. If the file contains text (as opposed to binary data), file will
look for indications that it is English, shell commands, C, FORTRAN, troff(1) input, and various other
things. file is wrong sometimes, but it is mostly correct.

We can just substitute file for print to print a more informative message in our script:

path=$PATH
dir=${path%%:*}
while [[-n $path]]; do
 if [[-x $dir/$1 && ! -d $dir/$1]]; then
 file $dir/$1
 return
 fi
 path=${path#*:}
 dir=${path%%:*}
done
return 1

Assume that fred is an executable file in the directory /usr/bin, and that bob is a shell script in
/usr/local/bin. Then typing file fred produces this output:

/usr/bin/fred: ELF 32-bit LSB executable 80386 Version 1

And typing file bob has this result:

/usr/local/bin/bob: commands text

Before we end this chapter, we have two final notes. First, notice that the statement dir=${path%%:*}
appears in two places, before the start of the loop and as the last statement in the loop's body. Some
diehard C hackers are offended by this Pascal-like coding technique. Certain features of the C language
allow programmers to create loops of the form:

while iterative-step; condition; do
 ...
done

This is the same as the form of the script above: the iterative-step runs just before the condition each time
around the loop.

We can write our script this way:

path=$PATH

[Chapter 5] 5.5 while and until

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_05.htm (3 of 4) [2/8/2001 4:55:41 PM]

while dir=${path%%:*}; [[-n $path]]; do
 if [[-x $dir/$1 && ! -d $dir/$1]]; then
 file $dir/$1
 return
 fi
 path=${path#*:}
done
return 1

Although this example doesn't show great programming style, it does make the code smaller-hence its
popularity with C programmers. Make sure you understand that our script is functionally identical to the
previous script.

Finally, just to show how little difference there is between while and until, we note that the line

until [[! -n $path]]; do

can be used in place of

while [[-n $path]]; do

with identical results.

We'll see additional examples of while in the next chapter.

5.4 select 6. Command-line Options and
Typed Variables

[Chapter 5] 5.5 while and until

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch05_05.htm (4 of 4) [2/8/2001 4:55:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 6

6. Command-line Options and Typed
Variables
Contents:
Command-line Options
Integer Variables and Arithmetic
Arrays

You should have a healthy grasp of shell programming techniques now that you have gone through the
previous chapters. What you have learned up to this point enables you to write many nontrivial, useful shell
scripts and functions.

Still, you may have noticed some remaining gaps in the knowledge you need to write shell code that behaves
like the UNIX commands you are used to. In particular, if you are an experienced UNIX user, it might have
occurred to you that none of the example scripts shown so far have the ability to handle options (preceded by
a dash (-)) on the command line. And if you program in a conventional language like C or Pascal, you will
have noticed that the only type of data that we have seen in shell variables is character strings; we haven't
seen how to do arithmetic, for example.

These capabilities are certainly crucial to the shell's ability to function as a useful UNIX programming
language. In this chapter, we will show how the Korn shell supports these and related features.

6.1 Command-line Options
We have already seen many examples of the positional parameters (variables called 1, 2, 3, etc.) that the
shell uses to store the command-line arguments to a shell script or function when it runs. We have also seen
related variables like * (for the string of all arguments) and # (for the number of arguments).

Indeed, these variables hold all of the information on the user's command-line. But consider what happens
when options are involved. Typical UNIX commands have the form command [-options]args, meaning that
there can be 0 or more options. If a shell script processes the command fred bob pete, then $1 is "bob" and
$2 is "pete". But if the command is fred -o bob pete, then $1 is -o, $2 is "bob", and $3 is "pete".

You might think you could write code like this to handle it:

if [[$1 = -o]]; then
 code that processes the -o option

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (1 of 9) [2/8/2001 4:55:51 PM]

 1=$2
 2=$3
fi

normal processing of $1 and $2...

But this code has several problems. First, assignments like 1=$2 are illegal because positional parameters are
read-only. Even if they were legal, another problem is that this kind of code imposes limitations on how
many arguments the script can handle-which is very unwise. Furthermore, if this command had several
possible options, the code to handle all of them would get very messy very quickly.

6.1.1 shift

Luckily, the shell provides a way around this problem. The command shift performs the function of:

1=$2
2=$3
...

for every argument, regardless of how many there are. If you supply a numeric argument to shift, it will shift
the arguments that many times over; for example, shift 3 has this effect:

1=$4
2=$5
...

This leads immediately to some code that handles a single option (call it -o) and arbitrarily many arguments:

if [[$1 = -o]]; then
 process the -o option
 shift
fi

normal processing of arguments...

After the if construct, $1, $2, etc., are set to the correct arguments.

We can use shift together with the programming features we have seen so far to implement simple option
schemes. However, we will need additional help when things get more complex. The getopts built-in
command, which we will introduce later, provides this help.

shift by itself gives us enough power to implement the -N option to the highest script we saw in Chapter 4,
Basic Shell Programming (Task 4-1). Recall that this script takes an input file that lists artists and the number
of albums you have by them. It sorts the list and prints out the N highest numbers, in descending order. The
code that does the actual data processing is:

filename=$1
howmany=${2:-10}
sort -nr $filename | head -$howmany

Our original syntax for calling this script was highest filename [-N], where N defaults to 10 if omitted. Let's
change this to a more conventional UNIX syntax, in which options are given before arguments: highest [-N]
filename. Here is how we would write the script with this syntax:

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (2 of 9) [2/8/2001 4:55:51 PM]

if [[$1 = -+([0-9])]]; then
 howmany=$1
 shift
elif [[$1 = -*]]; then
 print 'usage: highest [-N] filename'
 return 1
else
 howmany="-10"
fi
filename=$1
sort -nr $filename | head $howmany

In this code, the option is considered to be supplied if $1 matches the pattern -+([0-9]). This uses one of the
Korn shell's regular expression operators, which we saw in Chapter 4. Notice that we didn't surround the
pattern with quotes (even double quotes); if we did, the shell would interpret it literally, not as a pattern. This
pattern means "A dash followed by one or more digits." If $1 matches, then we assign it to the variable
howmany.

If $1 doesn't match, we test to see if it's an option at all, i.e., if it matches the pattern -*. If it does, then it's
invalid; we print an error message and exit with error status. If we reach the final (else) case, we assume that
$1 is a filename and treat it as such in the ensuing code. The rest of the script processes the data as before.

We can extend what we have learned so far to a general technique for handling multiple options. For the sake
of concreteness, assume that our script is called bob and we want to handle the options -a, -b, and -c:

while [[$1 = -*]]; do
 case $1 in
 -a) process option -a ;;
 -b) process option -b ;;
 -c) process option -c ;;
 *) print 'usage: bob [-a] [-b] [-c] args...'
 return 1
 esac
 shift
done

normal processing of arguments...

This code checks $1 repeatedly as long as it starts with a dash (-). Then the case construct runs the
appropriate code depending on which option $1 is. If the option is invalid - i.e., if it starts with a dash but isn't
-a, -b, or -c - then the script prints a usage message and returns with an error exit status. After each option is
processed, the arguments are shifted over. The result is that the positional parameters are set to the actual
arguments when the while loop finishes.

Notice that this code is capable of handling options of arbitrary length, not just one letter (e.g., -fred instead
of -a).

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (3 of 9) [2/8/2001 4:55:51 PM]

6.1.2 Options with Arguments

We need to add one more ingredient to make option processing really useful. Recall that many commands
have options that take their own arguments. For example, the cut command, on which we relied heavily in
Chapter 4, accepts the option -d with an argument that determines the field delimiter (if it is not the default
TAB). To handle this type of option, we just use another shift when we are processing the option.

Assume that, in our bob script, the option -b requires its own argument. Here is the modified code that will
process it:

while [[$1 = -*]]; do
 case $1 in
 -a) process option -a ;;
 -b) process option -b
 $2 is the option's argument
 shift ;;
 -c) process option -c ;;
 *) print 'usage: bob [-a] [-b barg] [-c] args...'
 return 1
 esac
 shift
done

normal processing of arguments...

6.1.3 getopts

So far, we have a complete, though still constrained, way of handling command-line options. The above code
does not allow a user to combine arguments with a single dash, e.g., -abc instead of -a -b -c. It also doesn't
allow one to specify arguments to options without a space in between, e.g., -barg in addition to -b arg. [1]

[1] Although most UNIX commands allow this, it is actually contrary to the Command Syntax
Standard Rules in intro(1) of the User's Manual.

The shell provides a built-in way to deal with multiple complex options without these constraints. The
built-in command getopts [2] can be used as the condition of the while in an option-processing loop. Given a
specification of which options are valid and which require their own arguments, it sets up the body of the
loop to process each option in turn.

[2] getopts replaces the external command getopt(1), used in Bourne shell programming;
getopts is better integrated into the shell's syntax and runs more efficiently. C programmers will
recognize getopts as very similar to the standard library routine getopt(3).

getopts takes two arguments. The first is a string that can contain letters and colons. Each letter is a valid
option; if a letter is followed by a colon, the option requires an argument. getopts picks options off the
command line and assigns each one (without the leading dash) to a variable whose name is getopts' second
argument. As long as there are options left to process, getopts will return exit status 0; when the options are
exhausted, it returns exit status 1, causing the while loop to exit.

getopts does a few other things that make option processing easier; we'll encounter them as we examine how

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (4 of 9) [2/8/2001 4:55:51 PM]

to use getopts in the preceding example:

while getopts ":ab:c" opt; do
 case $opt in
 a) process option -a ;;
 b) process option -b
 $OPTARG is the option's argument ;;
 c) process option -c ;;
 \?) print 'usage: bob [-a] [-b barg] [-c] args...'
 return 1
 esac
done
shift $(($OPTIND - 1))

normal processing of arguments...

The call to getopts in the while condition sets up the loop to accept the options -a, -b, and -c, and specifies
that -b takes an argument. (We will explain the : that starts the option string in a moment.) Each time the loop
body is executed, it will have the latest option available, without a dash (-), in the variable opt.

If the user types an invalid option, getopts normally prints an unfortunate error message (of the form cmd:
getopts: o bad option(s)) and sets opt to ?. However-now here's an obscure kludge-if you begin the option
letter string with a colon, getopts won't print the message. [3] We recommend that you specify the colon and
provide your own error message in a case that handles ?, as above.

[3] Evidently this was deemed necessary because you can't redirect getopts' standard error
output to /dev/null; the result is (usually) a core dump.

We have modified the code in the case construct to reflect what getopts does. But notice that there are no
more shift statements inside the while loop: getopts does not rely on shifts to keep track of where it is. It is
unnecessary to shift arguments over until getopts is finished, i.e., until the while loop exits.

If an option has an argument, getopts stores it in the variable OPTARG, which can be used in the code that
processes the option.

The one shift statement left is after the while loop. getopts stores in the variable OPTIND the number of the
next argument to be processed; in this case, that's the number of the first (non-option) command-line
argument. For example, if the command line were bob -ab pete, then $OPTIND would be "2". If it were bob
-a -b pete, then $OPTIND would be "3".

The expression $(($OPTIND - 1)) is an arithmetic expression (as we'll see later in this chapter) equal to
$OPTIND minus 1. This value is used as the argument to shift. The result is that the correct number of
arguments are shifted out of the way, leaving the "real" arguments as $1, $2, etc.

Before we continue, now is a good time to summarize everything that getopts does:

Its first argument is a string containing all valid option letters. If an option requires an argument, a
colon follows its letter in the string. An initial colon causes getopts not to print an error message when
the user gives an invalid option.

1.

Its second argument is the name of a variable that will hold each option letter (without any leading
dash) as it is processed.

2.

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (5 of 9) [2/8/2001 4:55:51 PM]

If an option takes an argument, the argument is stored in the variable OPTARG.3.

The variable OPTIND contains a number equal to the next command-line argument to be processed.
After getopts is done, it equals the number of the first "real" argument.

4.

The advantages of getopts are that it minimizes extra code necessary to process options and fully supports
the standard UNIX option syntax (as specified in intro(1) of the User's Manual).

As a more concrete example, let's return to our C compiler front end (Task 4-2). So far, we have given our
script the ability to process C source files (ending in .c), assembly code files (.s), and object code files (.o).
Here is the latest version of the script:

objfiles=""
for filename in "$@"; do
 case $filename in
 *.c)
 objname=${filename%.c}.o
 compile $filename $objname ;;
 *.s)
 objname=${filename%.s}.o
 assemble $filename $objname ;;
 *.o)
 objname=$filename ;;
 *)
 print "error: $filename is not a source or object file."
 return 1 ;;
 esac
 objfiles="$objfiles $objname"
done
ld $objfiles

Now we can give the script the ability to handle options. To know what options we'll need, we'll have to
discuss further what compilers do.

6.1.3.1 More About C Compilers

The C compiler on a typical modern UNIX system (ANSI C on System V Release 4) has roughly 30 different
command-line options, but we'll limit ourselves to the most widely-used ones.

Here's what we'll implement. All compilers provide the ability to eliminate the final linking step, i.e., the call
to the linker ld. This is useful for compiling C code into object code files that will be linked later, and for
taking advantage of the compiler's error checking separately before trying to link. The -c option suppresses
the link step, producing only the compiled object code files.

C compilers are also capable of including lots of extra information in an object code file that can be used by a
debugger (though it is ignored by the linker and the running program). If you don't know what a debugger is,
see Chapter 9, Debugging Shell Programs. The debugger needs lots of information about the original C code
to be able to do its job; the option -g directs the compiler to include this information in its object-code output.

If you aren't already familiar with UNIX C compilers, you may have thought it strange when you saw in the

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (6 of 9) [2/8/2001 4:55:51 PM]

last chapter that the linker puts its output (the executable program) in a file called a.out. This convention is a
historical relic that no one has bothered to change. Although it's certainly possible to change the executable's
name with the mv command, the C compiler provides the option -o filename, which uses filename instead of
a.out.

Another option we will support here has to do with libraries. A library is a collection of object code, some of
which is to be included in the executable at link time. (This is in contrast to a precompiled object code file,
all of which is linked in.) Each library includes a large amount of object code that supports a certain type of
interface or activity; typical UNIX systems have libraries for things like networking, math functions, and
graphics.

Libraries are extremely useful as building blocks that help programmers write complex programs without
having to "reinvent the wheel" every time. The C compiler option -l name tells the linker to include whatever
code is necessary from the library name [4] in the executable it builds. One particular library called c (the file
libc.a) is always included. This is known as the C runtime library; it contains code for C's standard input and
output capability, among other things.

[4] This is actually a file called libname.a in a standard library directory such as /lib.

Finally, it is possible for a good C compiler to do certain things that make its output object code smaller and
more efficient. Collectively, these things are called optimization. You can think of an optimizer as an extra
step in the compilation process that looks back at the object-code output and changes it for the better. The
option -O invokes the optimizer.

Table 6.1 summarizes the options we will build into our C compiler front end.

Table 6.1: Popular C Compiler Options
Option Meaning
-c Produce object code only; do not invoke the linker
-g Include debugging information in object code files
-l lib Include the library lib when linking
-o exefile Produce the executable file exefile instead of the default a.out
-O Invoke the optimizer

You should also bear in mind this information about the options:

The options -o and -l lib are merely passed on to the linker (ld), which processes them on its own.●

The -l lib option can be used multiple times to link in multiple libraries.●

The -g option is passed to the ccom command (the program that does the actual C compilation).●

We will assume that the optimizer is a separate program called optimize that accepts an object file as
argument and optimizes it "in place," i.e., without producing a separate output file.

●

Here is the code for the script occ that includes option processing:

initialize option-related variables
do_link=true
debug=""
link_libs="-l c"
exefile=""

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (7 of 9) [2/8/2001 4:55:51 PM]

opt=false

process command-line options
while getopts ":cgl:o:O" opt; do
 case $opt in
 c) do_link=false ;;
 g) debug="-g" ;;
 l) link_libs="$link_libs -l $OPTARG" ;;
 o) exefile="-o $OPTARG" ;;
 O) opt=true ;;
 \?) print 'usage: occ [-cgO] [-l lib] [-o file] files...'
 return 1 ;;
 esac
done
shift $(($OPTIND - 1))

process the input files
objfiles=""
for filename in "$@"; do
 case $filename in
 *.c)
 objname=${filename%.c}.o
 ccom $debug $filename $objname
 if [[$opt = true]]; then
 optimize $objname
 fi ;;
 *.s)
 objname=${filename%.s}.o
 as $filename $objname ;;
 *.o)
 objname=$filename ;;
 *)
 print "error: $filename is not a source or object file."
 return 1 ;;
 esac
 objfiles="$objfiles $objname"
done

if [[$do_link = true]]; then
 ld $exefile $link_libs $objfiles
fi

Let's examine the option-processing part of this code. The first several lines initialize variables that we will
use later to store the status of each of the options. We use "true" and "false" for truth values for readability;
they are just strings and otherwise have no special meaning. The initializations reflect these assumptions:

We will want to link.1.

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (8 of 9) [2/8/2001 4:55:51 PM]

We will not want the compiler to generate space-consuming debugger information.2.

The only object-code library we will need is c, the standard C runtime library that is automatically
linked in.

3.

The executable file that the linker creates will be the linker's default file, a.out.4.

We will not want to invoke the optimizer.5.

The while, getopts, and case constructs process the options in the same way as the previous example. Here is
what the code that handles each option does:

If the -c option is given, the do_link flag is set to "false," which will cause the if condition at the end
of the script to be false, meaning that the linker will not run.

●

If -g is given, the debug variable is set to "-g". This is passed on the command line to the compiler.●

Each -l lib that is given is appended to the variable link_libs, so that when the while loop exits,
$link_libs is the entire string of -l options. This string is passed to the linker.

●

If -o file is given, the exefile variable is set to "-o file". This string is passed to the linker.●

If -O is specified, the opt flag will be set. This specification causes the conditional if [[$opt = true]]
to be true, which means that the optimizer will run.

●

The remainder of the code is a modification of the for loop we have already seen; the modifications are direct
results of the above option processing and should be self-explanatory.

5.5 while and until 6.2 Integer Variables and
Arithmetic

[Chapter 6] Command-line Options and Typed Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_01.htm (9 of 9) [2/8/2001 4:55:51 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 6
Command-line Options and

Typed Variables

6.2 Integer Variables and Arithmetic
The expression $(($OPTIND - 1)) in the last example gives a clue as to how the shell can do integer
arithmetic. As you might guess, the shell interprets words surrounded by $((and)) as arithmetic
expressions. Variables in arithmetic expressions do not need to be preceded by dollar signs, though it is
not wrong to do so.

Arithmetic expressions are evaluated inside double quotes, like tildes, variables, and command
substitutions. We're finally in a position to state the definitive rule about quoting strings: When in doubt,
enclose a string in single quotes, unless it contains tildes or any expression involving a dollar sign, in
which case you should use double quotes.

For example, the date(1) command on System V-derived versions of UNIX accepts arguments that tell it
how to format its output. The argument +%j tells it to print the day of the year, i.e., the number of days
since December 31st of the previous year.

We can use +%j to print a little holiday anticipation message:

print "Only $(((365-$(date +%j)) / 7)) weeks until the New Year!"

We'll show where this fits in the overall scheme of command-line processing in Chapter 7, Input/Output
and Command-line Processing.

The arithmetic expression feature is built in to the Korn shell's syntax, and was available in the Bourne
shell (most versions) only through the external command expr(1). Thus it is yet another example of a
desirable feature provided by an external command (i.e., a syntactic kludge) being better integrated into
the shell. [[/]] and getopts are also examples of this design trend.

Korn shell arithmetic expressions are equivalent to their counterparts in the C language. [5] Precedence
and associativity are the same as in C. Table 6.2 shows the arithmetic operators that are supported.
Although some of these are (or contain) special characters, there is no need to backslash-escape them,
because they are within the $((...)) syntax.

[5] The assignment forms of these operators are also permitted. For example, $((x += 2))
adds 2 to x and stores the result back in x.

Table 6.2: Arithmetic Operators
Operator Meaning

[Chapter 6] 6.2 Integer Variables and Arithmetic

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_02.htm (1 of 8) [2/8/2001 4:55:58 PM]

+ Plus
- Minus
* Times
/ Division (with truncation)
% Remainder
<< Bit-shift left
>> Bit-shift right
& Bitwise and
| Bitwise or
~ Bitwise not
^ Bitwise exclusive or

Parentheses can be used to group subexpressions. The arithmetic expression syntax also (like C) supports
relational operators as "truth values" of 1 for true and 0 for false. Table 6.3 shows the relational operators
and the logical operators that can be used to combine relational expressions.

Table 6.3: Relational Operators
Operator Meaning
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal
== Equal
!= Not equal
&& Logical and
|| Logical or

For example, $((3 > 2)) has the value 1; $(((3 > 2) || (4 <= 1))) also has the value 1, since at least one of
the two subexpressions is true.

The shell also supports base N numbers, where N can be up to 36. The notation B#N means "N base B". Of
course, if you omit the B#, the base defaults to 10.

6.2.1 Arithmetic Conditionals

Another construct, closely related to $((...)), is ((...)) (without the leading dollar sign). We use this for
evaluating arithmetic condition tests, just as [[...]] is used for string, file attribute, and other types of tests.

((...)) evaluates relational operators differently from $((...)) so that you can use it in if and while
constructs. Instead of producing a textual result, it just sets its exit status according to the truth of the
expression: 0 if true, 1 otherwise. So, for example, ((3 > 2)) produces exit status 0, as does (((3 > 2) || (4
<= 1))), but (((3 > 2) && (4 <= 1))) has exit status 1 since the second subexpression isn't true.

You can also use numerical values for truth values within this construct. It's like the analogous concept in
C, which means that it's somewhat counterintuitive to non-C programmers: a value of 0 means false (i.e.,
returns exit status 1), and a non-0 value means true (returns exit status 0), e.g., ((14)) is true. See the code

[Chapter 6] 6.2 Integer Variables and Arithmetic

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_02.htm (2 of 8) [2/8/2001 4:55:58 PM]

for the kshdb debugger in Chapter 9 for two more examples of this.

6.2.2 Arithmetic Variables and Assignment

The ((...)) construct can also be used to define integer variables and assign values to them. The statement:

((intvar=expression))

creates the integer variable intvar (if it doesn't already exist) and assigns to it the result of expression.

That syntax isn't intuitive, so the shell provides a better equivalent: the built-in command let. The syntax
is:

let intvar=expression

It is not necessary (because it's actually redundant) to surround the expression with $((and)) in a let
statement. As with any variable assignment, there must not be any space on either side of the equal sign
(=). It is good practice to surround expressions with quotes, since many characters are treated as special by
the shell (e.g., *, #, and parentheses); furthermore, you must quote expressions that include whitespace
(spaces or TABs). See Table 6.4 for examples.

Table 6.4: Sample
Integer Expression

Assignments
Assignment Value
let x= $x
1+4 5
'1 + 4' 5
'(2+3) * 5' 25
'2 + 3 * 5' 17
'17 / 3' 5
'17 % 3' 2
'1<<4' 16
'48>>3' 6
'17 & 3' 1
'17 | 3' 19
'17 ^ 3' 18

Here is a small task that makes use of integer arithmetic.

Task 6.1

Write a script called pages that, given the name of a text file, tells how many pages of output
it contains. Assume that there are 66 lines to a page but provide an option allowing the user to
override that.

We'll make our option -N, a la head. The syntax for this single option is so simple that we need not bother
with getopts. Here is the code:

[Chapter 6] 6.2 Integer Variables and Arithmetic

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_02.htm (3 of 8) [2/8/2001 4:55:58 PM]

if [[$1 = -+([0-9])]]; then
 let page_lines=${1#-}
 shift
else
 let page_lines=66
fi
let file_lines="$(wc -l < $1)"

let pages=file_lines/page_lines
if ((file_lines % page_lines > 0)); then
 let pages=pages+1
fi

print "$1 has $pages pages of text."

Notice that we use the integer conditional ((file_lines % page_lines > 0)) rather than the [[...]] form.

At the heart of this code is the UNIX utility wc(1), which counts the number of lines, words, and
characters (bytes) in its input. By default, its output looks something like this:

8 34 161 bob

wc's output means that the file bob has 8 lines, 34 words, and 161 characters. wc recognizes the options -l,
-w, and -c, which tell it to print only the number of lines, words, or characters, respectively.

wc normally prints the name of its input file (given as argument). Since we want only the number of lines,
we have to do two things. First, we give it input from file redirection instead, as in wc -l < bob instead of
wc -l bob. This produces the number of lines preceded by a single space (which would normally separate
the filename from the number).

Unfortunately, that space complicates matters: the statement let file_lines=$(wc -l < $1) becomes "let
file_lines= N" after command substitution; the space after the equal sign is an error. That leads to the
second modification, the quotes around the command substitution expression. The statement let
file_lines=" N" is perfectly legal, and let knows how to remove the leading space.

The first if clause in the pages script checks for an option and, if it was given, strips the dash (-) off and
assigns it to the variable page_lines. wc in the command substitution expression returns the number of
lines in the file whose name is given as argument.

The next group of lines calculates the number of pages and, if there is a remainder after the division, adds
1. Finally, the appropriate message is printed.

As a bigger example of integer arithmetic, we will complete our emulation of the C shell's pushd and popd
functions (Task 4-8). Remember that these functions operate on DIRSTACK, a stack of directories
represented as a string with the directory names separated by spaces. The C shell's pushd and popd take
additional types of arguments, which are:

pushd +n takes the nth directory in the stack (starting with 0), rotates it to the top, and cds to it.●

pushd without arguments, instead of complaining, swaps the two top directories on the stack and
cds to the new top.

●

[Chapter 6] 6.2 Integer Variables and Arithmetic

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_02.htm (4 of 8) [2/8/2001 4:55:58 PM]

popd +n takes the nth directory in the stack and just deletes it.●

The most useful of these features is the ability to get at the nth directory in the stack. Here are the latest
versions of both functions:

function pushd { # push current directory onto stack
 dirname=$1
 if [[-d $dirname && -x $dirname]]; then
 cd $dirname
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print "$DIRSTACK"
 else
 print "still in $PWD."
 fi
}

function popd { # pop directory off the stack, cd to new top
 if [[-n $DIRSTACK]]; then
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
 else
 print "stack empty, still in $PWD."
 fi
}

To get at the nth directory, we use a while loop that transfers the top directory to a temporary copy of the
stack n times. We'll put the loop into a function called getNdirs that looks like this:

function getNdirs{
 stackfront=''
 let count=0
 while ((count < $1)); do
 stackfront="$stackfront ${DIRSTACK%% *}"
 DIRSTACK=${DIRSTACK#* }
 let count=count+1
 done
}

The argument passed to getNdirs is the n in question. The variable stackfront is the temporary copy that
will contain the first n directories when the loop is done. stackfront starts as null; count, which counts the
number of loop iterations, starts as 0.

The first line of the loop body appends the top of the stack (${DIRSTACK%% *}) to stackfront; the
second line deletes the top from the stack. The last line increments the counter for the next iteration. The
entire loop executes N times, for values of count from 0 to N-1.

When the loop finishes, the last directory in $stackfront is the Nth directory. The expression
${stackfront##* } extracts this directory. Furthermore, DIRSTACK now contains the "back" of the

[Chapter 6] 6.2 Integer Variables and Arithmetic

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_02.htm (5 of 8) [2/8/2001 4:55:58 PM]

stack, i.e., the stack without the first n directories. With this in mind, we can now write the code for the
improved versions of pushd and popd:

function pushd {
 if [[$1 = ++([0-9])]]; then
 # case of pushd +n: rotate n-th directory to top
 let num=${1#+}
 getNdirs $num

 newtop=${stackfront##* }
 stackfront=${stackfront%$newtop}

 DIRSTACK="$newtop $stackfront $DIRSTACK"
 cd $newtop

 elif [[-z $1]]; then
 # case of pushd without args; swap top two directories
 firstdir=${DIRSTACK%% *}
 DIRSTACK=${DIRSTACK#* }
 seconddir=${DIRSTACK%% *}
 DIRSTACK=${DIRSTACK#* }
 DIRSTACK="$seconddir $firstdir $DIRSTACK"
 cd $seconddir

 else
 cd $dirname
 # normal case of pushd dirname
 dirname=$1
 if [[-d $dirname && -x $dirname]]; then
 DIRSTACK="$dirname ${DIRSTACK:-$PWD}"
 print "$DIRSTACK"
 else
 print still in "$PWD."
 fi
 fi
}

function popd { # pop directory off the stack, cd to new top
 if [[$1 = ++([0-9])]]; then
 # case of popd +n: delete n-th directory from stack
 let num={$1#+}
 getNdirs $num
 stackfront=${stackfront% *}
 DIRSTACK="$stackfront $DIRSTACK"

 else
 # normal case of popd without argument

[Chapter 6] 6.2 Integer Variables and Arithmetic

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_02.htm (6 of 8) [2/8/2001 4:55:58 PM]

 if [[-n $DIRSTACK]]; then
 DIRSTACK=${DIRSTACK#* }
 cd ${DIRSTACK%% *}
 print "$PWD"
 else
 print "stack empty, still in $PWD."
 fi
 fi
}

These functions have grown rather large; let's look at them in turn. The if at the beginning of pushd checks
if the first argument is an option of the form +N. If so, the first body of code is run. The first let simply
strips the plus sign (+) from the argument and assigns the result - as an integer - to the variable num. This,
in turn, is passed to the getNdirs function.

The next two assignment statements set newtop to the Nth directory - i.e., the last directory in
$stackfront - and delete that directory from stackfront. The final two lines in this part of pushd put the
stack back together again in the appropriate order and cd to the new top directory.

The elif clause tests for no argument, in which case pushd should swap the top two directories on the
stack. The first four lines of this clause assign the top two directories to firstdir and seconddir, and delete
these from the stack. Then, as above, the code puts the stack back together in the new order and cds to the
new top directory.

The else clause corresponds to the usual case, where the user supplies a directory name as argument.

popd works similarly. The if clause checks for the +N option, which in this case means delete the Nth
directory. A let extracts the N as an integer; the getNdirs function puts the first n directories into
stackfront. Then the line stackfront=${stackfront% *} deletes the last directory (the Nth directory) from
stackfront. Finally, the stack is put back together with the Nth directory missing.

The else clause covers the usual case, where the user doesn't supply an argument.

Before we leave this subject, here are a few exercises that should test your understanding of this code:

Add code to pushd that exits with an error message if the user supplies no argument and the stack
contains fewer than two directories.

1.

Verify that when the user specifies +N and N exceeds the number of directories in the stack, both
pushd and popd use the last directory as the Nth directory.

2.

Modify the getNdirs function so that it checks for the above condition and exits with an appropriate
error message if true.

3.

Change getNdirs so that it uses cut (with command substitution), instead of the while loop, to
extract the first N directories. This uses less code but runs more slowly because of the extra
processes generated.

4.

6.1 Command-line Options 6.3 Arrays

[Chapter 6] 6.2 Integer Variables and Arithmetic

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_02.htm (7 of 8) [2/8/2001 4:55:58 PM]

[Chapter 6] 6.2 Integer Variables and Arithmetic

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_02.htm (8 of 8) [2/8/2001 4:55:58 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 6
Command-line Options and

Typed Variables

6.3 Arrays
So far we have seen two types of variables: character strings and integers. The third type of variable the
Korn shell supports is an array. As you may know, an array is like a list of things; you can refer to
specific elements in an array with integer indices, so that a[i] refers to the ith element of array a.

The Korn shell provides an array facility that, while useful, is much more limited than analogous features
in conventional programming languages. In particular, arrays can be only one-dimensional (i.e., no arrays
of arrays), and they are limited to 1024 elements. Indices can start at 0.

There are two ways to assign values to elements of an array. The first is the most intuitive: you can use
the standard shell variable assignment syntax with the array index in brackets ([]). For example:

nicknames[2]=bob
nicknames[3]=ed

puts the values bob and ed into the elements of the array nicknames with indices 2 and 3, respectively.
As with regular shell variables, values assigned to array elements are treated as character strings unless
the assignment is preceded by let.

The second way to assign values to an array is with a variant of the set statement, which we saw in
Chapter 3, Customizing Your Environment. The statement:

set -A aname val1 val2 val3 ...

creates the array aname (if it doesn't already exist) and assigns val1 to aname[0], val2 to aname[1], etc.
As you would guess, this is more convenient for loading up an array with an initial set of values.

To extract a value from an array, use the syntax ${aname [i]}. For example, ${nicknames[2]} has the
value "bob". The index i can be an arithmetic expression-see above. If you use * in place of the index,
the value will be all elements, separated by spaces. Omitting the index is the same as specifying index 0.

Now we come to the somewhat unusual aspect of Korn shell arrays. Assume that the only values
assigned to nicknames are the two we saw above. If you type print "${nicknames[*]}", you will see
the output:

bob ed

In other words, nicknames[0] and nicknames[1] don't exist. Furthermore, if you were to type:

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (1 of 10) [2/8/2001 4:56:04 PM]

nicknames[9]=pete
nicknames[31]=ralph

and then type print "${nicknames[*]}", the output would look like this:

bob ed pete ralph

This is why we said "the elements of nicknames with indices 2 and 3" earlier, instead of "the 2nd and
3rd elements of nicknames". Any array elements with unassigned values just don't exist; if you try to
access their values, you will get null strings.

You can preserve whatever whitespace you put in your array elements by using " ${aname[@]} " (with
the double quotes) instead of ${aname[*]}", just as you can with "$@" instead of $*.

The shell provides an operator that tells you how many elements an array has defined: ${#aname[*]}.
Thus ${#nicknames[*]} has the value 4. Note that you need the [*] because the name of the array alone
is interpreted as the 0th element. This means, for example, that ${#nicknames} equals the length of
nicknames[0] (see Chapter 4). Since nicknames[0] doesn't exist, the value of ${#nicknames} is 0, the
length of the null string.

To be quite frank, we feel that the Korn shell's array facility is of little use to shell programmers. This is
partially because it is so limited, but mainly because shell programming tasks are much more often
oriented toward character strings and text than toward numbers. If you think of an array as a mapping
from integers to values (i.e., put in a number, get out a value), then you can see why arrays are
"number-dominated" data structures.

Nevertheless, we can find useful things to do with arrays. For example, here is a cleaner solution to Task
5-4, in which a user can select his or her terminal type (TERM environment variable) at login time.
Recall that the "user-friendly" version of this code used select and a case statement:

print 'Select your terminal type:'
PS3='terminal? '
select term in
 'Givalt GL35a' \
 'Tsoris T-2000' \
 'Shande 531' \
 'Vey VT99'
do
 case $REPLY in
 1) TERM=gl35a ;;
 2) TERM=t2000 ;;
 3) TERM=s531 ;;
 4) TERM=vt99 ;;
 *) print "invalid." ;;
 esac
 if [[-n $term]]; then
 print "TERM is $TERM"
 break
 fi

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (2 of 10) [2/8/2001 4:56:04 PM]

done

We can eliminate the entire case construct by taking advantage of the fact that the select construct stores
the user's number choice in the variable REPLY. We just need a line of code that stores all of the
possibilities for TERM in an array, in an order that corresponds to the items in the select menu. Then we
can use $REPLY to index the array. The resulting code is:

set -A termnames gl35a t2000 s531 vt99
print 'Select your terminal type:'
PS3='terminal? '
select term in
 'Givalt GL35a' \
 'Tsoris T-2000' \
 'Shande 531' \
 'Vey VT99'
do
 if [[-n $term]]; then
 TERM=${termnames[REPLY-1]}
 print "TERM is $TERM"
 break
 fi
done

This code sets up the array termnames so that ${termnames[0]} is "gl35a", ${termnames[1]} is
"t2000", etc. The line TERM=${termnames[REPLY-1]} essentially replaces the entire case construct
by using REPLY to index the array.

Notice that the shell knows to interpret the text in an array index as an arithmetic expression, as if it were
enclosed in ((and)), which in turn means that variable need not be preceded by a dollar sign ($). We
have to subtract 1 from the value of REPLY because array indices start at 0, while select menu item
numbers start at 1.

6.3.1 typeset

The final Korn shell feature that relates to the kinds of values that variables can hold is the typeset
command. If you are a programmer, you might guess that typeset is used to specify the type of a variable
(integer, string, etc.); you'd be partially right.

typeset is a rather ad hoc collection of things that you can do to variables that restrict the kinds of values
they can take. Operations are specified by options to typeset; the basic syntax is:

typeset -o varname[=value]

Options can be combined; multiple varnames can be used. If you leave out varname, the shell prints a list
of variables for which the given option is turned on.

The options available break down into two basic categories:

String formatting operations, such as right- and left-justification, truncation, and letter case
control.

1.

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (3 of 10) [2/8/2001 4:56:04 PM]

Type and attribute functions that are of primary interest to advanced programmers.2.

6.3.2 Local Variables in Functions

typeset without options has an important meaning: if a typeset statement is inside a function definition,
then the variables involved all become local to that function (in addition to any properties they may take
on as a result of typeset options). The ability to define variables that are local to "subprogram" units
(procedures, functions, subroutines, etc.) is necessary for writing large programs, because it helps keep
subprograms independent of the main program and of each other.

If you just want to declare a variable local to a function, use typeset without any options. For example:

function afunc {
 typeset diffvar
 samevar=funcvalue
 diffvar=funcvalue
 print "samevar is $samevar"
 print "diffvar is $diffvar"
}

samevar=globvalue
diffvar=globvalue
print "samevar is $samevar"
print "diffvar is $diffvar"
afunc
print "samevar is $samevar"
print "diffvar is $diffvar"

This code will print the following:

samevar is globvalue
diffvar is globvalue
samevar is funcvalue
diffvar is funcvalue
samevar is funcvalue
diffvar is globvalue

Figure 6.1 shows this graphically.

Figure 6.1: Local variables in functions

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (4 of 10) [2/8/2001 4:56:04 PM]

You will see several additional examples of local variables within functions in Chapter 9.

6.3.3 String Formatting Options

Now let's look at the various options to typeset. Table 6.5 lists the string formatting options; the first
three take an optional numeric argument.

Table 6.5: Typeset String Formatting Options
Option Operation
-Ln Left-justify. Remove leading blanks; if n is given, fill with blanks or truncate on right to length

n.
-Rn Right-justify. Remove trailing blanks; if n is given, fill with blanks or truncate on left to length

n.
-Zn Same as above, except add leading 0's instead of blanks if needed.
-l Convert letters to lowercase.
-u Convert letters to uppercase.

Here are a few simple examples. Assume that the variable alpha is assigned the letters of the alphabet, in
alternating case, surrounded by three blanks on each side:

alpha=" aBcDeFgHiJkLmNoPqRsTuVwXyZ "

Table 6.6 shows some typeset statements and their resulting values (assuming that each of the statements
are run "independently").

Table 6.6: Examples of typeset String Formatting Options

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (5 of 10) [2/8/2001 4:56:04 PM]

Statement Value of v
typeset -L v=$alpha "aBcDeFgHiJkLmNoPqRsTuVwXyZ "
typeset -L10 v=$alpha "aBcDeFgHiJ"
typeset -R v=$alpha " aBcDeFgHiJkLmNoPqRsTuVwXyZ"
typeset -R16 v=$alpha "kLmNoPqRsTuVwXyZ"
typeset -l v=$alpha " abcdefghijklmnopqrstuvwxyz"
typeset -uR5 v=$alpha "VWXYZ"
typeset -Z8 v="123.50" "00123.50"

When you run typeset on an existing variable, its effect is cumulative with whatever typesets may have
been used previously. This has the obvious exceptions:

A typeset -u undoes a typeset -l, and vice versa.●

A typeset -R undoes a typeset -L, and vice versa.●

typeset -Z has no effect if typeset -L has been used.●

You can turn off typeset options explicitly by typing typeset +o, where o is the option you turned on
before. Of course, it is hard to imagine scenarios where you would want to turn multiple typeset
formatting options on and off over and over again; you usually set a typeset option on a given variable
only once.

An obvious application for the -L and -R options is one in which you need fixed-width output. The most
ubiquitous source of fixed-width output in the UNIX system is reflected in the following programming
task.

Task 6.2

Pretend that ls doesn't do multicolumn output; write a shell script that does it.

For the sake of simplicity, we'll assume further that our version of UNIX is derived from AT&T System
V, in which filenames are (still!) limited to 14 characters.

Our solution to this task relies on many of the concepts we have seen earlier in this chapter. It also relies
on the fact that set -A (for constructing arrays) can be combined with command substitution in an
interesting way: each word (separated by blanks, TABs, or NEWLINESs) becomes an element of the
array. For example, if the file bob contains 50 words, then after the statement:

set -A fred $(< bob)

the array fred has 50 elements.

Our strategy is to get the names of all files in the given directory into an array variable. We use a while
loop that mimics a for loop, as we saw earlier in this chapter, to get each filename into a variable whose
length has been set to 14. We print that variable in five-column format, with two spaces between each
column (for a total of 80 columns), using a counter to keep track of columns. Here is the code:

set -A filenames $(ls $1)
typeset -L14 fname

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (6 of 10) [2/8/2001 4:56:04 PM]

let count=0
let numcols=5

while (($count < ${#filenames[*]})); do
 fname=${filenames[count]}
 print -n "$fname "
 let count="count + 1"
 if ((count % numcols == 0)); then
 print # NEWLINE
 fi
done

if ((count % numcols != 0)); then
 print
fi

The first line sets up the array filenames to contain all files in the directory given by the first argument
(the current directory by default). The typeset statement sets up the variable fname to have a fixed width
of 14 characters. The next line initializes a counter that counts elements in the array. numcols is the
number of columns per line.

The while loop iterates once for every element in filenames. In the body of the loop, the first line assigns
the next array element to the fixed-width variable. The print statement prints the latter followed by two
spaces; the -n option suppresses print's final NEWLINE.

The let statements increments the counter. Then there is the if statement, which determines when to start
the next line. It checks the remainder of $count divided by $numcols-remember that dollar signs aren't
necessary within a $((...)) construct-and if the result is 0, it's time to output a NEWLINE via a print
statement without arguments. Notice that even though $count increases by 1 with every iteration of the
loop, the remainder goes through a cycle of 1, 2, 3, 4, 0, 1, 2, 3, 4, 0,...

After the loop, an if construct outputs a final NEWLINE if necessary, i.e., if the if within the loop didn't
just do it.

We can also use typeset options to clean up the code for our dosmv function (Task 5-3), which translates
filenames in a given directory from MS-DOS to UNIX format. The code for the function is:

dos_regexp='[^a-z]\{1,8\}\.[^a-z]\{0,3\}'
for filename in ${1:+$1/}* ; do
 if print "$filename" | grep $dos_regexp > /dev/null; then
 newfilename=$(print $filename | tr [A-Z] [a-z])
 newfilename=${newfilename%.}
 print "$filename -> $newfilename"
 mv $filename $newfilename
 fi
done

We can replace the call to tr in the for loop with one to typeset -l before the loop:

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (7 of 10) [2/8/2001 4:56:04 PM]

typeset -l newfilename
dos_regexp='[^a-z]\{1,8\}\.[^a-z]\{0,3\}'
for filename in ${1:+$1/}* ; do
 if print "$filename" | grep $dos_regexp > /dev/null; then
 newfilename=${filename%.}
 print "$filename -> $newfilename"
 mv $filename $newfilename
 fi
done

This way, the translation to lowercase letters is done automatically each time a value is assigned to
newfilename. Not only is this code cleaner, but it is also more efficient because the extra processes
created by tr and command substitution are eliminated.

6.3.4 Type and Attribute Options

The other options to typeset are of more use to advanced shell programmers who are "tweaking" large
scripts. These options are listed in Table 6.7.

Table 6.7: Typeset Type and Attribute Options
Option Operation
-in Represent the variable internally as an integer; improves efficiency of arithmetic. If n is given, it

is the base used for output.
-r Make the variable read-only: forbid assignment to it and disallow it from being unset.[6]
-x Export; same as export command.
-f Refer to function names only; see "Function Options" below.

[6] The built-in command readonly does the same thing.

-i is the most useful of these. You can put it in a script when you are done writing and debugging it to
make arithmetic run a bit faster, though the speedup will be apparent only if your script does a lot of
arithmetic. The more readable integer is a built-in alias for typeset -i, so that integer x=5 is the same as
typeset -i x=5.

The -r option is useful for setting up "constants" in shell scripts; constants are like variables except that
you can't change their values once they have been initialized. Constants allow you to give names to
values even if you don't want them changed; it is considered good programming practice to use constants
in large programs.

The solution to Task 6-2 contains a good candidate for typeset -r: the variable numcols, which specifies
the number of columns in the output. Since numcols is an integer, we could also use the -i option, i.e.,
replace let numcols=5 with typeset -ri numcols=5. If we were to try assigning another value to
numcols, the shell would respond with the error message ksh: numcols: is read only.

-r is also useful for system administrators who set up shell variables in /etc/profile, the system-wide Korn
shell initialization file. For example, if you wanted to tighten system security, one step you might take is
to prevent the PATH environment variable from being changed. This helps prevent computer crackers

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (8 of 10) [2/8/2001 4:56:04 PM]

from installing bogus executables. The statement typeset -r PATH does the trick.

These options are also useful without arguments, i.e., to see which variables exist that have those options
turned on.

6.3.5 Function Options

The -f option has various suboptions, all of which relate to functions. These are listed in Table 6.8.

Table 6.8: Typeset Function Options
Option Operation
-f With no arguments, prints all function definitions.
-f fname Prints the definition of function fname.
+f Prints all function names.
-ft Turns on trace mode for named function(s). (Chapter 9)
+ft Turns off trace mode for named function(s). (Chapter 9)
-fu Defines given name(s) as autoloaded function(s). (Chapter 4)

Two of these have built-in aliases that are more mnemonic: functions is an alias for typeset -f and
autoload is an alias for typeset -fu.

Finally, if you type typeset without any arguments, you will see a list of all currently-defined variables
(in no discernable order), preceded by appropriate keywords if they have one or more typeset options
turned on. For example, typing typeset in an uncustomized shell gives you a listing of the shell's built-in
variables and their attributes that looks like this: [7]

[7] For some reason, this list excludes PS1 and a few others.

export HZ
export PATH
integer ERRNO
integer OPTIND
function LINENO
export LOGNAME
export MAIL
function SECONDS
integer PPID
PS3
PS2
export TERMCAP
OPTARG
function RANDOM
export SHELL
integer TMOUT
export HOME
export _
FCEDIT

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (9 of 10) [2/8/2001 4:56:04 PM]

export TERM
export PWD
export TZ
integer MAILCHECK

6.2 Integer Variables and
Arithmetic

7. Input/Output and
Command-line Processing

[Chapter 6] 6.3 Arrays

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch06_03.htm (10 of 10) [2/8/2001 4:56:04 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 8

8. Process Handling
Contents:
Process IDs and Job Numbers
Job Control
Signals
trap
Coroutines
Subshells

The UNIX operating system built its reputation on a small number of concepts, all of which are simple
yet powerful. We've seen most of them by now: standard input/output, pipes, text-filtering utilities, the
tree-structured file system, and so on. UNIX also gained notoriety as the first small-computer operating
system to give each user control over more than one process. We call this capability user-controlled
multitasking.

If UNIX is the only operating system that you're familiar with, you might be surprised to learn that
several other major operating systems have been sadly lacking in this area. For example, Microsoft's
MS-DOS, for IBM PC compatibles, has no multitasking at all, let alone user-controlled multitasking.
IBM's own VM/CMS system for large mainframes handles multiple users but gives them only one
process each. DEC's VAX/VMS has user-controlled multitasking, but it is limited and difficult to use.
The latest generation of small-computer operating systems, such as Apple's Macintosh OS System 7,
IBM's OS/2 Version 2, and Microsoft's Windows NT, finally include user-controlled multitasking at the
operating system level. [1]

[1] Programs like Apple's Multifinder and Microsoft Windows work on top of the operating
system (Mac OS Version 6 and MS-DOS, respectively) to give the user limited
multitasking.

But if you've gotten this far in this book, you probably don't think that multitasking is a big deal. You're
probably used to the idea of running a process in the background by putting an ampersand (&) at the end
of the command line. You have also seen the idea of a subshell in Chapter 4, Basic Shell Programming
when we showed how shell scripts run.

In this chapter, we will cover most of the Korn shell's features that relate to multitasking and process
handling in general. We say "most" because some of these features are, like the file descriptors we saw in

[Chapter 8] Process Handling

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_01.htm (1 of 3) [2/8/2001 4:58:11 PM]

the previous chapter, of interest only to low-level systems programmers.

We'll start out by looking at certain important primitives for identifying processes and for controlling
them during login sessions and within shell scripts. Then we will move out to a higher-level perspective,
looking at ways to get processes to communicate with each other. The Korn shell's coroutine facility is
the most sophisticated interprocess communication scheme that we'll examine; we'll also look in more
detail at concepts we've already seen, like pipes and subshells.

Don't worry about getting bogged down in low-level technical details about UNIX. We will provide only
the technical information that is necessary to explain higher-level features, plus a few other tidbits
designed to pique your curiosity. If you are interested in finding out more about these areas, refer to your
UNIX Programmer's Manual or a book on UNIX internals that pertains to your version of UNIX.

We strongly recommend that you try out the examples in this chapter. The behavior of code that involves
multiple processes is not as easy to understand on paper as most of the other examples in this book.

8.1 Process IDs and Job Numbers
UNIX gives all processes numbers, called process IDs, when they are created. You will notice that, when
you run a command in the background by appending & to it, the shell responds with a line that looks like
this:

$ fred &
[1] 2349

In this example, 2349 is the process ID for the fred process. The [1] is a job number assigned by the shell
(not the operating system). What's the difference? Job numbers refer to background processes that are
currently running under your shell, while process IDs refer to all processes currently running on the
entire system, for all users. The term job basically refers to a command line that was invoked from your
login shell.

If you start up additional background jobs while the first one is still running, the shell will number them
2, 3, etc. For example:

$ bob &
[2] 2367
$ dave &
[3] 2382

Clearly, 1, 2, and 3 are easier to remember than 2349, 2367, and 2382!

The shell includes job numbers in messages it prints when a background job completes, like this:

[1] + Done fred &

We'll explain what the plus sign means soon. If the job exits with non-zero status (see Chapter 5, Flow
Control), the shell will include the exit status in parentheses:

[1] + Done(1) fred &

The shell prints other types of messages when certain abnormal things happen to background jobs; we'll

[Chapter 8] Process Handling

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_01.htm (2 of 3) [2/8/2001 4:58:11 PM]

see these later in this chapter.

7.3 Command-line Processing 8.2 Job Control

[Chapter 8] Process Handling

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_01.htm (3 of 3) [2/8/2001 4:58:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 7
Input/Output and

Command-line Processing

7.3 Command-line Processing
We've seen how the shell uses read to process input lines: it deals with single quotes (' '), double quotes
(" "), and backslashes (\); it separates lines into words, according to delimiters in the environment
variable IFS; and it assigns the words to shell variables. We can think of this process as a subset of the
things the shell does when processing command lines.

We've touched upon command-line processing (see Figure 7.1) throughout this book; now is a good time to
make the whole thing explicit. [7] Each line that the shell reads from the standard input or a script is called
a pipeline; it contains one or more commands separated by zero or more pipe characters (|). For each
pipeline it reads, the shell breaks it up into commands, sets up the I/O for the pipeline, then does the
following for each command:

[7] Even this explanation is slightly simplified to elide the most petty details, e.g., "middles"
and "ends" of compound commands, special characters within [[...]] and ((...)) constructs, etc.
The last word on this subject is the reference book, The KornShell Command and
Programming Language, by Morris Bolsky and David Korn, published by Prentice-Hall.

Splits the command into tokens that are separated by the fixed set of metacharacters: SPACE, TAB,
NEWLINE, ;, (,), <, >, |, and &. Types of tokens include words, keywords, I/O redirectors, and
semicolons.

1.

Checks the first token of each command to see if it is a keyword with no quotes or backslashes. If it's
an opening keyword (if and other control-structure openers, function, {, (, ((, or [[), then the
command is actually a compound command. The shell sets things up internally for the compound
command, reads the next command, and starts the process again. If the keyword isn't a compound
command opener (e.g., is a control-structure "middle" like then, else, or do, an "end" like fi or done,
or a logical operator), the shell signals a syntax error.

2.

Checks the first word of each command against the list of aliases. If a match is found, it substitutes
the alias' definition and goes back to Step 1; otherwise it goes on to Step 4. This scheme allows
recursive aliases; see Chapter 3. It also allows aliases for keywords to be defined, e.g., alias
aslongas=while or alias procedure=function.

3.

Substitutes the user's home directory ($HOME) for tilde if it is at the beginning of a word.
Substitutes user's home directory for ~user. [8]

[8] Two obscure variations on this: the shell substitutes the current directory ($PWD)

4.

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (1 of 13) [2/8/2001 4:59:51 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm

for ~+ and the previous directory ($OLDPWD) for ~-.

Performs parameter (variable) substitution for any expression that starts with a dollar sign ($).5.

Does command substitution for any expression of the form $(string).6.

Evaluates arithmetic expressions of the form $((string)).7.

Takes the parts of the line that resulted from parameter, command, and arithmetic substitution and
splits them into words again. This time it uses the characters in $IFS as delimiters instead of the set
of metacharacters in Step 1.

8.

Performs filename generation, a.k.a. wildcard expansion, for any occurrences of *, ?, and [/] pairs. It
also processes the regular expression operators that we saw in Chapter 4.

Figure 7.1: Steps in Command-line Processing

9.

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (2 of 13) [2/8/2001 4:59:51 PM]

Uses the first word as a command by looking up its source according to the rest of the list in Chapter
4, i.e., as a built-in command, then as a function, then as a file in any of the directories in $PATH.

10.

Runs the command after setting up I/O redirection and other such things.11.

That's a lot of steps - and it's not even the whole story! But before we go on, an example should make this
process clearer. Assume that the following command has been run:

alias ll="ls -l"

Further assume that a file exists called .hist537 in user fred's home directory, which is /home/fred, and that
there is a double-dollar-sign variable $$ whose value is 2537 (we'll see what this special variable is in the
next chapter).

Now let's see how the shell processes the following command:

ll $(whence cc) ~fred/.*$(($$%1000))

Here is what happens to this line:

ll $(whence cc) ~fred/.*$(($$%1000))

Splitting the input into words.

1.

ll is not a keyword, so step 2 does nothing.2.

ls -l $(whence cc) ~fred/.*$(($$%1000))

Substituting ls -l for its alias "ll". The shell then repeats steps 1 through 3; step 2 splits the ls -l into
two words. [9]

[9] Some of the shell's built-in aliases, however, seem to make it through single quotes:
true (an alias for :, a "do-nothing" command that always returns exit status 0), false (an
alias for let 0, which always returns exit status 1), and stop (an alias for kill -STOP).

3.

ls -l $(whence cc) /home/fred/.*$(($$%1000))

Expanding ~fred into /home/fred.

4.

ls -l $(whence cc) /home/fred/.*$((2537%1000))

Substituting 2537 for $$.

5.

ls -l /usr/bin/cc /home/fred/.*$((2537%1000))

Doing command substitution on "whence cc".

6.

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (3 of 13) [2/8/2001 4:59:51 PM]

ls -l /usr/bin/cc /home/fred/.*537

Evaluating the arithmetic expression 2537%1000.

7.

ls -l /usr/bin/cc /home/fred/.*537

This step does nothing.

8.

ls -l /usr/bin/cc /home/fred/.hist537

Substituting the filename for the wildcard expression .*537.

9.

The command ls is found in /usr/bin.10.

/usr/bin/ls is run with the option -l and the two arguments.11.

Although this list of steps is fairly straightforward, it is not the whole story. There are still two ways to
subvert the process: by quoting and by using the advanced command eval.

7.3.1 Quoting

You can think of quoting as a way of getting the shell to skip some of the 11 steps above. In particular:

Single quotes (' ') bypass everything through Step 9 - including aliasing. [10] All characters
inside a pair of single quotes are untouched. You can't have single quotes inside single quotes - not
even if you precede them with backslashes.

[10] However, as we saw in Chapter 1 '\'' (i.e., single quote, backslash, single quote,
single quote) acts pretty much like a single quote in the middle of a single-quoted string;
e.g., 'abc'\''def' evaluates to abc'def.

●

Double quotes (" ") bypass steps 1 through 4, plus steps 8 and 9. That is, they ignore pipe
characters, aliases, tilde substitution, wildcard expansion, and splitting into words via delimiters (e.g.,
blanks) inside the double quotes. Single quotes inside double quotes have no effect. But double
quotes do allow parameter substitution, command substitution, and arithmetic expression evaluation.
You can include a double quote inside a double-quoted string by preceding it with a backslash (\).
You must also backslash-escape $, ` (the archaic command substitution delimiter), and \ itself.

●

Table 7.5 contains some simple examples that show how these work; they assume that the statement
dave=bob was run and that user fred's home directory is /home/fred.

If you are wondering whether to use single or double quotes in a particular shell programming situation, it is
safest to use single quotes unless you specifically need parameter, command, or arithmetic substitution.

Table 7.5: Examples of
Quoting Rules

Expression Value
$dave bob
"$dave" bob
\\$dave $dave
'$dave' $dave

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (4 of 13) [2/8/2001 4:59:51 PM]

'$dave' 'bob'
~fred /home/fred
"~fred" ~fred
'~fred' ~fred

Here's a more advanced example of command-line processing that should give you deeper insight into the
overall process.

Task 7.5

Customize your primary prompt string so that it contains the current directory with tilde (~)
notation.

Recall from Chapter 4 that we found a simple way to set up the prompt string PS1 so that it always contains
the current directory:

PS1='($PWD)-> '

One problem with this setup is that the resulting prompt strings can get very long. One way to shorten them
is to substitute tilde notation for users' home directories. This cannot be done with a simple string
expression analogous to the above. The solution is somewhat complicated and takes advantage of the
command-line processing rules.

The basic idea is to create a "wrapper" around the cd command, as we did in Chapter 5, that installs the
current directory with tilde notation as the prompt string. Because cd is a built-in command, the wrapper
must be an alias in order to override it. But the code we need to insert tilde notation is too complicated for
an alias, so we'll use a function and then alias the function as cd.

We'll start with a function that, given a pathname as argument, prints its equivalent in tilde notation if
possible:

function tildize {
 if [[$1 = $HOME*]]; then
 print "\~/${1#$HOME}"
 return 0
 fi
 awk '{FS=":"; print $1, $6}' /etc/passwd |
 while read user homedir; do
 if [[$homedir != / && $1 = ${homedir}?(/*)]]; then
 print "\~$user/${1#$homedir}"
 return 0
 fi
 done
 print "$1"
 return 1
}

The first if clause checks if the given pathname is under the user's home directory. If so, it substitutes tilde
(~) for the home directory in the pathname and returns.

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (5 of 13) [2/8/2001 4:59:52 PM]

If not, we use the awk utility to extract the first and sixth fields of the file /etc/passwd, which contain users
IDs and home directories, respectively. In this case, awk acts like cut. The FS=":" is analogous to -d:,
which we saw in Chapter 4, except that it prints the values on each line separated by blanks, not colons (:).

awk's output is fed into a while loop that checks the pathname given as argument to see if it contains some
user's home directory. (The first part of the conditional expression eliminates "users" like daemon and root,
whose home directories are root and therefore are contained in every full pathname.The second part
matches home directories by themselves or with some other directory appended (the ?(/*) part.)) If a user's
home directory is found, then ~user is substituted for the full home directory in the given pathname, the
result is printed, and the function exits.

Finally, if the while loop exhausts all users without finding a home directory that is a prefix of the given
pathname, then tildize simply echoes back its input.

Now that we have this function, you might think we could use it in a command substitution expression like
this:

PS1='$(tildize $PWD)'

But this won't work, because the shell doesn't do command substitution when it evaluates the prompt string
after every command. That's why we have to incorporate it into an alias that supersedes cd. The following
code should go into your .profile or environment file, along with the definition of tildize:

PS1=$(tildize $PWD)

function _cd {
 "cd" "$@"
 es=$?
 PS1=$(tildize $PWD)
 return $es
}

alias cd=_cd

When you log in, this code will set PS1 to the initial current directory (presumably your home directory).
Then, whenever you enter a cd command, the alias runs the function _cd, which looks a lot like the
"wrapper" in Chapter 5.

The first line in _cd runs the "real" cd by surrounding it in quotes - which makes the shell bypass alias
expansion (Step 3 in the list). Then the shell resets the prompt string to the new current directory, or the old
one if the cd failed for some reason.

Of course, the function tildize can be any code that formats the directory string. See the exercises at the end
of this chapter for a couple of suggestions.

7.3.2 eval

We have seen that quoting lets you skip steps in command-line processing. Then there's the eval command,
which lets you go through the process again. Performing command-line processing twice may seem strange,
but it's actually very powerful: it lets you write scripts that create command strings on the fly and then pass
them to the shell for execution. This means that you can give scripts "intelligence" to modify their own

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (6 of 13) [2/8/2001 4:59:52 PM]

behavior as they are running.

The eval statement tells the shell to take eval's arguments and run them through the command-line
processing steps all over again. To help you understand the implications of eval, we'll start with a trivial
example and work our way up to a situation in which we're constructing and running commands on the fly.

eval ls passes the string ls to the shell to execute; the shell prints list of files in the current directory. Very
simple; there is nothing about the string ls that needs to be sent through the command-processing steps
twice. But consider this:

listpage="ls | more"
$listpage

Instead of producing a paginated file listing, the shell will treat | and more as arguments to ls, and ls will
complain that no files of those names exist. Why? Because the pipe character "appears" in step 5 when the
shell evaluates the variable, after it has actually looked for pipe characters (in step 2). The variable's
expansion isn't even parsed until step 8. As a result, the shell will treat | and more as arguments to ls, so that
ls will try to find files called | and more in the current directory!

Now consider eval $listpage instead of just $listpage. When the shell gets to the last step, it will run the
command eval with arguments ls, |, and more. This causes the shell to go back to Step 1 with a line that
consists of these arguments. It finds | in Step 2 and splits the line into two commands, ls and more. Each
command is processed in the normal (and in both cases trivial) way. The result is a paginated list of the files
in your current directory.

Now you may start to see how powerful eval can be. It is an advanced feature that requires considerable
programming cleverness to be used most effectively. It even has a bit of the flavor of artificial intelligence,
in that it enables you to write programs that can "write" and execute other programs. [11] You probably
won't use eval for everyday shell programming, but it's worth taking the time to understand what it can do.

[11] You could actually do this without eval, by printing commands to a temporary file and
then "sourcing" that file with . filename. But that is much less efficient.

As a more interesting example, we'll revisit Task 4-1, the very first task in the book. In it, we constructed a
simple pipeline that sorts a file and prints out the first N lines, where N defaults to 10. The resulting pipeline
was:

sort -nr $1 | head -${2:-10}

The first argument specified the file to sort; $2 is the number of lines to print.

Now suppose we change the task just a bit so that the default is to print the entire file instead of 10 lines.
This means that we don't want to use head at all in the default case. We could do this in the following way:

if [[-n $2]]; then
 sort -nr $1 | head -$2
else
 sort -nr $1
fi

In other words, we decide which pipeline to run according to whether or not $2 is null. But here is a more
compact solution:

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (7 of 13) [2/8/2001 4:59:52 PM]

eval sort -nr \$1 ${2:+"| head -\$2"}

The last expression in this line evaluates to the string | head -\$2 if $2 exists (is not null); if $2 is null, then
the expression is null too. We backslash-escape dollar signs (\$) before variable names to prevent
unpredictable results if the variables' values contain special characters like > or |. The backslash effectively
puts off the variables' evaluation until the eval command itself runs. So the entire line is either:

eval sort -nr \$1 | head -\$2

if $2 is given or:

eval sort -nr \$1

if $2 is null. Once again, we can't just run this command without eval because the pipe is "uncovered" after
the shell tries to break the line up into commands. eval causes the shell to run the correct pipeline when $2
is given.

Next, we'll revisit Task 7-3 from earlier in this chapter, the start script that lets you start a command in the
background and save its standard output and standard error in a logfile. Recall that the one-line solution to
this task had the restriction that the command could not contain output redirectors or pipes. Although the
former doesn't make sense when you think about it, you certainly would want the ability to start a pipeline
in this way.

eval is the obvious way to solve this problem:

eval "$@" > logfile 2>&1 &

The only restriction that this imposes on the user is that pipes and other such special characters be quoted
(surrounded by quotes or preceded by backslashes).

Here's a way to apply eval in conjunction with various other interesting shell programming concepts.

Task 7.6

Implement the guts of the make(1) utility as a shell script.

make is known primarily as a programmer's tool, but it seems as though someone finds a new use for it
every day. Without going into too much extraneous detail, make basically keeps track of multiple files in a
particular project, some of which depend on others (e.g., a document depends on its word processor input
file(s)). It makes sure that when you change a file, all of the other files that depend on it are processed.

For example, assume you're using the troff word processor to write a book. You have files for the book's
chapters called ch1.t, ch2.t, and so on; the troff output for these files are ch1.out, ch2.out, etc. You run
commands like troff chN.t > chN.out to do the processing. While you're working on the book, you tend to
make changes to several files at a time.

In this situation, you can use make to keep track of which files need to be reprocessed, so that all you need
to do is type make, and it will figure out what needs to be done. You don't need to remember to reprocess
the files that have changed.

How does make do this? Simple: it compares the modification times of the input and output files (called
sources and targets in make terminology), and if the input file is newer, then make reprocesses it.

You tell make which files to check by building a file called makefile that has constructs like this:

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (8 of 13) [2/8/2001 4:59:52 PM]

target : source1 source2 ...
 commands to make target

This essentially says, "For target to be up to date, it must be newer than all of the sources. If it's not, run the
commands to bring it up to date." The commands are on one or more lines that must start with TABs: e.g.,
to make ch7.out:

ch7.out : ch7.t
 troff ch7.t > ch7.out

Now suppose that we write a shell function called makecmd that reads and executes a single construct of
this form. Assume that the makefile is read from standard input. The function would look like the following
code.

function makecmd {
 read target colon sources
 for src in $sources; do
 if [[$src -nt $target]]; then
 while read cmd && [[$cmd = \t*]]; do
 print "$cmd"
 eval ${cmd#\t}
 done
 break
 fi
 done
}

This function reads the line with the target and sources; the variable colon is just a placeholder for the :.
Then it checks each source to see if it's newer than the target, using the -nt file attribute test operator that
we saw in Chapter 5. If the source is newer, it reads, prints, and executes the commands until it finds a line
that doesn't start with a TAB or it reaches end-of-file. (The real make does more than this; see the exercises
at the end of this chapter.) After running the commands (which are stripped of the initial TAB), it breaks out
of the for loop, so that it doesn't run the commands more than once.

7.3.2.1 The C Compiler as Pipeline

As a final example of eval, we'll revisit our old friend occ, the C compiler from the previous three chapters.
Recall that the compiler does its work by calling separate programs to do the actual compile from C to
object code (the ccom program), optimization of object code (optimize), assembly of assembler code files
(as), and final linking of object code files into an executable program (ld). These separate programs use
temporary files to store their outputs.

Now we'll assume that these components (except the linker) pass information in a pipeline to the final
object code output. In other words, each component takes standard input and produces standard output
instead of taking filename arguments. We'll also change an earlier assumption: instead of compiling a C
source file directly to object code, occ compiles C to assembler code, which the assembler then assembles
to object code. This lets us suppose that occ works like this:

ccom < filename.c | as | optimize > filename.o

Or, if you prefer:

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (9 of 13) [2/8/2001 4:59:52 PM]

cat filename.c | ccom | as | optimize > filename.o

To get this in the proper framework for eval, let's assume that the variables srcname and objname contain
the names of the source and object files, respectively. Then our pipeline becomes:

cat $srcname | ccom | as | optimize > $objname

As we've already seen, this is equivalent to:

eval cat \$srcname | ccom | as | optimize > \$objname

Knowing what we do about eval, we can transform this into:

eval cat \$srcname " | ccom" " | as" " | optimize" > \$objname

and from that into:

compile=" | ccom"
assemble=" | as"
optimize=" | optimize"

eval cat \$srcname \$compile \$assemble \$optimize > \$objname

Now, consider what happens if you don't want to invoke the optimizer - which is the default case anyway.
(Recall that the -O option invokes the optimizer.) We can do this:

optimize=""
if -O given then
 optimize=" | optimize"
fi

In the default case, $optimize evaluates to the empty string, causing the final pipeline to "collapse" into:

eval cat $srcname | ccom | as > $objname

Similarly, if you pass occ a file of assembler code (filename.s), you can collapse the compile step: [12]

[12] Astute readers will notice that, according to this rationale, we would handle object-code
input files (filename.o) with the pipeline eval cat $srcname > $objname, where the two
names are the same. This will cause UNIX to destroy filename.o by truncating it to zero length.
We won't worry about this here.

assemble="| as"
if $srcname ends in .s then
 compile=""
fi

That results in this pipeline:

eval cat \$srcname | as > \$objname

Now we're ready to show the full "pipeline" version of occ. It's similar to the previous version, except that
for each input file, it constructs and runs a pipeline as above. It processes the -g (debug) option and the link
step in the same way as before. Here is the code:

initialize option-related variables
do_link=true

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (10 of 13) [2/8/2001 4:59:52 PM]

debug=""
link_libs="-l c"
exefile=""

initialize pipeline components
compile=" | ccom"
assemble=" | as"
optimize=""

process command-line options
while getopts ":cgl:o:O" opt; do
 case $opt in
 c) do_link=false ;;
 g) debug="-g" ;;
 l) link_libs="$link_libs -l $OPTARG" ;;
 o) exefile="-o $OPTARG" ;;
 O) optimize=" | optimize" ;;
 \?) print 'usage: occ [-cgO] [-l lib] [-o file] files...'
 return 1 ;;
 esac
done
shift $(($OPTIND - 1))

process the input files
for filename in "$@"; do
 case $filename in
 *.c)
 objname=${filename%.c}.o ;;
 *.s)
 objname=${filename%.s}.o
 compile="" ;;
 *.o)
 compile=""
 assemble="" ;;
 *)
 print "error: $filename is not a source or object file."
 return 1 ;;
 esac

run a pipeline for each input file
eval cat \$filename \$compile \$assemble \$optimize > \$objname
 objfiles=$objfiles" "$objname
done

if [[$do_link = true]]; then
 ld $exefile $link_libs $objfiles
fi

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (11 of 13) [2/8/2001 4:59:52 PM]

We could go on forever with increasingly complex examples of eval, but we'll settle for concluding the
chapter with a few exercises. The last two are really more like items on the menu of food for thought; the
very last one is particularly difficult.

Here are a couple of ways to enhance occ, our C compiler:

Real-world C compilers accept the option -S, which tells the compiler to suppress the assembly
step and leave the output in files of assembler code whose names end in .s. Modify occ so that
it recognizes this option.

1.

The language C++ is an evolutionary successor to C; it includes advanced features like
operator overloading, function argument type checking, and class definitions. (Don't worry if
you don't know what these are.) Some C++ compilers use C as an "assembly language", i.e.,
they compile C++ source files to C code and then pass them to a C compiler for further
processing. Assume that C++ source files have names ending in .cc, and that /lib/cfront is the
C++ compiler "front-end" that produces C code on its standard output. Modify occ so that it
accepts C++ as well as C, assembler, and object code files.

2.

1.

The possibilities for customizing your prompt string are practically endless. Here are two
enhancements to customization schemes that we've seen already:

Enhance the current-directory-in-the-prompt scheme by limiting the prompt string's length to a
number of characters that the user can define with an environment variable.

1.

On some UNIX systems, it's not possible to get a list of all users by looking at /etc/passwd. For
example, networks of Suns use the Network Information Service (NIS, a.k.a. "Yellow Pages"),
which stores a protected password file for the entire network on one server machine, instead of
having separate /etc/passwd files on each machine.

If such a machine is set up so that all login directories are under a common directory (e.g.,
/users), you can get a list of all users by simply ls-ing that directory. Modify the tildize
function so that it uses this technique; pay particular attention to execution speed.

2.

2.

The function makecmd in the solution to Task 7-6 represents an oversimplification of the real make's
functionality. make actually checks file dependencies recursively, meaning that a source on one line
in a makefile can be a target on another line. For example, the book chapters in the example could
themselves depend on some figures in separate files that were made with a graphics package.

Write a function called readtargets that goes through the makefile and stores all of the targets
in a variable or temp file.

1.

Instead of reading the makefile from standard input, read it into an array variable called lines.
Use the variable curline as the "current line" index. Modify makecmd so that it reads lines
from the array starting with the current line.

2.

makecmd merely checks to see if any of the sources are newer than the given target. It should
really be a recursive routine that looks like this:

function makecmd {
 target=$1
 get sources for $target

3.

3.

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (12 of 13) [2/8/2001 4:59:52 PM]

 for each source src; do
 if $src is also a target in this makefile then
 makecmd $src
 fi
 if [[$src -nt $target]]; then
 run commands to make target
 return
 fi
 done
}

Implement this.

Write the "driver" script that turns the makecmd function into a full make program. This
should make the target given as argument, or if none is given, the first target listed in the
makefile.

4.

The above makecmd still doesn't do one important thing that the real make does: allow for
"symbolic" targets that aren't files. These give make much of the power that makes it
applicable to such an incredible variety of situations. Symbolic targets always have a
modification time of 0, so that make always runs the commands to make them. Modify
makecmd so that it allows for symbolic targets. (Hint: the crux of this problem is to figure out
how to get a file's modification time. This is quite difficult.)

5.

Finally, here are some problems that really test your knowledge of eval and the shell's command-line
processing rules. Solve these and you're a true Korn shell hacker!

Advanced shell programmers sometimes use a little trick that includes eval: using the value of
a variable as the name of another variable. In other words, you can give a shell script control
over the names of variables to which it assigns values. How would you do this? (Hint: if $fred
equals "dave", and $dave is "bob", then you might think that you could type print $$fred and
get the response bob. This doesn't actually work, but it's on the right track.)

1.

You could use the above technique together with other eval tricks to implement new control
structures for the shell. For example, see if you can write a script that emulates the behavior of
a for loop in a conventional language like C or Pascal, i.e., a loop that iterates a fixed number
of times, with a loop variable that steps from 1 to the number of iterations (or, for C fans, 0 to
iterations-1). Call your script loop to avoid clashes with the keywords for and do.

2.

4.

7.2 String I/O 8. Process Handling

[Chapter 7] 7.3 Command-line Processing

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_03.htm (13 of 13) [2/8/2001 4:59:52 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 8
Process Handling

8.2 Job Control
Why should you care about process IDs or job numbers? Actually, you could probably get along fine
through your UNIX life without ever referring to process IDs (unless you use a windowing
workstation-as we'll see soon). Job numbers are more important, however: you can use them with the
shell commands for job control. [2]

[2] NOTE: If you have an older version of UNIX, it is possible that your system does not
support job control. This is particularly true for many systems derived from Xenix, System
III, or early versions of System V. On such systems, the Korn shell does not have the fg and
bg commands, you can't type [CTRL-Z] to suspend a job, and the TSTP signal doesn't exist.
The shell does, however, support everything else discussed here, including job numbers and
the jobs and kill commands, if monitor mode is on. To ensure this, put the line set -o
monitor in your .profile file.

You already know the most obvious way of controlling a job: you can create one in the background with
&. Once a job is running in the background, you can let it run to completion, bring it into the foreground,
or send it a message called a signal.

8.2.1 Foreground and Background

The built-in command fg brings a background job into the foreground. Normally this means that the job
will have control of your terminal or window and therefore will be able to accept your input. In other
words, the job will begin to act as if you typed its command without the &.

If you have only one background job running, you can use fg without arguments, and the shell will bring
that job into the foreground. But if you have several running in the background, the shell will pick the
one that you put into the background most recently. If you want some other job put into the foreground,
you need to use the job's command name, preceded by a percent sign (%), or you can use its job number,
also preceded by %, or its process ID without a percent sign. If you don't remember which jobs are
running, you can use the command jobs to list them.

A few examples should make this clearer. Let's say you created three background jobs as above. Then if
you type jobs, you will see this:

[1] Running fred &
[2] - Running bob &

[Chapter 8] 8.2 Job Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_02.htm (1 of 4) [2/8/2001 4:59:55 PM]

[3] + Running dave &

jobs has a few interesting options. jobs -l also lists process IDs:

[1] 2349 Running fred &
[2] - 2367 Running bob &
[3] + 2382 Running dave &

The -p option tells jobs to list only process IDs:

2349
2367
2382

This could be useful with command substitution; see Task 8-1 below. Finally, the -n option lists only
those jobs whose status has changed since the shell last reported it - whether with a jobs command or
otherwise.

If you type fg without an argument, the shell will put dave in the foreground, because it was put in the
background most recently. But if you type fg %bob (or fg %2), bob will go in the foreground.

You can also refer to the job most recently put in the background by %+. Similarly, %i- refers to the
background job invoked next-most-recently (bob in this case). That explains the plus and minus signs in
the above: the plus sign shows the most recently invoked job; the minus sign shows the
next-most-recently invoked job. [3]

[3] This is analogous to ~+ and ~- as references to the currently and previous directory; see
the footnote in Chapter 7, Input/Output and Command-line Processing. Also: %% is a
synonym for %+.

If more than one background job has the same command, then %command will disambiguate by
choosing the most recently invoked job (as you'd expect). If this isn't what you want, you need to use the
job number instead of the command name. However, if the commands have different arguments, you can
use %?string instead of %command. %?string refers to the job whose command contains the string. For
example, assume you started these background jobs:

$ bob pete &
[1] 189
$ bob ralph &
[2] 190
$

Then you can use %?pete and %?ralph to refer to each of them, although actually %?pe and %?ra
are sufficient to disambiguate.

Table 8.1 lists all of the ways to refer to background jobs. We have found that, given how infrequently
people use job control commands, job numbers or command names are sufficient, and the other ways are
superfluous.

Table 8.1: Ways to Refer to Background Jobs
Reference Background job

[Chapter 8] 8.2 Job Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_02.htm (2 of 4) [2/8/2001 4:59:55 PM]

%N Job number N
%string Job whose command begins with string
%?string Job whose command contains string
%+ Most recently invoked background job
%% Same as above
%- Second-most recently invoked background job

8.2.2 Suspending a Job

Just as you can put background jobs into the foreground with fg, you can also put a foreground job into
the background. This involves suspending a job, so that the shell regains control of your terminal.

To suspend a job, type [CTRL-Z] [4] while it is running. This is analogous to typing [CTRL-C] (or
whatever your interrupt key is), except that you can resume the job after you have stopped it. When you
type [CTRL-Z], the shell responds with a message like this:

[4] This assumes that the [CTRL-Z] key is set up as your suspend key; just as with
[CTRL-C] and interrupts, this is conventional but by no means required.

[1] + Stopped command

Then it gives you your prompt back.

To resume a suspended job so that it continues to run in the foreground, just type fg. If, for some reason,
you put other jobs in the background after you typed [CTRL-Z], use fg with a job name or number. For
example:

fred is running...
CTRL-Z
[1] + Stopped fred
$ bob &
[2] bob &
$ fg %fred
fred resumes in the foreground...

The ability to suspend jobs and resume them in the foreground comes in very handy when you have a
conventional terminal (as opposed to a windowing workstation) and you are using a text editor like vi on
a file that needs to be processed. For example, if you are editing a file for the troff text processor, you can
do the following:

$ vi myfile
edit the file... CTRL-Z
Stopped [1] vi
$ troff myfile
troff reports an error
$ fg
vi comes back up in the same place in your file

Programmers often use the same technique when debugging source code.

[Chapter 8] 8.2 Job Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_02.htm (3 of 4) [2/8/2001 4:59:55 PM]

You will probably also find it useful to suspend a job and resume it in the background instead of the
foreground. You may start a command in the foreground (i.e., normally) and find that it takes much
longer than you expected-for example, a grep, sort, or database query. You need the command to finish,
but you would also like control of your terminal back so that you can do other work. If you type
[CTRL-Z] followed by bg, you will move the job to the background. [5]

[5] Be warned, however, that not all commands are "well-behaved" when you do this. Be
especially careful with commands that run over a network on a remote machine; you may
end up "confusing" the remote program.

8.1 Process IDs and Job
Numbers

8.3 Signals

[Chapter 8] 8.2 Job Control

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_02.htm (4 of 4) [2/8/2001 4:59:55 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 8
Process Handling

8.3 Signals
We mentioned earlier that typing CTRL-Z to suspend a job is similar to typing CTRL-C to stop a job,
except that you can resume the job later. They are actually similar in a deeper way: both are particular
cases of the act of sending a signal to a process.

A signal is a message that one process sends to another when some abnormal event takes place or when it
wants the other process to do something. Most of the time, a process send a signal to a subprocess it
created. You're undoubtedly already comfortable with the idea that one process can communicate with
another through an I/O pipeline; think of a signal as another way for processes to communicate with each
other. (In fact, any textbook on operating systems will tell you that both are examples of the general
concept of interprocess communication, or IPC.) [6]

[6] Pipes and signals were the only IPC mechanisms in early versions of UNIX. More
modern versions like System V and 4.x BSD have additional mechanisms, such as sockets,
named pipes, and shared memory. Named pipes are accessible to shell programmers through
the mknod(1) command, which is beyond the scope of this book.

Depending on the version of UNIX, there are two or three dozen types of signals, including a few that
can be used for whatever purpose a programmer wishes. Signals have numbers (from 1 to the number of
signals the system supports) and names; we'll use the latter. You can get a list of all the signals on your
system, by name and number, by typing kill -l. Bear in mind, when you write shell code involving
signals, that signal names are more portable to other versions of UNIX than signal numbers.

8.3.1 Control-key Signals

When you type CTRL-C, you tell the shell to send the INT (for "interrupt") signal to the current job;
[CTRL-Z] sends TSTP (on most systems, for "terminal stop"). You can also send the current job a QUIT
signal by typing CTRL-\ (control-backslash); this is sort of like a "stronger" version of [CTRL-C]. [7]
You would normally use [CTRL-] when (and only when) [CTRL-C] doesn't work.

[7] [CTRL-]\ can also cause the shell to leave a file called core in your current directory.
This file contains an image of the process to which you sent the signal; a programmer could
use it to help debug the program that was running. The file's name is a (very) old-fashioned
term for a computer's memory. Other signals leave these "core dumps" as well; you should
feel free to delete them unless a systems programmer tells you otherwise.

[Chapter 8] 8.3 Signals

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_03.htm (1 of 6) [2/8/2001 4:59:59 PM]

As we'll see soon, there is also a "panic" signal called KILL that you can send to a process when even
[CTRL-] doesn't work. But it isn't attached to any control key, which means that you can't use it to stop
the currently running process. INT, TSTP, and QUIT are the only signals you can use with control keys.
[8]

[8] Some BSD-derived systems have additional control-key signals.

You can customize the control keys used to send signals with options of the stty(1) command. These vary
from system to system-consult your man page for the command-but the usual syntax is stty signame
char. signame is a name for the signal that, unfortunately, is often not the same as the names we use here.
Table 1.7 in Chapter 1, Korn Shell Basics lists stty names for signals found on all versions of UNIX. char
is the control character, which you can give in the same notation we use. For example, to set your INT
key to [CTRL-X] on most systems, use:

stty intr ^X

Now that we've told you how to do this, we should add that we don't recommend it. Changing your signal
keys could lead to trouble if someone else has to stop a runaway process on your machine.

Most of the other signals are used by the operating system to advise processes of error conditions, like a
bad machine code instruction, bad memory address, or division by zero, or "interesting" events such as a
user logging out or a timer ("alarm") going off. The remaining signals are used for esoteric error
conditions that are of interest only to low-level systems programmers; newer versions of UNIX have
more and more arcane signal types.

8.3.2 kill

You can use the built-in shell command kill to send a signal to any process you created-not just the
currently running job. kill takes as argument the process ID, job number, or command name of the
process to which you want to send the signal. By default, kill sends the TERM ("terminate") signal,
which usually has the same effect as the INT signal that you send with [CTRL-C]. But you can specify a
different signal by using the signal name (or number) as an option, preceded by a dash.

kill is so-named because of the nature of the default TERM signal, but there is another reason, which has
to do with the way UNIX handles signals in general. The full details are too complex to go into here, but
the following explanation should suffice.

Most signals cause a process that receives them to roll over and die; therefore if you send any one of
these signals, you "kill" the process that receives it. However, programs can be set up to "trap" specific
signals and take some other action. For example, a text editor would do well to save the file being edited
before terminating when it receives a signal such as INT, TERM, or QUIT. Determining what to do when
various signals come in is part of the fun of UNIX systems programming.

Here is an example of kill. Say you have a fred process in the background, with process ID 480 and job
number 1, that needs to be stopped. You would start with this command:

$ kill %1

If you were successful, you would see a message like this:

[1] + Terminated fred &

[Chapter 8] 8.3 Signals

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_03.htm (2 of 6) [2/8/2001 4:59:59 PM]

If you don't see this, then the TERM signal failed to terminate the job. The next step would be to try
QUIT:

$ kill -QUIT %1

If that worked, you would see these messages:

fred[1]: 480 Quit(coredump)
[1] + Done(131) fred &

The 131 is the exit status returned by fred. [9] But if even QUIT doesn't work, the "last-ditch" method
would be to use KILL:

[9] When a shell script is sent a signal, it exits with status 128+N, where N is the number of
the signal it received (128 changes to 256 in future releases). In this case, fred is a shell
script, and QUIT happens to be signal number 3.

$ kill -KILL %1

(Notice how this has the flavor of "yelling" at the runaway process.) This produces the message:

[1] + Killed fred &

It is impossible for a process to "trap" a KILL signal-the operating system should terminate the process
immediately and unconditionally. If it doesn't, then either your process is in one of the "funny states"
we'll see later in this chapter, or (far less likely) there's a bug in your version of UNIX.

Here's another example.

Task 8.1

Write a script called killalljobs that kills all background jobs.

The solution to this task is simple, relying on jobs -p:

kill "$@" $(jobs -p)

You may be tempted to use the KILL signal immediately, instead of trying TERM (the default) and
QUIT first. Don't do this. TERM and QUIT are designed to give a process the chance to "clean up"
before exiting, whereas KILL will stop the process, wherever it may be in its computation. Use KILL
only as a last resort!

You can use the kill command with any process you create, not just jobs in the background of your
current shell. For example, if you use a windowing system, then you may have several terminal windows,
each of which runs its own shell. If one shell is running a process that you want to stop, you can kill it
from another window-but you can't refer to it with a job number because it's running under a different
shell. You must instead use its process ID.

8.3.3 ps

This is probably the only situation in which a casual user would need to know the ID of a process. The
command ps(1) gives you this information; however, it can give you lots of extra information that you
must wade through as well.

[Chapter 8] 8.3 Signals

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_03.htm (3 of 6) [2/8/2001 4:59:59 PM]

ps is a complex command. It takes several options, some of which differ from one version of UNIX to
another. To add to the confusion, you may need different options on different UNIX versions to get the
same information! We will use options available on the two major types of UNIX systems, those derived
from System V (such as most of the versions for Intel 386/486 PCs, as well as IBM's AIX and
Hewlett-Packard's HP/UX) and BSD (DEC's Ultrix, SunOS). If you aren't sure which kind of UNIX
version you have, try the System V options first.

You can invoke ps in its simplest form without any options. In this case, it will print a line of information
about the current login shell and any processes running under it (i.e., background jobs). For example, if
you invoked three background jobs, as we saw earlier in the chapter, ps on System V-derived versions of
UNIX would produce output that looks something like this:

 PID TTY TIME COMD
 146 pts/10 0:03 ksh
 2349 pts/10 0:03 fred
 2367 pts/10 0:17 bob
 2389 pts/10 0:09 dave
 2390 pts/10 0:00 ps

The output on BSD-derived systems looks like this:

 PID TT STAT TIME COMMAND
 146 10 S 0:03 /bin/ksh -i
 2349 10 R 0:03 fred
 2367 10 D 0:17 bob -f /dev/rmt0
 2389 10 R 0:09 dave
 2390 10 R 0:00 ps

(You can ignore the STAT column.) This is a bit like the jobs command. PID is the process ID; TTY (or
TT) is the terminal (or pseudo-terminal, if you are using a windowing system) the process was invoked
from; TIME is the amount of processor time (not real or "wall clock" time) the process has used so far;
COMD (or COMMAND) is the command. Notice that the BSD version includes the command's
arguments, if any; also notice that the first line reports on the parent shell process, and in the last line, ps
reports on itself.

ps without arguments lists all processes started from the current terminal or pseudo-terminal. But since ps
is not a shell command, it doesn't correlate process IDs with the shell's job numbers. It also doesn't help
you find the ID of the runaway process in another shell window.

To get this information, use ps -a (for "all"); this lists information on a different set of processes,
depending on your UNIX version.

8.3.3.1 System V

Instead of listing all of those that were started under a specific terminal, ps -a on System V-derived
systems lists all processes associated with any terminal that aren't group leaders. For our purposes, a
"group leader" is the parent shell of a terminal or window. Therefore, if you are using a windowing
system, ps -a lists all jobs started in all windows (by all users), but not their parent shells.

[Chapter 8] 8.3 Signals

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_03.htm (4 of 6) [2/8/2001 4:59:59 PM]

Assume that, in the above example, you have only one terminal or window. Then ps -a will print the
same output as plain ps except for the first line, since that's the parent shell. This doesn't seem to be very
useful.

But consider what happens when you have multiple windows open. Let's say you have three windows, all
running terminal emulators like xterm for the X Window System. You start background jobs fred, dave,
and bob in windows with pseudo-terminal numbers 1, 2, and 3, respectively. This situation is shown in
Figure 8.1.

Figure 8.1: Background jobs in multiple windows

Assume you are in the uppermost window. If you type ps, you will see something like this:

 PID TTY TIME COMD
 146 pts/1 0:03 ksh
 2349 pts/1 0:03 fred
 2390 pts/1 0:00 ps

But if you type ps -a, you will see this:

 PID TTY TIME COMD
 2349 pts/1 0:03 fred
 2367 pts/2 0:17 bob
 2389 pts/3 0:09 dave
 2390 pts/1 0:00 ps

Now you should see how ps -a can help you track down a runaway process. If it's dave, you can type kill
2389. If that doesn't work, try kill -QUIT 2389, or in the worst case, kill -KILL 2389.

8.3.3.2 BSD

On BSD-derived systems, ps -a lists all jobs that were started on any terminal; in other words, it's a bit

[Chapter 8] 8.3 Signals

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_03.htm (5 of 6) [2/8/2001 4:59:59 PM]

like concatenating the the results of plain ps for every user on the system. Given the above scenario, ps -a
will show you all processes that the System V version shows, plus the group leaders (parent shells).

Unfortunately, ps -a (on any version of UNIX) will not report processes that are in certain pathological
conditions where they "forget" things like what shell invoked them and what terminal they belong to.
Such processes have colorful names ("zombies," "orphans") that are actually used in UNIX technical
literature, not just informally by systems hackers. If you have a serious runaway process problem, it's
possible that the process has entered one of these states.

Let's not worry about why or how a process gets this way. All you need to understand is that the process
doesn't show up when you type ps -a. You need another option to ps to see it: on System V, it's ps -e
("everything"), whereas on BSD, it's ps -ax.

These options tell ps to list processes that either weren't started from terminals or "forgot" what terminal
they were started from. The former category includes lots of processes that you probably didn't even
know existed: these include basic processes that run the system and so-called daemons (pronounced
"demons") that handle system services like mail, printing, network file systems, etc.

In fact, the output of ps -e or ps -ax is an excellent source of education about UNIX system internals, if
you're curious about them. Run the command on your system and, for each line of the listing that looks
interesting, invoke man on the process name or look it up in the Unix Programmer's Manual for your
system.

User shells and processes are listed at the very bottom of ps -e or ps -ax output; this is where you should
look for runaway processes. Notice that many processes in the listing have ? instead of a terminal. Either
these aren't supposed to have one (such as the basic daemons) or they're runaways. Therefore it's likely
that if ps -a doesn't find a process you're trying to kill, ps -e (or ps -ax) will list it with ? in the TTY (or
TT) column. You can determine which process you want by looking at the COMD (or COMMAND)
column.

8.2 Job Control 8.4 trap

[Chapter 8] 8.3 Signals

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_03.htm (6 of 6) [2/8/2001 4:59:59 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 8
Process Handling

8.4 trap
We've been discussing how signals affect the casual user; now let's talk a bit about how shell
programmers can use them. We won't go into too much depth about this, because it's really the domain of
systems programmers.

We mentioned above that programs in general can be set up to "trap" specific signals and process them in
their own way. The trap built-in command lets you do this from within a shell script. trap is most
important for "bullet-proofing" large shell programs so that they react appropriately to abnormal
events-just as programs in any language should guard against invalid input. It's also important for certain
systems programming tasks, as we'll see in the next chapter.

The syntax of trap is:

trap cmd sig1 sig2 ...

That is, when any of sig1, sig2, etc., are received, run cmd, then resume execution. After cmd finishes,
the script resumes execution just after the command that was interrupted. [10]

[10] This is what usually happens. Sometimes the command currently running will abort
(sleep acts like this, as we'll see soon); other times it will finish running. Further details are
beyond the scope of this book.

Of course, cmd can be a script or function. The sigs can be specified by name or by number. You can
also invoke trap without arguments, in which case the shell will print a list of any traps that have been
set, using symbolic names for the signals.

Here's a simple example that shows how trap works. Suppose we have a shell script called loop with this
code:

while true; do
 sleep 60
done

This will just pause for 60 seconds (the sleep(1) command) and repeat indefinitely. true is a "do-nothing"
command whose exit status is always 0. [11] Try typing in this script. Invoke it, let it run for a little
while, then type [CTRL-C] (assuming that is your interrupt key). It should stop, and you should get your
shell prompt back.

[Chapter 8] 8.4 trap

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_04.htm (1 of 7) [2/8/2001 5:00:03 PM]

[11] Actually, it's a built-in alias for :, the real shell "no-op."

Now insert the following line at the beginning of the script:

trap 'print \'You hit control-C!\'' INT

Invoke the script again. Now hit CTRL-C. The odds are overwhelming that you are interrupting the sleep
command (as opposed to true). You should see the message "You hit control-C!", and the script will not
stop running; instead, the sleep command will abort, and it will loop around and start another sleep. Hit
CTRL-\ to get it to stop. Type rm core to get rid of the resulting core dump file.

Next, run the script in the background by typing loop &. Type kill %loop (i.e., send it the TERM
signal); the script will terminate. Add TERM to the trap command, so that it looks like this:

trap 'print \'You hit control-C!\'' INT TERM

Now repeat the process: run it in the background and type kill %loop. As before, you will see the
message and the process will keep on running. Type kill -KILL %loop to stop it.

Notice that the message isn't really appropriate when you use kill. We'll change the script so it prints a
better message in the kill case:

trap 'print \'You hit control-C!\'' INT
trap 'print \'You tried to kill me!\'' TERM

while true; do
 sleep 60
done

Now try it both ways: in the foreground with [CTRL-C] and in the background with kill. You'll see
different messages.

8.4.1 Traps and Functions

The relationship between traps and shell functions is straightforward, but it has certain nuances that are
worth discussing. The most important thing to understand is that functions can have their own local traps;
these aren't known outside of the function. In particular, the surrounding script doesn't know about them.
Consider this code:

function settrap {
 trap 'print \'You hit control-C!\'' INT
}

settrap
while true; do
 sleep 60
done

If you invoke this script and hit your interrupt key, it will just exit. The trap on INT in the function is
known only inside that function. On the other hand:

function loop {

[Chapter 8] 8.4 trap

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_04.htm (2 of 7) [2/8/2001 5:00:03 PM]

 trap 'print \'How dare you!\'' INT
 while true; do
 sleep 60
 done
}

trap 'print \'You hit control-C!\'' INT
loop

When you run this script and hit your interrupt key, it will print "How dare you!". But how about this:

function loop {
 while true; do
 sleep 60
 done
}

trap 'print \'You hit control-C!\'' INT
loop
print 'exiting...'

This time the looping code is within a function, and the trap is set in the surrounding script. If you hit
your interrupt key, it will print the message and then print "exiting...". It will not repeat the loop as
above.

Why? Remember that when the signal comes in, the shell aborts the current command, which in this case
is a call to a function. The entire function aborts, and execution resumes at the next statement after the
function call.

The advantage of traps that are local to functions is that they allow you to control a function's behavior
separately from the surrounding code.

Yet you may want to define global traps inside functions. There is a rather kludgy way to do this; it
depends on a feature that we introduce in the next chapter, which we call a "fake signal." Here is a way to
set trapcode as a global trap for signal SIG inside a function:

trap "trap trapcode SIG" EXIT

This sets up the command trap trapcode SIG to run right after the function exits, at which time the
surrounding shell script is in scope (i.e., is "in charge"). When that command runs, trapcode is set up to
handle the SIG signal.

For example, you may want to reset the trap on the signal you just received, like this:

function trap_handler {
 trap "trap second_handler INT" EXIT
 print 'Interrupt: one more to abort.'
}

function second_handler {

[Chapter 8] 8.4 trap

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_04.htm (3 of 7) [2/8/2001 5:00:03 PM]

 print 'Aborted.'
 exit
}

trap trap_handler INT

This code acts like the UNIX mail utility: when you are typing in a message, you must press your
interrupt key twice to abort the process.

Speaking of mail, now we'll show a more practical example of traps.

Task 8.2

As part of an electronic mail system, write the shell code that lets a user compose a message.

The basic idea is to use cat to create the message in a temporary file and then hand the file's name off to a
program that actually sends the message to its destination. The code to create the file is very simple:

msgfile=/tmp/msg$$
cat > $msgfile

Since cat without an argument reads from the standard input, this will just wait for the user to type a
message and end it with the end-of-text character [CTRL-D].

8.4.2 Process ID Variables and Temporary Files

The only thing new about this is $$ in the filename expression. This is a special shell variable whose
value is the process ID of the current shell.

To see how $$ works, type ps and note the process ID of your shell process (ksh). Then type print "$$";
the shell will respond with that same number. Now type ksh to start a subshell, and when you get a
prompt, repeat the process. You should see a different number, probably slightly higher than the last one.

A related built-in shell variable is ! (i.e., its value is $!), which contains the process ID of the most
recently invoked background job. To see how this works, invoke any job in the background and note the
process ID printed by the shell next to [1]. Then type print "$!"; you should see the same number.

The ! variable is useful in shell programs that involve multiple communicating processes, as we'll see
later.

To return to our mail example: since all processes on the system must have unique process IDs, $$ is
excellent for constructing names of temporary files. We saw an example of this back in Chapter 2,
Command-line Editing: we used the expression .hist$$ as a way of generating unique names for
command history files so that several can be open at once, allowing multiple shell windows on a
workstation to have their own history files. This expression generates names like .hist234. There are also
examples of $$ in Chapter 7 and Chapter 9, Debugging Shell Programs.

The directory /tmp is conventionally used for temporary files. Many systems also have another directory,
/usr/tmp, for the same purpose. All files in these directories are usually erased whenever the computer is

[Chapter 8] 8.4 trap

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_04.htm (4 of 7) [2/8/2001 5:00:03 PM]

rebooted.

Nevertheless, a program should clean up such files before it exits, to avoid taking up unnecessary disk
space. We could do this in our code very easily by adding the line rm $msgfile after the code that
actually sends the message. But what if the program receives a signal during execution? For example,
what if a user changes his or her mind about sending the message and hits CTRL-C to stop the process?
We would need to clean up before exiting. We'll emulate the actual UNIX mail system by saving the
message being written in a file called dead.letter in the current directory. We can do this by using trap
with a command string that includes an exit command:

trap 'mv $msgfile dead.letter; exit' INT TERM
msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

When the script receives an INT or TERM signal, it will remove the temp file and then exit. Note that the
command string isn't evaluated until it needs to be run, so $msgfile will contain the correct value; that's
why we surround the string in single quotes.

But what if the script receives a signal before msgfile is created-unlikely though that may be? Then mv
will try to rename a file that doesn't exist. To fix this, we need to test for the existence of the file $msgfile
before trying to delete it. The code for this is a bit unwieldy to put in a single command string, so we'll
use a function instead:

function cleanup {
 if [[-a $msgfile]]; then
 mv $msgfile dead.letter
 fi
 exit
}

trap cleanup INT TERM

msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

8.4.3 Ignoring Signals

Sometimes a signal comes in that you don't want to do anything about. If you give the null string (" " or
' ') as the command argument to trap, then the shell will effectively ignore that signal. The classic
example of a signal you may want to ignore is HUP (hangup), the signal the shell sends to all of your
background processes when you log out.

HUP has the usual default behavior: it will kill the process that receives it. But there are bound to be
times when you don't want a background job to terminate when you log out. For example, you may start

[Chapter 8] 8.4 trap

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_04.htm (5 of 7) [2/8/2001 5:00:03 PM]

a long compile or word processing job; you want to log out and come back later when you expect the job
to be finished. Under normal circumstances, your background job will terminate when you log out. But if
you run it in a shell environment where the HUP signal is ignored, the job will finish.

To do this, you could write a simple function that looks like this:

function ignorehup {
 trap "" HUP
 eval "$@"
}

We write this as a function instead of a script for reasons that will become clearer when we look in detail
at subshells at the end of this chapter.

Actually, there is a UNIX command called nohup that does precisely this. The start script from the last
chapter could include nohup:

eval nohup "$@" > logfile 2>&1 &

This prevents HUP from terminating your command and saves its standard and error output in a file.
Actually, the following is just as good:

nohup "$@" > logfile 2>&1 &

If you understand why eval is essentially redundant when you use nohup in this case, then you have a
firm grasp on the material in the previous chapter.

8.4.4 Resetting Traps

Another "special case" of the trap command occurs when you give a dash (-) as the command argument.
This resets the action taken when the signal is received to the default, which usually is termination of the
process.

As an example of this, let's return to Task 8-2, our mail program. After the user has finished sending the
message, the temporary file is erased. At that point, since there is no longer any need to "clean up," we
can reset the signal trap to its default state. The code for this, apart from function definitions, is:

trap abortmsg INT
trap cleanup TERM

msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

trap - INT TERM

The last line of this code resets the handlers for the INT and TERM signals.

At this point you may be thinking that one could get seriously carried away with signal handling in a
shell script. It is true that "industrial strength" programs devote considerable amounts of code to dealing
with signals. But these programs are almost always large enough so that the signal-handling code is a

[Chapter 8] 8.4 trap

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_04.htm (6 of 7) [2/8/2001 5:00:03 PM]

tiny fraction of the whole thing. For example, you can bet that the real UNIX mail system is pretty darn
bullet-proof.

However, you will probably never write a shell script that is complex enough, and that needs to be robust
enough, to merit lots of signal handling. You may write a prototype for a program as large as mail in
shell code, but prototypes by definition do not need to be bullet-proofed.

Therefore, you shouldn't worry about putting signal-handling code in every 20-line shell script you write.
Our advice is to determine if there are any situations in which a signal could cause your program to do
something seriously bad and add code to deal with those contingencies. What is "seriously bad"? Well,
with respect to the above examples, we'd say that the case where HUP causes your job to terminate on
logout is seriously bad, while the temporary file situation in our mail program is not.

The Korn shell has several new options to trap (with respect to the same command in most Bourne
shells) that make it useful as an aid for debugging shell scripts. We'll cover these in the next chapter.

8.3 Signals 8.5 Coroutines

[Chapter 8] 8.4 trap

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_04.htm (7 of 7) [2/8/2001 5:00:03 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 8
Process Handling

8.5 Coroutines
We've spent the last several pages on almost microscopic details of process behavior. Rather than
continue our descent into the murky depths, we'll revert to a higher-level view of processes.

Earlier in this chapter, we covered ways of controlling multiple simultaneous jobs within an interactive
login session; now we'll consider multiple process control within shell programs. When two (or more)
processes are explicitly programmed to run simultaneously and possibly communicate with each other,
we call them coroutines.

This is actually nothing new: a pipeline is an example of coroutines. The shell's pipeline construct
encapsulates a fairly sophisticated set of rules about how processes interact with each other. If we take a
closer look at these rules, we'll be better able to understand other ways of handling coroutines-most of
which turn out to be simpler than pipelines.

When you invoke a simple pipeline, say ls | more, the shell invokes a series of UNIX primitive
operations, a.k.a. system calls. In effect, the shell tells UNIX to do the following things; in case you're
interested, we include in parentheses the actual system call used at each step:

Create two subprocesses, which we'll call P1 and P2 (the fork system call).1.

Set up I/O between the processes so that P1's standard output feeds into P2's standard input (pipe).2.

Start /bin/ls in process P1 (exec).3.

Start /bin/more in process P2 (exec).4.

Wait for both processes to finish (wait).5.

You can probably imagine how the above steps change when the pipeline involves more than two
processes.

Now let's make things simpler. We'll see how to get multiple processes to run at the same time if the
processes do not need to communicate. For example, we want the processes dave and bob to run as
coroutines, without communication, in a shell script. Our initial solution would be this:

dave &
bob

Assume for the moment that bob is the last command in the script. The above will work-but only if dave

[Chapter 8] 8.5 Coroutines

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_05.htm (1 of 7) [2/8/2001 5:00:08 PM]

finishes first. If dave is still running when the script finishes, then it becomes an orphan, i.e., it enters
one of the "funny states" we mentioned earlier in this chapter. Never mind the details of orphanhood; just
believe that you don't want this to happen, and if it does, you may need to use the "runaway process"
method of stopping it, discussed earlier in this chapter.

8.5.1 wait

There is a way of making sure the script doesn't finish before dave does: the built-in command wait.
Without arguments, wait simply waits until all background jobs have finished. So to make sure the above
code behaves properly, we would add wait, like this:

dave &
bob
wait

Here, if bob finishes first, the parent shell will wait for dave to finish before finishing itself.

If your script has more than one background job and you need to wait for specific ones to finish, you can
give wait the same type of job argument (with a percent sign) as you would use with kill, fg, or bg.

However, you will probably find that wait without arguments suffices for all coroutines you will ever
program. Situations in which you would need to wait for specific background jobs are quite complex and
beyond the scope of this book.

8.5.2 Advantages and Disadvantages of Coroutines

In fact, you may be wondering why you would ever need to program coroutines that don't communicate
with each other. For example, why not just run bob after dave in the usual way? What advantage is there
in running the two jobs simultaneously?

If you are running on a computer with one processor (CPU), then there is a performance advantage-but
only if you have the bgnice option turned off (see Chapter 3, Customizing Your Environment), and even
then only in certain situations.

Roughly speaking, you can characterize a process in terms of how it uses system resources in three ways:
whether it is CPU intensive (e.g., does lots of number crunching), I/O intensive (does a lot of reading or
writing to the disk), or interactive (requires user intervention).

We already know from Chapter 1 that it makes no sense to run an interactive job in the background. But
apart from that, the more two or more processes differ with respect to these three criteria, the more
advantage there is in running them simultaneously. For example, a number-crunching statistical
calculation would do well when running at the same time as a long, I/O-intensive database query.

On the other hand, if two processes use resources in similar ways, it may even be less efficient to run
them at the same time as it would be to run them sequentially. Why? Basically, because under such
circumstances, the operating system often has to "time-slice" the resource(s) in contention.

For example, if both processes are "disk hogs," the operating system may enter a mode where it
constantly switches control of the disk back and forth between the two competing processes; the system

[Chapter 8] 8.5 Coroutines

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_05.htm (2 of 7) [2/8/2001 5:00:08 PM]

ends up spending at least as much time doing the switching as it does on the processes themselves. This
phenomenon is known as thrashing; at its most severe, it can cause a system to come to a virtual
standstill. Thrashing is a common problem; system administrators and operating system designers both
spend lots of time trying to minimize it.

8.5.3 Parallelization

But if you have a computer with multiple CPUs (such as a Pyramid, Sequent, or Sun MP), you should be
less concerned about thrashing. Furthermore, coroutines can provide dramatic increases in speed on this
type of machine, which is often called a parallel computer; analogously, breaking up a process into
coroutines is sometimes called parallelizing the job.

Normally, when you start a background job on a multiple-CPU machine, the computer will assign it to
the next available processor. This means that the two jobs are actually-not just metaphorically-running at
the same time.

In this case, the running time of the coroutines is essentially equal to that of the longest-running job plus
a bit of overhead, instead of the sum of the run times of all processes (although if the CPUs all share a
common disk drive, the possibility of I/O-related thrashing still exists). In the best case-all jobs having
the same run time and no I/O contention-you get a speedup factor equal to the number of jobs.

Parallelizing a program is often not easy; there are several subtle issues involved and there's plenty of
room for error. Nevertheless, it's worthwhile to know how to parallelize a shell script whether or not you
have a parallel machine, especially since such machines are becoming more and more common.

We'll show how to do this-and give you an idea of some of the problems involved-by means of a simple
task whose solution is amenable to parallelization.

Task 8.3

Write a utility that allows you to make multiple copies of a file at the same time.

We'll call this script mcp. The command mcp filename dest1 dest2 ... should copy filename to all of the
destinations given. The code for this should be fairly obvious:

file=$1
shift
for dest in "$@"; do
 cp $file $dest
done

Now let's say we have a parallel computer and we want this command to run as fast as possible. To
parallelize this script, it's a simple matter of firing off the cp commands in the background and adding a
wait at the end:

file=$1
shift
for dest in "$@"; do
 cp $file $dest &
done

[Chapter 8] 8.5 Coroutines

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_05.htm (3 of 7) [2/8/2001 5:00:08 PM]

wait

Simple, right? Well, there is one little problem: what happens if the user specifies duplicate destinations?
If you're lucky, the file just gets copied to the same place twice. Otherwise, the identical cp commands
will interfere with each other, possibly resulting in a file that contains two interspersed copies of the
original file. In contrast, if you give the regular cp command two arguments that point to the same file, it
will print an error message and do nothing.

To fix this problem, we would have to write code that checks the argument list for duplicates. Although
this isn't too hard to do (see the exercises at the end of this chapter), the time it takes that code to run
might offset any gain in speed from parallelization; furthermore, the code that does the checking detracts
from the simple elegance of the script.

As you can see, even a seemingly trivial parallelization task has problems resulting from multiple
processes having concurrent access to a given system resource (a file in this case). Such problems,
known as concurrency control issues, become much more difficult as the complexity of the application
increases. Complex concurrent programs often have much more code for handling the special cases than
for the actual job the program is supposed to do!

Therefore it shouldn't surprise you that much research has been and is being done on parallelization, the
ultimate goal being to devise a tool that parallelizes code automatically. (Such tools do exist; they usually
work in the confines of some narrow subset of the problem.) Even if you don't have access to a
multiple-CPU machine, parallelizing a shell script is an interesting exercise that should acquaint you with
some of the issues that surround coroutines.

8.5.4 Coroutines with Two-way Pipes

Now that we have seen how to program coroutines that don't communicate with each other, we'll build
on that foundation and discuss how to get them to communicate-in a more sophisticated way than with a
pipeline. The Korn shell has a set of features that allow programmers to set up two-way communication
between coroutines. These features aren't included in most Bourne shells.

If you start a background process by appending |& to a command instead of &, the Korn shell will set up
a special two-way pipeline between the parent shell and the new background process. read -p in the
parent shell reads a line of the background process' standard output; similarly, print -p in the parent shell
feeds into the standard input of the background process. Figure 8.2 shows how this works.

Figure 8.2: Coroutine I/O

[Chapter 8] 8.5 Coroutines

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_05.htm (4 of 7) [2/8/2001 5:00:08 PM]

This scheme has some intriguing possibilities. Notice the following things: first, the parent shell
communicates with the background process independently of its own standard input and output. Second,
the background process need not have any idea that a shell script is communicating with it in this
manner. This means that the background process can be any pre-existing program that uses its standard
input and output in normal ways.

Here's a task that shows a simple example:

Task 8.4

You would like to have an online calculator, but the existing UNIX utility dc(1) uses
Reverse Polish Notation (RPN), a la Hewlett-Packard calculators. You'd rather have one
that works like the $3.95 model you got with that magazine subscription. Write a calculator
program that accepts standard algebraic notation.

The objective here is to write the program without re-implementing the calculation engine that dc already
has-in other words, to write a program that translates algebraic notation to RPN and passes the translated
line to dc to do the actual calculation. [12]

[12] The utility bc(1) actually provides similar functionality.

We'll assume that the function alg2rpn, which does the translation, already exists: given a line of
algebraic notation as argument, it prints the RPN equivalent on the standard output. If we have this, then
the calculator program (which we'll call adc) is very simple:

dc |&

while read line'?adc> '; do
 print -p "$(alg2rpn $line)"
 read -p answer
 print " = $answer"
done

[Chapter 8] 8.5 Coroutines

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_05.htm (5 of 7) [2/8/2001 5:00:08 PM]

The first line of this code starts dc as a coroutine with a two-way pipe. Then the while loop prompts the
user for a line and reads it until the user types [CTRL-D] for end-of-input. The loop body converts the
line to RPN, passes it to dc through the pipe, reads dc's answer, and prints it after an equal sign. For
example:

$ adc
adc> 2 + 3
 = 5
adc> (7 * 8) + 54
 = 110
adc> ^D
$

Actually-as you may have noticed-it's not entirely necessary to have a two-way pipe with dc. You could
do it with a standard pipe and let dc do its own output, like this:

{ while read line'?adc> '; do
 print "$(alg2rpn $line)"
 done
} | dc

The only difference from the above is the lack of equal sign before each answer is printed.

But: what if you wanted to make a fancy graphical user interface (GUI), like the xcalc program that
comes with many X Window System installations? Then, clearly, dc's own output would not be
satisfactory, and you would need full control of your own standard output in the parent process. The user
interface would have to capture dc's output and display it in the window properly. The two-way pipe is
an excellent solution to this problem: just imagine that, instead of print " = $answer ", there is a call to a
routine that displays the answer in the "readout" section of the calculator window.

All of this suggests that the two-way pipe scheme is great for writing shell scripts that interpose a
software layer between the user (or some other program) and an existing program that uses standard
input and output. In particular, it's great for writing new interfaces to old, standard UNIX programs that
expect line-at-a-time, character-based user input and output. The new interfaces could be GUIs, or they
could be network interface programs that talk to users over links to remote machines. In other words, the
Korn shell's two-way pipe construct is designed to help develop very up-to-date software!

8.5.5 Two-way Pipes Versus Standard Pipes

Before we leave the subject of coroutines, we'll complete the circle by showing how the two-way pipe
construct compares to regular pipelines. As you may have been able to figure out by now, it is possible to
program a standard pipeline by using |& with print -p.

This has the advantage of reserving the parent shell's standard output for other use. The disadvantage is
that the child process' standard output is directed to the two-way pipe: if the parent process doesn't read it
with read -p, then it's effectively lost.

[Chapter 8] 8.5 Coroutines

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_05.htm (6 of 7) [2/8/2001 5:00:08 PM]

8.4 trap 8.6 Subshells

[Chapter 8] 8.5 Coroutines

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_05.htm (7 of 7) [2/8/2001 5:00:08 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 8
Process Handling

8.6 Subshells
Coroutines clearly represent the most complex relationship between processes that the Korn shell
defines. To conclude this chapter, we will look at a much simpler type of interprocess relationship: that
of a subshell with its parent shell. We saw in Chapter 3 that whenever you run a shell script, you actually
invoke another copy of the shell that is a subprocess of the main, or parent, shell process. Now let's look
at subshells in more detail.

8.6.1 Subshell Inheritance

The most important things you need to know about subshells are what characteristics they get, or inherit,
from their parents. These are as follows:

The current directory●

Environment variables●

Standard input, output, and error plus any other open file descriptors●

Any characteristics defined in the environment file (see Chapter 3)●

Signals that are ignored●

The first three of these are inherited by all subprocesses, while the last is unique to subshells. Just as
important are the things that a subshell does not inherit from its parent:

Shell variables, except environment variables and those defined in the environment file●

Handling of signals that are not ignored●

We covered some of this earlier (in Chapter 3), but these points are common sources of confusion, so
they bear repeating.

8.6.2 Nested Subshells

Subshells need not be in separate scripts; you can also start a subshell within the same script (or function)
as the parent. You do this in a manner very similar to the code blocks we saw in the last chapter. Just
surround some shell code with parentheses (instead of curly brackets), and that code will run in a

[Chapter 8] 8.6 Subshells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_06.htm (1 of 4) [2/8/2001 5:00:10 PM]

subshell. We'll call this a nested subshell.

For example, here is the calculator program, from above, with a subshell instead of a code block:

(while read line'?adc> '; do
 print "$(alg2rpn $line)"
 done
) | dc

The code inside the parentheses will run as a separate process. This is usually less efficient than a code
block. The differences in functionality between subshells and code blocks are very few; they primarily
pertain to issues of scope, i.e., the domains in which definitions of things like shell variables and signal
traps are known. First, code inside a nested subshell obeys the above rules of subshell inheritance, except
that it knows about variables defined in the surrounding shell; in contrast, think of blocks as code units
that inherit everything from the outer shell. Second, variables and traps defined inside a code block are
known to the shell code after the block, whereas those defined in a subshell are not.

For example, consider this code:

{
 fred=bob
 trap 'print \'You hit CTRL-C!\'' INT
}
while true; do
 print "\$fred is $fred"
 sleep 60
done

If you run this code, you will see the message $fred is bob every 60 seconds, and if you type CTRL-C,
you will see the message, You hit CTRL-C!. You will need to type CTRL-\ to stop it (don't forget to
remove the core file). Now let's change it to a nested subshell:

(
 fred=bob
 trap 'print \'You hit CTRL-C!\'' INT
)
while true; do
 print "\$fred is $fred"
 sleep 60
done

If you run this, you will see the message $fred is; the outer shell doesn't know about the subshell's
definition of fred and therefore thinks it's null. Furthermore, the outer shell doesn't know about the
subshell's trap of the INT signal, so if you hit CTRL-C, the script will terminate.

If a language supports code nesting, then it's considered desirable that definitions inside a nested unit
have a scope limited to that nested unit. In other words, nested subshells give you better control than
code blocks over the scope of variables and signal traps. Therefore we feel that you should use subshells
instead of code blocks if they are to contain variable definitions or signal traps-unless efficiency is a
concern.

[Chapter 8] 8.6 Subshells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_06.htm (2 of 4) [2/8/2001 5:00:10 PM]

This has been a long chapter, and it has covered a lot of territory. Here are some exercises that should
help you make sure you have a firm grasp on the material. The last exercise is especially difficult for
those without backgrounds in compilers, parsing theory, or formal language theory.

Write a shell script called pinfo that combines the jobs and ps commands by printing a list of jobs
with their job numbers, corresponding process IDs, running times, and full commands.

1.

Take the latest version of our C compiler shell script-or some other non-trivial shell script-and
"bullet-proof" it with signal traps.

2.

Take the non-pipeline version of our C compiler-or some other non-trivial shell script-and
parallelize it as much as possible.

3.

Write the code that checks for duplicate arguments to the mcp script. Bear in mind that different
pathnames can point to the same file. (Hint: if $i is "1", then eval 'print \${$i}' prints the first
command-line argument. Make sure you understand why.)

4.

Redo the findterms program in the last chapter using a nested subshell instead of a code block.5.

(The following doesn't have that much to do with the material in this chapter per se, but it is a
classic programming exercise:)

Write the function alg2rpn used in adc. Here's how to do this: Arithmetic expressions in
algebraic notation have the form expr op expr, where each expr is either a number or another
expression (perhaps in parentheses), and op is +, -, ×, /, or % (remainder). In RPN,
expressions have the form expr expr op. For example: the algebraic expression 2+3 is 2 3 +
in RPN; the RPN equivalent of (2+3) × (9-5) is 2 3 + 9 5 - ×. The main advantage of RPN is
that it obviates the need for parentheses and operator precedence rules (e.g., × is evaluated
before +). The dc program accepts standard RPN, but each expression should have "p"
appended to it: this tells dc to print its result, e.g., the first example above should be given to
dc as 2 3 + p.

1.

You need to write a routine that converts algebraic notation to RPN. This should be (or
include) a function that calls itself (known as a recursive function) whenever it encounters a
subexpression. It is especially important that this function keep track of where it is in the
input string and how much of the string it "eats up" during its processing. (Hint: make use of
the pattern matching operators discussed in Chapter 4 to ease the task of parsing input
strings.)

To make your life easier, don't worry about operator precedence for now; just convert to
RPN from left to right. e.g., treat 3+4×5 as (3+4)×5 and 3×4+5 as (3×4)+5. This makes it
possible for you to convert the input string on the fly, i.e., without having to read in the
whole thing before doing any processing.

2.

Enhance your solution to the previous exercise so that it supports operator precedence in the
"usual" order: ×, /, % (remainder) +, -. e.g., treat 3+4×5 as 3+(4×5) and 3×4+5 as (3×4)+5.

3.

6.

[Chapter 8] 8.6 Subshells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_06.htm (3 of 4) [2/8/2001 5:00:10 PM]

8.5 Coroutines 9. Debugging Shell Programs

[Chapter 8] 8.6 Subshells

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch08_06.htm (4 of 4) [2/8/2001 5:00:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 9

9. Debugging Shell Programs
Contents:
Basic Debugging Aids
A Korn Shell Debugger

We hope that we have convinced you that the Korn shell can be used as a serious UNIX programming
environment. It certainly has enough features, control structures, etc. But another essential part of a
programming environment is a set of powerful, integrated support tools. For example, there is a wide
assortment of screen editors, compilers, debuggers, profilers, cross-referencers, etc., for languages like C
and C++. If you program in one of these languages, you probably take such tools for granted, and you
would undoubtedly cringe at the thought of having to develop code with, say, the ed editor and the adb
machine-language debugger.

But what about programming support tools for the Korn shell? Of course, you can use any editor you
like, including vi and emacs. And because the shell is an interpreted language, you don't need a compiler.
[1] But there are no other tools available. The most serious problem is the lack of a debugger.

[1] Actually, if you are really concerned about efficiency, there are shell code compilers on
the market; they convert shell scripts to C code that often runs quite a bit faster.

This chapter addresses that lack. The shell does have a few features that help in debugging shell scripts;
we'll see these in the first part of the chapter. The Korn shell also has a couple of new features, not
present in most Bourne shells, that make it possible to implement a full-blown debugging tool. We'll
show these features; more importantly, we will present kshdb, a Korn shell debugger that uses them.
kshdb is basic yet quite useable, and its implementation serves as an extended example of various shell
programming techniques from throughout this book.

9.1 Basic Debugging Aids
What sort of functionality do you need to debug a program? At the most empirical level, you need a way
of determining what is causing your program to behave badly, and where the problem is in the code. You
usually start with an obvious what (such as an error message, inappropriate output, infinite loop, etc.), try
to work backwards until you find a what that is closer to the actual problem (e.g., a variable with a bad
value, a bad option to a command), and eventually arrive at the exact where in your program. Then you

[Chapter 9] Debugging Shell Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_01.htm (1 of 8) [2/8/2001 5:00:56 PM]

can worry about how to fix it.

Notice that these steps represent a process of starting with obvious information and ending up with often
obscure facts gleaned through deduction and intuition. Debugging aids make it easier to deduce and intuit
by providing relevant information easily or even automatically, preferably without modifying your code.

The simplest debugging aid (for any language) is the output statement, print in the shell's case. Indeed,
old-timer programmers debugged their FORTRAN code by inserting WRITE cards into their decks. You
can debug by putting lots of print statements in your code (and removing them later), but you will have
to spend lots of time narrowing down not only what exact information you want but also where you need
to see it. You will also probably have to wade through lots and lots of output to find the information you
really want.

9.1.1 Set Options

Luckily, the shell has a few basic features that give you debugging functionality beyond that of print.
The most basic of these are options to the set -o command (as covered in Chapter 3, Customizing Your
Environment). These options can also be used on the command line when running a script, as Table 9.1
shows.

The verbose option simply echoes (to standard error) whatever input the shell gets. It is useful for
finding the exact point at which a script is bombing. For example, assume your script looks like this:

fred
bob
dave
pete
ed
ralph

Table 9.1: Debugging Options
set -o Option Command-line Option Action
noexec -n Don't run commands; check for syntax errors only
verbose -v Echo commands before running them
xtrace -x Echo commands after command-line processing

None of these commands are standard UNIX programs, and they all do their work silently. Say the script
crashes with a cryptic message like "segmentation violation." This tells you nothing about which
command caused the error. If you type ksh -v scriptname, you might see this:

fred
bob
dave
segmentation violation
pete
ed
ralph

Now you know that dave is the probable culprit-though it is also possible that dave bombed because of

[Chapter 9] Debugging Shell Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_01.htm (2 of 8) [2/8/2001 5:00:56 PM]

something it expected fred or bob to do (e.g., create an input file) that they did incorrectly.

The xtrace option is more powerful: it echoes command lines after they have been through parameter
substitution, command substitution, and the other steps of command-line processing (as listed in Chapter
Chapter 7, Input/Output and Command-line Processing). For example:

$ set -o xtrace
$ fred=bob
+ fred=bob
$ print "$fred"
+ print bob
bob
$ ls -l $(whence emacs)
+ whence emacs
+ ls -l /usr/share/bin/emacs
-rwxr-xr-x 1 root 1593344 Apr 8 1991 /usr/share/bin/emacs
$

As you can see, xtrace starts each line it prints with +. This is actually customizable: it's the value of the
built-in shell variable PS4. So if you set PS4 to "xtrace-> " (e.g., in your .profile or environment file),
then you'll get xtrace listings that look like this:

$ ls -l $(whence emacs)
xtrace-> whence emacs
xtrace-> ls -l /usr/share/bin/emacs
-rwxr-xr-x 1 root 1593344 Apr 8 1991 /usr/share/bin/emacs
$

An even better way of customizing PS4 is to use a built-in variable we haven't seen yet: LINENO, which
holds the number of the currently running line in a shell script. Put this line in your .profile or
environment file:

PS4='line $LINENO: '

We use the same technique as we did with PS1 in Chapter 3: using single quotes to postpone the
evaluation of the string until each time the shell prints the prompt. This will print messages of the form
line N: in your trace output. You could even include the name of the shell script you're debugging in this
prompt by using the positional parameter $0:

PS4='$0 line $LINENO: '

As another example, say you are trying to track down a bug in a script called fred that contains this code:

dbfmq=$1.fmq
...
fndrs=$(cut -f3 -d' ' $dfbmq)

You type fred bob to run it in the normal way, and it hangs. Then you type ksh -x fred bob, and you see
this:

+ dbfmq=bob.fmq
...

[Chapter 9] Debugging Shell Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_01.htm (3 of 8) [2/8/2001 5:00:56 PM]

+ + cut -f3 -d

It hangs again at this point. You notice that cut doesn't have a filename argument, which means that there
must be something wrong with the variable dbfmq. But it has executed the assignment statement
dbfmq=bob.fmq properly... ah-hah! You made a typo in the variable name inside the command
substitution construct. [2] You fix it, and the script works properly.

[2] We should admit that if you turned on the nounset option at the top of this script, the
shell would have flagged this error.

If the code you are trying to debug calls functions that are defined elsewhere (e.g., in your .profile or
environment file), you can trace through these in the same way with an option to the typeset command.
Just enter the command typeset -ft functname, and the named function will be traced whenever it runs.
Type typeset +ft functname to turn tracing off.

The last option is noexec, which reads in the shell script, checks for syntax errors, but doesn't execute
anything. It's worth using if your script is syntactically complex (lots of loops, code blocks, string
operators, etc.) and the bug has side effects (like creating a large file or hanging up the system).

You can turn on these options with set -o in your shell scripts, and, as explained in Chapter 3, turn them
off with set +o option. For example, if you're debugging a script with a nasty side effect, and you have
localized it to a certain chunk of code, you can precede that chunk with set -o noexec (and, perhaps,
close it with set +o noexec) to avoid the side effect.

9.1.2 Fake Signals

A more sophisticated set of debugging aids is the shell's three "fake signals," which can be used in trap
statements to get the shell to act under certain conditions. Recall from the previous chapter that trap
allows you to install some code that runs when a particular signal is sent to your script.

Fake signals act like real ones, but they are generated by the shell (as opposed to real signals, which the
underlying operating system generates). They represent runtime events that are likely to be interesting to
debuggers-both human ones and software tools-and can be treated just like real signals within shell
scripts. The three fake signals and their meanings are listed in Table 9.2.

Table 9.2: Fake Signals
Fake Signal When Sent
EXIT The shell exits from a function or script
ERR A command returns a non-0 exit status
DEBUG After every statement

9.1.2.1 EXIT

The EXIT trap, when set, will run its code when the function or script within which it was set exits.
Here's a simple example:

function func {
 print 'start of the function'

[Chapter 9] Debugging Shell Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_01.htm (4 of 8) [2/8/2001 5:00:56 PM]

 trap 'print /'exiting from the function/'' EXIT
}

print 'start of the script'
trap 'print /'exiting from the script/'' EXIT
func

If you run this script, you will see this output:

start of the script
start of the function
exiting from the function
exiting from the script

In other words, the script starts by printing a message. Then it sets the trap for its own exit, then calls the
function. The function does the same-prints a message and sets a trap for its exit. (Remember that
functions can have their own local traps that supersede any traps set by the surrounding script.)

The function then exits, which causes the shell to send it the fake signal EXIT, which in turn runs the
code print 'exiting from the function'. Then the script exits, and its own EXIT trap code is run.

An EXIT trap occurs no matter how the script or function exits-whether normally (by finishing the last
statement), by an explicit exit or return statement, or by receiving a "real" signal such as INT or TERM.
Consider the following inane number-guessing program:

trap 'print /'Thank you for playing!/'' EXIT

magicnum=$(($RANDOM%10+1))
print 'Guess a number between 1 and 10:'
while read guess'?number> '; do
 sleep 10
 if (($guess == $magicnum)); then
 print 'Right!'
 exit
 fi
 print 'Wrong!'
done

This program picks a number between 1 and 10 by getting a random number (the built-in variable
RANDOM), extracting the last digit (the remainder when divided by 10), and adding 1. Then it prompts
you for a guess, and after 10 seconds, it will tell you if you guessed right.

If you did, the program will exit with the message, "Thank you for playing!", i.e., it will run the EXIT
trap code. If you were wrong, it will prompt you again and repeat the process until you get it right. If you
get bored with this little game and hit [CTRL-C] while waiting for it to tell you whether you were right,
you will also see the message.

9.1.2.2 ERR

[Chapter 9] Debugging Shell Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_01.htm (5 of 8) [2/8/2001 5:00:56 PM]

The fake signal ERR enables you to run code whenever a command in the surrounding script or function
exits with non-zero status. Trap code for ERR can take advantage of the built-in variable ?, which holds
the exit status of the previous command. It "survives" the trap and is accessible at the beginning of the
trap-handling code.

A simple but effective use of this is to put the following code into a script you want to debug:

function errtrap {
 es=$?
 print "ERROR: Command exited with status $es."
}

trap errtrap ERR

The first line saves the non-zero exit status in the variable es. This code enables you to see which
command in your script exits with error status and what the status is.

For example, if the shell can't find a command, it returns status 1. If you put the code in a script with a
line of gibberish (like "lskdjfafd"), the shell will respond with:

scriptname[N]: lskdjfafd: not found
ERROR: command exited with status 1.

N is the number of the line in the script that contains the bad command. In this case, the shell prints the
line number as part of its own error-reporting mechanism, since the error was a command that the shell
could not find. But if the non-0 exit status comes from another program, the shell won't report the line
number. For example:

function errtrap {
 es=$?
 print "ERROR: Command exited with status $es."
}

trap errtrap ERR

function bad {
 return 17
}

bad

This will only print, ERROR: Command exited with status 17.

It would obviously be an improvement to include the line number in this error message. The built-in
variable LINENO exists, but if you use it inside a function, it evaluates to the line number in the
function, not in the overall file. In other words, if you used $LINENO in the print statement in the
errtrap routine, it would always evaluate to 2.

To get around this problem, we simply pass $LINENO as an argument to the trap handler, surrounding it
in single quotes so that it doesn't get evaluated until the fake signal actually comes in:

[Chapter 9] Debugging Shell Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_01.htm (6 of 8) [2/8/2001 5:00:56 PM]

function errtrap {
 es=$?
 print "ERROR line $1: Command exited with status $es."
}
trap 'errtrap $LINENO' ERR
...

If you use this with the above example, the result is the message, ERROR line 12: Command exited
with status 17. This is much more useful. We'll see a variation on this technique shortly.

This simple code is actually not a bad all-purpose debugging mechanism. It takes into account that a
non-0 exit status does not necessarily indicate an undesirable condition or event: remember that every
control construct with a conditional (if, while, etc.) uses a non-0 exit status to mean "false". Accordingly,
the shell doesn't generate ERR traps when statements or expressions in the "condition" parts of control
structures produce non-0 exit statuses.

But a disadvantage is that exit statuses are not as uniform (or even as meaningful) as they should be-as
we explained in Chapter 5, Flow Control. A particular exit status need not say anything about the nature
of the error or even that there was an error.

9.1.2.3 DEBUG

The final fake signal, DEBUG, causes the trap code to be run after every statement in the surrounding
function or script. This has two possible uses. First is the use for humans, as a sort of a "brute force"
method of tracking a certain element of a program's state that you notice is going awry.

For example, you notice that the value of a particular variable is running amok. The naive approach
would be to put in lots of print statements to check the variable's value at several points. The DEBUG
trap makes this easier by letting you do this:

function dbgtrap {
 print "badvar is $badvar "
}

trap dbgtrap DEBUG

...section of code in which problem occurs...

trap - DEBUG # turn off DEBUG trap

This code will print the value of the wayward variable after every statement between the two traps.

The second and far more important use of the DEBUG trap is as a primitive for implementing Korn shell
debuggers. In fact, it would be fair to say that the DEBUG trap reduces the task of implementing a useful
shell debugger from a large-scale software development project to a manageable exercise. Read on.

8.6 Subshells 9.2 A Korn Shell Debugger

[Chapter 9] Debugging Shell Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_01.htm (7 of 8) [2/8/2001 5:00:56 PM]

[Chapter 9] Debugging Shell Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_01.htm (8 of 8) [2/8/2001 5:00:56 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 9
Debugging Shell Programs

9.2 A Korn Shell Debugger
Commercially available debuggers give you much more functionality than the shell's set options and fake signals. The most
advanced have fabulous graphical user interfaces, incremental compilers, symbolic evaluators, and other such amenities. But just
about all modern debuggers-even the more modest ones-have features that enable you to "peek" into a program while it's running, to
examine it in detail and in terms of its source language. Specifically, most debuggers let you do these things:

Specify points at which the program stops execution and enters the debugger. These are called breakpoints.●

Execute only a bit of the program at a time, usually measured in source code statements. This ability is often called stepping.●

Examine and possibly change the state of the program (e.g., values of variables) in the middle of a run, i.e., when stopped at a
breakpoint or after stepping.

●

Do all of the above without having to change the source code.●

Our debugger, called kshdb, has these features and a few more. Although it's a basic tool, without too many "bells and whistles", it
is real. [3] The code is available from an anonymous FTP archive, as described in Appendix C, Obtaining Sample Programs; if you
don't have access to the Internet, you can type or scan the code in. Either way, you can use kshdb to debug your own shell scripts,
and you should feel free to enhance it. We'll suggest some enhancements at the end of this chapter.

[3] Unfortunately, kshdb won't work completely on SunOS versions 4.1.x and older.

9.2.1 Structure of the Debugger

The code for kshdb has several features worth explaining in some detail. The most important is the basic principle on which it
works: it turns a shell script into a debugger for itself, by prepending debugger functionality to it; then it runs the new script.

9.2.1.1 The driver script

Therefore the code has two parts: the part that implements the debugger's functionality, and the part that installs that functionality
into the script being debugged. The second part, which we'll see first, is the script called kshdb. It's very simple:

kshdb -- Korn Shell debugger
Main driver: constructs full script (with preamble) and runs it

print 'Korn Shell Debugger version 1.0\n'
_guineapig=$1
if [[! -r $1]]; then # file not found or readable
 print "Cannot read $_guineapig." >&2
 exit 1
fi
shift

_tmpdir=/tmp
_libdir=.
_dbgfile=$_tmpdir/kshdb$$ # temp file for script being debugged (copy)
cat $_libdir/kshdb.pre $_guineapig > $_dbgfile
exec ksh $_dbgfile $_guineapig $_tmpdir $_libdir "$@"

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (1 of 12) [2/8/2001 5:01:06 PM]

kshdb takes as argument the name of the script being debugged, which for the sake of brevity we'll call the guinea pig. Any
additional arguments will be passed to the guinea pig as its positional parameters.

If the argument is invalid (the file isn't readable), kshdb exits with error status. Otherwise, after an introductory message, it
constructs a temporary filename in the way we saw in the last chapter. If you don't have (or don't have access to) /tmp on your
system, then you can substitute a different directory for _tmpdir. [4] Also, make sure that _libdir is set to the directory where the
kshdb.pre and kshdb.fns files (which we'll see soon) reside. /usr/lib is a good choice if you have access to it.

[4] All function names and variables (except those local to functions) in kshdb have names beginning with an
underscore (_), to minimize the possibility of clashes with names in the guinea pig.

The cat statement builds the temp file: it consists of a file we'll see soon called kshdb.pre, which contains the actual debugger code,
followed immediately by a copy of the guinea pig. Therefore the temp file contains a shell script that has been turned into a
debugger for itself.

9.2.1.2 exec

The last line runs this script with exec, a statement we haven't seen yet. We've chosen to wait until now to introduce it because-as
we think you'll agree-it can be dangerous. exec takes its arguments as a command line and runs the command in place of the current
program, in the same process. In other words, the shell running the above script will terminate immediately and be replaced by
exec's arguments. The situations in which you would want to use exec are few, far between, and quite arcane-though this is one of
them. [5]

[5] exec can also be used with an I/O redirector only; this causes the redirector to take effect for the remainder of the
script or login session. For example, the line exec 2>errlog at the top of a script directs standard error to the file errlog
for the entire script.

In this case, exec just runs the newly-constructed shell script, i.e., the guinea pig with its debugger, in another Korn shell. It passes
the new script three arguments-the names of the original guinea pig ($_guineapig), the temp directory ($_tmpdir), and the
directory where kshdb.pre and kshdb.fns are kept-followed by the user's positional parameters, if any.

9.2.2 The Preamble

Now we'll see the code that gets prepended to the script being debugged; we call this the preamble. It's kept in the following file
kshdb.pre, which is also fairly simple.

kshdb preamble
prepended to shell script being debugged
arguments:
$1 = name of original guinea-pig script
$2 = directory where temp files are stored
$3 = directory where kshdb.pre and kshdb.fns are stored

_dbgfile=$0
_guineapig=$1
_tmpdir=$2
_libdir=$3
shift 3 # move user's args into place

. $_libdir/kshdb.fns # read in the debugging functions
_linebp=
_stringbp=
let _trace=0 # initialize execution trace to off
let _i=1 # read guinea-pig file into lines array
while read -r _lines[$_i]; do
 let _i=$_i+1
done < $_guineapig

trap _cleanup EXIT # erase files before exiting
let _steps=1 # no. of stmts to run after trap is set

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (2 of 12) [2/8/2001 5:01:06 PM]

LINENO=-1
trap '_steptrap $LINENO' DEBUG
:

The first few lines save the three fixed arguments in variables and shift them out of the way, so that the positional parameters (if
any) are those that the user supplied on the command line as arguments to the guinea pig. Then, the preamble reads in another file,
kshdb.fns, that contains the "meat" of the debugger as function definitions. We put this code in a separate file to minimize the size
of the temp file. We'll examine kshdb.fns shortly.

Next, kshdb.pre initializes the two breakpoint lists to empty and execution tracing to off (see below), then reads the guinea pig into
an array of lines. We do the latter so that the debugger can access lines in the script when performing certain checks, and so that the
execution trace feature can print lines of code as they execute.

The real fun begins in the last group of code lines, where we set up the debugger to start working. We use two trap commands with
fake signals. The first sets up a cleanup routine (which just erases the temporary file) to be called on EXIT, i.e., when the script
terminates for any reason. The second, and more important, sets up the function _steptrap to be called after every statement.

_steptrap gets an argument that evaluates to the number of the line in the guinea pig that just ran. We use the same technique with
the built-in variable LINENO that we saw earlier in the chapter, but with an added twist: if you assign a value to LINENO, it uses
that as the next line number and increments from there. The statement LINENO=-1 re-starts line numbering so that the first line in
the guinea pig is line 1.

After the DEBUG trap is set, the preamble ends with a "do-nothing" statement (:). The shell executes this statement and enters
_steptrap for the first time. The variable _steps is set up so that _steptrap executes its last elif clause, as you'll see shortly, and
enters the debugger. As a result, execution halts just before the first statement of the guinea pig is run, and the user sees a kshdb>
prompt; the debugger is now in full operation.

9.2.3 Debugger Functions

The function _steptrap is the entry point into the debugger; it is defined in the file kshdb.fns, which is given in its entirety at the
end of this chapter. Here is _steptrap:

Here after each statement in script being debugged.
Handle single-step and breakpoints.
function _steptrap {
 _curline=$1 # arg is no. of line that just ran

 (($_trace)) && _msg "$PS4 line $_curline: ${_lines[$_curline]}"

 if (($_steps >= 0)); then # if in step mode
 let _steps="$_steps - 1" # decrement counter
 fi

 # first check if line num or string breakpoint reached
 if _at_linenumbp || _at_stringbp; then
 _msg "Reached breakpoint at line $_curline"
 _cmdloop # breakpoint, enter debugger

 # if not, check whether break condition exists and is true
 elif [[-n $_brcond]] && eval $_brcond; then
 _msg "Break condition $_brcond true at line $_curline"
 _cmdloop

 # next, check if step mode and number of steps is up
 elif (($_steps == 0)); then # if step mode and time to stop
 _msg "Stopped at line $_curline"
 _cmdloop # enter debugger

 fi
}

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (3 of 12) [2/8/2001 5:01:06 PM]

_steptrap starts by setting _curline to the number of the guinea pig line that just ran. If execution tracing is turned on, it prints the
PS4 execution trace prompt (a la xtrace mode), the line number, and the line of code itself.

Then it does one of two things: enter the debugger, the heart of which is the function _cmdloop, or just return so that the shell can
execute the next statement. It chooses the former if a breakpoint or break condition (see below) has been reached, or if the user
stepped into this statement.

9.2.3.1 Commands

We'll explain shortly how _steptrap determines these things; now we'll look at _cmdloop. It's a typical command loop, resembling
a combination of the case statements we saw in Chapter 5 and the calculator loop we saw in the previous chapter.

Debugger command loop.
Here at start of debugger session, when breakpoint reached,
or after single-step.
function _cmdloop {
 typeset cmd args

 while read -s cmd"?kshdb> " args; do
 case $cmd in
 *bp) _setbp $args ;; # set breakpoint at line num or string.

 *bc) _setbc $args ;; # set break condition.

 *cb) _clearbp ;; # clear all breakpoints.

 *g) return ;; # start/resume execution

 *s) let _steps=${args:-1} # single-step N times (default 1) return ;;

 *x) _xtrace ;; # toggle execution trace

 *\? | /*h) _menu ;; # print command menu

 *q) exit ;; # quit

 **) _msg "Invalid command: $cmd" ;;

 *) eval $cmd $args ;; # otherwise, run shell command

 esac
 done
}

At each iteration, cmdloop prints a prompt, reads a command, and processes it. We use read -s so that the user can take advantage
of command-line editing within kshdb. All kshdb commands start with * to prevent confusion with shell commands. Anything that
isn't a kshdb command (and doesn't start with *) is passed off to the shell for execution. Table 9.3 summarizes the debugger
commmands.

Table 9.3: kshdb Commands
Command Action
*bp N Set breakpoint at line N
*bp str Set breakpoint at next line containing str
*bp List breakpoints and break condition
*bc str Set break condition to str
*bc Clear break condition
*cb Clear all breakpoints
*g Start or resume execution

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (4 of 12) [2/8/2001 5:01:06 PM]

*s [N] Step through N statements (default 1)
*x Toggle execution tracing
*h, *? Print a help menu
*q Quit

Before we look at the individual commands, it is important that you understand how control passes through _steptrap, the
command loop, and the guinea pig.

_steptrap runs after every statement in the guinea pig as a result of the trap ... DEBUG statement in the preamble. If a breakpoint
has been reached or the user previously typed in a step command (*s), _steptrap calls the command loop. In doing so, it effectively
"interrupts" the shell that is running the guinea pig to hand control over to the user. [6]

[6] In fact, low-level systems programmers can think of the entire trap mechanism as quite similar to an
interrupt-handling scheme.

The user can invoke debugger commands as well as shell commands that run in the same shell as the guinea pig. This means that
you can use shell commands to check values of variables, signal traps, and any other information local to the script being debugged.

The command loop runs, and the user stays in control, until the user types *g, *s, or *q. Let's look in detail at what happens in each
of these cases.

*g has the effect of running the guinea pig uninterrupted until it finishes or hits a breakpoint. But actually, it simply exits the
command loop and returns to _steptrap, which exits as well. The shell takes control back; it runs the next statement in the guinea
pig script and calls _steptrap again. Assuming there is no breakpoint, this time _steptrap will just exit again, and the process will
repeat until there is a breakpoint or the guinea pig is done.

9.2.3.2 Stepping

When the user types *s, the command loop code sets the variable _steps to the number of steps the user wants to execute, i.e., to the
argument given. Assume at first that the user omits the argument, meaning that _steps is set to 1. Then the command loop exits and
returns control to _steptrap, which (as above) exits and hands control back to the shell. The shell runs the next statement and
returns to _steptrap, which sees that _steps is 1 and decrements it to 0. Then the second elif conditional sees that _steps is 0, so it
prints a "stopped" message and calls the command loop.

Now assume that the user supplies an argument to *s, say 3. _steps is set to 3. Then the following happens:

After the next statement runs, _steptrap is called again. It enters the first if clause, since _steps is greater than 0. _steptrap
decrements _steps to 2 and exits, returning control to the shell.

1.

This process repeats, another step in the guinea pig is run, and _steps becomes 1.2.

A third statement is run and we're back in _steptrap. _steps is decremented to 0, the second elif clause is run, and _steptrap
breaks out to the command loop again.

3.

The overall effect is that three steps run and then the debugger takes over again.

Finally, the *q command calls the function _cleanup, which just erases the temp file and exits the entire program.

All other debugger commands (*bp, *bc, *cb, *x and shell commands) cause the shell to stay in the command loop, meaning that
the user prolongs the "interruption" of the shell.

9.2.3.3 Breakpoints

Now we'll examine the breakpoint-related commands and the breakpoint mechanism in general. The *bp command calls the
function _setbp, which can set two kinds of breakpoints, depending on the type of argument given. If it is a number, it's treated as a
line number; otherwise it's interpreted as a string that the breakpoint line should contain.

For example, the command *bp 15 sets a breakpoint at line 15, and *bp grep sets a breakpoint at the next line that contains the
string grep-whatever number that turns out to be. Although you can always look at a numbered listing of a file, [7] string arguments
to *bp can make that unnecessary.

[7] pr -n filename prints a numbered listing to standard output on System V-derived versions of UNIX. Some older
BSD-derived systems don't support it. If this doesn't work on your system, try cat -n filename, or if that doesn't work,

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (5 of 12) [2/8/2001 5:01:06 PM]

create a shell script with this single line:

awk '{ print NR, "\t", $0 }' $1

Here is the code for _setbp:

Set breakpoint(s) at given line numbers and/or strings
by appending lines to breakpoint file
function _setbp {
 if [[-z $1]]; then
 _listbp
 elif [[$1 = +([0-9])]]; then # number, set bp at that line
 _linebp="${_linebp}$1|"
 _msg "Breakpoint at line " $1
 else # string, set bp at next line w/string
 _stringbp="${_stringbp}$@|"
 _msg "Breakpoint at next line containing $@."
 fi
}

_setbp sets the breakpoints by storing them in the variables _linebp (line number breakpoints) and _stringbp (string breakpoints).
Both have breakpoints separated by pipe character delimiters, for reasons that will become clear shortly. This implies that
breakpoints are cumulative; setting new breakpoints does not erase the old ones.

The only way to remove breakpoints is with the command *cb, which (in function _clearbp) clears all of them at once by simply
resetting the two variables to null. If you don't remember what breakpoints you have set, the command *bp without arguments lists
them.

The functions _at_linenumbp and _at_stringbp are called by _steptrap after every statement; they check whether the shell has
arrived at a line number or string breakpoint, respectively.

Here is _at_linenumbp:

See if next line no. is a breakpoint.
function _at_linenumbp {
 [[$_curline = @(${_linebp%\|})]]
}

_at_linenumbp takes advantage of the pipe character as the separator between line numbers: it constructs a regular expression of
the form @(N1|N2|...) by taking the list of line numbers _linebp, removing the trailing |, and surrounding it with @(and). For
example, if $_linebp is 3|15|19|, then the resulting expression is @(3|15|19).

If the current line is any of these numbers, then the conditional becomes true, and _at_linenumbp also returns a "true" (0) exit
status.

The check for a string breakpoint works on the same principle, but it's slightly more complicated; here is _at_stringbp:

Search string breakpoints to see if next line in script matches.
function _at_stringbp {
 [[-n $_stringbp && ${_lines[$_curline]} = *@(${_stringbp%\|})*]]
}

The conditional first checks if $_stringbp is non-null (meaning that string breakpoints have been defined). If not, the conditional
evaluates to false, but if so, its value depends on the pattern match after the &&-which tests the current line to see if it contains any
of the breakpoint strings.

The expression on the right side of the equal sign is similar to the one in _at_linenumbp above, except that it has * before and after
it. This gives expressions of the form *@(S1|S2|...)*, where the Ss are the string breakpoints. This expression matches any line that
contains any one of the possibilities in the parenthesis.

The left side of the equal sign is the text of the current line in the guinea pig. So, if this text matches the regular expression, then
we've reached a string breakpoint; accordingly, the conditional expression and _at_stringbp return exit status 0.

_steptrap uses the || ("or") construct in its if statement, which evaluates to true if either type of breakpoint occurred. If so, it calls
the main command loop.

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (6 of 12) [2/8/2001 5:01:06 PM]

9.2.3.4 Break conditions

kshdb has another feature related to breakpoints: the break condition. This is a string that the user can specify that is evaluated as a
command; if it is true (i.e., returns exit status 0), the debugger enters the command loop. Since the break condition can be any line
of shell code, there's lots of flexibility in what can be tested. For example, you can break when a variable reaches a certain value
(e.g., (($x < 0))) or when a particular piece of text has been written to a file (grep string file). You will probably think of all kinds
of uses for this feature. [8] To set a break condition, type *bc string. To remove it, type *bc without arguments-this installs the null
string, which is ignored. _steptrap evaluates the break condition $_brcond only if it's non-null. If the break condition evaluates to
0, then the if clause is true and, once again, _steptrap calls the command loop.

[8] Bear in mind that if your break condition produces any standard output (or standard error), you will see it after
every statement. Also, make sure your break condition doesn't take a long time to run; otherwise your script will run
very, very slowly.

9.2.3.5 Execution tracing

The final feature is execution tracing, available through the *x command. This feature is meant to overcome the fact that a kshdb
user can't use set -o xtrace while debugging (by entering it as a shell command), because its scope is limited to the _cmdloop
function.

The function _xtrace "toggles" execution tracing by simply assigning to the variable _trace the logical "not" of its current value, so
that it alternates between 0 (off) and 1 (on). The preamble initializes it to 0.

9.2.3.6 Limitations

kshdb was not designed to push the state of the debugger art forward or to have an overabundance of features. It has the most useful
basic features, its implementation is compact and (we hope) comprehensible, and it does have some important limitations. The ones
we know of are described in the list that follows.

The shell should really have the ability to trap before each statement, not after. This is the way most commercial source-code
debuggers work. [9] At the very least, the shell should provide a variable that contains the number of the line about to run
instead of (or in addition to) the number of the line that just ran.

[9] This kind of functionality is expected to be added in the next Korn shell release.

1.

String breakpoints cannot begin with digits or contain pipe characters (|) unless they are properly escaped.2.

You can only set breakpoints-whether line number or string-on lines in the guinea pig that contain what the shell's
documentation calls simple commands, i.e., actual UNIX commands, shell built-ins, function calls, or aliases. If you set a
breakpoint on a line that contains only whitespace or a comment, the shell will always skip over that breakpoint. More
importantly, control keywords like while, if, for, do, done, and even conditionals ([[...]] and ((...))) won't work either, unless
a simple command is on the same line.

3.

kshdb will not "step down" into shell scripts that are called from the guinea pig. To do this, you have to edit your guinea pig
and change a call to scriptname to kshdb scriptname.

4.

Similarly, nested subshells are treated as one gigantic statement; you cannot step down into them at all.5.

The guinea pig should not trap on the fake signals DEBUG or EXIT; otherwise the debugger won't work.6.

Variables that are typeset (see Chapter 4, Basic Shell Programming) are not accessible in break conditions. However, you
can use the shell command print to check their values.

7.

Command error handling is weak. For example, a non-numeric argument to *s will cause it to bomb.8.

Many of these are not insurmountable; see the exercises.

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (7 of 12) [2/8/2001 5:01:06 PM]

9.2.4 Sample kshdb Session

Now we'll show a transcript of an actual session with kshdb, in which the guinea pig is the solution to Task 6-2. For convenience,
here is a numbered listing of the script, which we'll call lscol.

1 set -A filenames $(ls $1)
2 typeset -L14 fname
3 let count=0
4 let numcols=5
5
6 while [[$count -lt ${#filenames[*]}]]; do
7 fname=${filenames[$count]}
8 print -n "$fname "
9 let count="count + 1"
10 if [[$((count % numcols)) = 0]]; then
11 print # NEWLINE
12 fi
13 done
14
15 if [[$((count % numcols)) != 0]]; then
16 print
17 fi

Here is the kshdb session transcript:

$ kshdb lscol /usr/spool
Korn shell Debugger version 1.0

Stopped at line 0
kshdb> *bp 4
Breakpoint at line 4
kshdb> *g
Reached breakpoint at line 4
kshdb> print $count $numcols
0 5
kshdb> *bc [[$count -eq 10]]
Break when true: [[$count -eq 10]]
kshdb> *g
bwnfs cron locks lpd lpd.lock
mail mqueue rwho secretmail uucp
Break condition [[$count -eq 10]] true at line 9
kshdb> *bc
Break condition cleared.
kshdb> *bp NEWLINE
Breakpoint at next line containing "NEWLINE".
kshdb> *g

Reached breakpoint at line 11
kshdb> print $count
10
kshdb> let count=9
kshdb> *g
uucp
Reached breakpoint at line 11
kshdb> *bp
Breakpoints at lines:
 4
Breakpoints at strings:
NEWLINE

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (8 of 12) [2/8/2001 5:01:06 PM]

No break condition.
kshdb> *g
uucppublic
$

First, notice that we gave the guinea pig script the argument /usr/spool, meaning that we want to list the files in that directory. We
begin by setting a simple breakpoint at line 4 and starting the script. It stops after executing line 4 (let numcols=5). Then we issue a
shell print command to show that the variables count and numcols are indeed set correctly.

Next, we set a break condition, telling the debugger to kick in when $count is 10, and we resume execution. Sure enough, the
guinea pig prints 10 filenames and stops at line 9, on which $count is incremented. We clear the break condition by typing *bc
without an argument, since otherwise the shell would stop after every statement until the condition becomes false.

The next command shows how the string breakpoint mechanism works. We tell the debugger to break when it hits a line that
contains the string NEWLINE. This string is in a comment on line 11. Notice that it doesn't matter that the string is in a
comment-just that the line it's on contain an actual command. We resume execution, and the debugger hits the breakpoint at line 11.

After that, we show how we can use the debugger to change the guinea pig's state while running. We see that $count is still 10; we
change it to 9. In the next iteration of the while loop, the script accesses the same filename that it just did (uucp), increments count
back to 10, and hits the breakpoint again. Finally, we list breakpoints and let the script execute to its end; it prints out one last
filename and exits.

9.2.5 Exercises

We'll conclude this chapter with a few exercises, which are suggested enhancements to kshdb.

Improve command error handling in these ways:

For numeric arguments to *bp, check that they are valid line numbers for the particular guinea pig.1.

Check that arguments to *s are valid numbers.2.

Any other error handling you can think of.3.

1.

Enhance the *cb command so that the user can delete specific breakpoints (by string or line number).2.

Remove the major limitation in the breakpoint mechanism:

Improve it so that if the line number selected does not contain an actual UNIX command, the next closest line above it
is used as the breakpoint instead.

1.

Do the same thing for string breakpoints. (Hint: first translate each string breakpoint command into one or more
line-number breakpoint commands.)

2.

3.

Implement an option that causes a break into the debugger whenever a command exits with non-0 status:

Implement it as the command-line option -e.1.

Implement it as the debugger commands *be (to turn the option on) and *ne (to turn it off). (Hint: you won't be able to
use the ERR trap, but bear in mind that when you enter _steptrap, $? is still the exit status of the last command that
ran.)

2.

4.

Add the ability to "step down" into scripts that the guinea pig calls (i.e., non-nested subshells) as the command-line option -s.
One way of implementing this is to change the kshdb script so that it "plants" recursive calls to kshdb in the guinea pig. You
can do this by filtering the guinea pig through a loop that reads each line and determines, with the whence -v and file(1) (see
the man page) commands, if the line is a call to another shell script.[10] If it is, prepend kshdb -s to the line and write it to the
new file; if not, just pass it through as is.

[10] Notice that this method should catch most nested shell scripts but not all of them. For example, it won't
catch shell scripts that follow semicolons (e.g., cmd1; cmd2).

5.

Add support for multiple break conditions, so that kshdb stops execution when any one of them becomes true and prints a
message that says which one is true. Do this by storing the break conditions in a colon-separated list or an array. Try to make
this as efficient as possible, since the checking will take place after every statement.

6.

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (9 of 12) [2/8/2001 5:01:06 PM]

Add any other features you can think of.7.

If you add significant functionality to kshdb, we invite you to send your version to the author, care of O'Reilly and Associates, at
billr@ora.com on the Internet or, via US Mail, at:

O'Reilly & Associates, Inc.
103 Morris St., Suite A
Sebastopol, CA 95472

We'll select the best one and publish it in the next revision of our UNIX Power Tools CD-ROM. Remember: there is no "official"
Korn shell debugger, and as more and more programmers realize how powerful the Korn shell is as a programming environment, a
debugger will become more and more necessary. We've made the initial effort, and we leave it up to you to finish the job!

Finally, here is the complete source code for the debugger function file kshdb.fns:

Here after each statement in script being debugged.
Handle single-step and breakpoints.
function _steptrap {
 _curline=$1 # arg is no. of line that just ran
 (($_trace)) && _msg "$PS4 line $_curline: ${_lines[$_curline]}"
 if (($_steps >= 0)); then # if in step mode
 let _steps="$_steps - 1" # decrement counter
 fi
 # first check if line num or string breakpoint reached
 if _at_linenumbp || _at_stringbp; then
 _msg "Reached breakpoint at line $_curline"
 _cmdloop # breakpoint, enter debugger

 # if not, check whether break condition exists and is true
 elif [[-n $_brcond]] && eval $_brcond; then
 _msg "Break condition $_brcond true at line $_curline"
 _cmdloop
 # next, check if step mode and number of steps is up
 elif (($_steps == 0)); then # if step mode and time to stop
 _msg "Stopped at line $_curline"
 _cmdloop # enter debugger
 fi
}

Debugger command loop.
Here at start of debugger session, when breakpoint reached,
or after single-step.
function _cmdloop {
 typeset cmd args

 while read -s cmd"?kshdb> " args; do
 case $cmd in
 *bp) _setbp $args ;; # set breakpoint at line num or string.
 *bc) _setbc $args ;; # set break condition.
 *cb) _clearbp ;; # clear all breakpoints.
 *g) return ;; # start/resume execution
 *s) let _steps=${args:-1} # single-step N times (default 1)
 return ;;

 *x) _xtrace ;; # toggle execution trace
 *\? | *h) _menu ;; # print command menu
 *q) exit ;; # quit
 **) _msg "Invalid command: $cmd" ;;
 *) eval $cmd $args ;; # otherwise, run shell command

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (10 of 12) [2/8/2001 5:01:06 PM]

mailto:billr@ora.com

 esac
 done
}

See if next line no. is a breakpoint.
function _at_linenumbp {
 [[$_curline = @(${_linebp%\|})]]
}

Search string breakpoints to see if next line in script matches.
function _at_stringbp {
 [[-n $_stringbp && ${_lines[$_curline]} = *@(${_stringbp%\|})*]]
}

Print the given message to standard error.
function _msg {
 print "$@" >&2
}

Set breakpoint(s) at given line numbers and/or strings
by appending lines to breakpoint file
function _setbp {
 if [[-z $1]]; then
 _listbp
 elif [[$1 = +([0-9])]]; then # number, set bp at that line
 _linebp="${_linebp}$1|"
 _msg "Breakpoint at line " $1
 else # string, set bp at next line w/string
 _stringbp="${_stringbp}$@|"
 _msg "Breakpoint at next line containing $@."
 fi
}

List breakpoints and break condition.
function _listbp {
 _msg "Breakpoints at lines:"
 _msg "$(print $_linebp | tr '|' ' ')"
 _msg "Breakpoints at strings:"
 _msg "$(print $_stringbp | tr '|' ' ')"
 _msg "Break on condition:"
 _msg "$_brcond"
}

Set or clear break condition
function _setbc {
 if [[-n "$@"]]; then
 _brcond=$args
 _msg "Break when true: $_brcond"
 else
 _brcond=
 _msg "Break condition cleared."
 fi
}

Clear all breakpoints.
function _clearbp {
 _linebp=

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (11 of 12) [2/8/2001 5:01:06 PM]

 _stringbp=
 _msg "All breakpoints cleared."
}

Toggle execution trace feature on/off
function _xtrace {
 let _trace="! $_trace"
 _msg "Execution trace \c"
 if (($_trace)); then
 _msg "on."
 else
 _msg "off."
 fi
}

Print command menu
function _menu {
 _msg 'kshdb commands:
 *bp N set breakpoint at line N
 *bp str set breakpoint at next line containing str
 *bp list breakpoints and break condition
 *bc str set break condition to str
 *bc clear break condition
 *cb clear all breakpoints
 *g start/resume execution
 *s [N] execute N statements (default 1)
 *x toggle execution trace on/off
 *h, *? print this menu
 *q quit'
}

Erase temp files before exiting.
function _cleanup {
 rm $_dbgfile 2>/dev/null
}

9.1 Basic Debugging Aids 10. Korn Shell Administration

[Chapter 9] 9.2 A Korn Shell Debugger

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch09_02.htm (12 of 12) [2/8/2001 5:01:06 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 10

10. Korn Shell Administration
Contents:
Installing the Korn Shell as the Standard Shell
Environment Customization
System Security Features

System administrators use the shell as part of their job of setting up a system-wide environment for all
users. In this chapter, we'll discuss the Korn shell's features that relate to this task from two perspectives:
customization that is available to all users and system security. We assume that you already know the
basics of UNIX system administration. [1]

[1] A good source of information on system administration is Essential System
Administration, a Nutshell Handbook from O'Reilly & Associates, Inc., by AEleen Frisch.

10.1 Installing the Korn Shell as the Standard Shell
As a prelude to system-wide customization, we want to emphasize something about the Korn shell that
doesn't apply to most other shells: you can install it as if it were the standard Bourne shell, i.e., as /bin/sh.
Just save the real Bourne shell as another filename, such as /bin/bsh, in case anyone actually needs it for
anything (which is doubtful), then rename your Korn shell as /bin/sh.

Many installations have done this with absolutely no ill effects. Not only does this make the Korn shell
your system's standard login shell, but it also makes most existing Bourne shell scripts run faster, and it
has security advantages that we'll see later in this chapter.

As we will see in Appendix A, Related Shells, the Korn shell is backward-compatible with the Bourne
shell except that it doesn't support ^ as a synonym for the pipe character |. Unless you have an ancient
UNIX system, or you have some very, very old shell scripts, you needn't worry about this.

But if you want to be absolutely sure, simply search through all shell scripts in all directories in your
PATH. An easy way to do this is to use the file command, which we saw in Chapter 5, Flow Control and
Chapter 9, Debugging Shell Programs. file prints "executable shell script" when given the name of one.
[2] Here is a script that looks for ^ in shell scripts in every directory in your PATH:

[2] The exact message varies from system to system; make sure that yours prints this

[Chapter 10] Korn Shell Administration

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_01.htm (1 of 2) [2/8/2001 5:01:12 PM]

message when given the name of a shell script. If not, just substitute the message your file
command prints for "shell script" in the code below.

IFS=:
for d in $PATH; do
 print checking $d:
 cd $d
 scripts=$(file * | grep 'shell script' | cut -d: -f1)
 for f in $scripts; do
 grep '' $f /dev/null
 done
done

The first line of this script make it possible to use $PATH as an item list in the for loop. For each
directory, it cds there and finds all shell scripts by piping the file command into grep and then, to extract
the filename only, into cut. Then for each shell script, it searches for the ^ character. [3]

[3] The inclusion of /dev/null in the grep command is a kludge that forces grep to print the
names of files that contain a match, even if there is only one such file in a given directory.

If you run this script, you will probably find several occurrences of ^-but these should be used within
regular expressions in grep, sed, or awk commands, not as pipe characters. Assuming this is the case, it is
safe for you to install the Korn shell as /bin/sh.

9.2 A Korn Shell Debugger 10.2 Environment
Customization

[Chapter 10] Korn Shell Administration

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_01.htm (2 of 2) [2/8/2001 5:01:12 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 10
Korn Shell Administration

10.2 Environment Customization
Like the Bourne shell, the Korn shell uses the file /etc/profile for system-wide customization. When a
user logs in, the shell reads and runs /etc/profile before running the user's .profile.

We won't cover all the possible commands you might want to put in /etc/profile. But the Korn shell has a
few unique features that are particularly relevant to system-wide customization; we'll discuss them here.

We'll start with two built-in commands that you can use in /etc/profile to tailor your users' environments
and constrain their use of system resources. Users can also use these commands in their .profile, or at any
other time, to override the default settings.

10.2.1 umask

umask, like the same command in most other shells, lets you specify the default permissions that files
have when users create them. It takes the same types of arguments that the chmod command does, i.e.,
absolute (octal numbers) or symbolic permission values.

The umask contains the permissions that are turned off by default whenever a process creates a file,
regardless of what permission the process specifies. [4]

[4] If you are comfortable with Boolean logic, think of the umask as a number that the
operating system logically XORs with the permission given by the creating process.

We'll use octal notation to show how this works. As you should know, the digits in a permission number
stand (left to right) for the permissions of the owner, owner's group, and all other users, respectively.
Each digit, in turn, consists of three bits, which specify read, write, and execute permissions from left to
right. (If a file is a directory, the "execute" permission becomes "search" permission, i.e., permission to
cd to it, list its files, etc.)

For example, the octal number 640 equals the binary number 110 100 000. If a file has this permission,
then its owner can read and write it; users in the owner's group can only read it; everyone else has no
permission on it. A file with permission 755 gives its owner the right to read, write, and execute it and
everyone else the right to read and execute (but not write).

022 is a common umask value. This implies that when a file is created, the "most" permission it could
possibly have is 755-which is the usual permission of an executable that a compiler might create. A text
editor, on the other hand, might create a file with 666 permission (read and write for everyone), but the

[Chapter 10] 10.2 Environment Customization

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_02.htm (1 of 4) [2/8/2001 5:01:23 PM]

umask forces it to be 644 instead.

10.2.2 ulimit

The ulimit command was originally used to specify the limit on file creation size. But the Korn shell
version has options that let you put limits on several different system resources. Table 10.1 lists the
options.

Table 10.1: ulimit Resource Options
Option Resource Limited
-a All (for printing values only)
-c Core file size (½ kb blocks)
-d Process data segment (kb)
-f File size (½ kb blocks)
-n File descriptors
-s Process stack segment (kb)
-t Process CPU time (seconds)
-v Virtual memory (kb)

Each takes a numerical argument that specifies the limit in units shown in the table. You can also give
the argument "unlimited" (which may actually mean some physical limit), or you can omit the argument,
in which case it will print the current limit. ulimit -a prints limits (or "unlimited") of all types. You can
only specify one type of resource at a time. If you don't specify any option, -f is assumed.

Some of these options depend on operating system capabilities that don't exist in older UNIX versions. In
particular, some older versions have a fixed limit of 20 file descriptors per process (making -n
irrelevant), and some don't support virtual memory (making -v irrelevant).

The -d and -s options have to do with dynamic memory allocation, i.e., memory for which a process asks
the operating system at runtime. It's not necessary for casual users to limit these, though software
developers may want to do so to prevent buggy programs from trying to allocate endless amounts of
memory due to infinite loops.

The -v option is similar; it puts a limit on all uses of memory. You don't need this unless your system has
severe memory constraints or you want to limit process size to avoid thrashing.

You may want to specify limits on file size (-f and -c) if you have constraints on disk space. Sometimes
users actually mean to create huge files, but more often than not, a huge file is the result of a buggy
program that goes into an infinite loop. Software developers who use debuggers like sdb and dbx should
not limit core file size, because core dumps are necessary for debugging.

The -t option is another possible guard against infinite loops. But we would argue that a program that is
in an infinite loop but isn't allocating memory or writing files is not particularly dangerous; it's better to
leave this unlimited and just let the user kill the offending program.

In addition to the types of resources you can limit, ulimit lets you specify hard or soft limits. Hard limits
can be lowered by any user but only raised by the superuser (root); users can lower soft limits and raise
them-but only as high as the hard limit for that resource.

[Chapter 10] 10.2 Environment Customization

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_02.htm (2 of 4) [2/8/2001 5:01:23 PM]

If you give -H along with one (or more) of the options above, ulimit will set hard limits; -S sets soft
limits. Without either of these, ulimit sets both. For example, the following commands set the soft limit
on file descriptors to 64 and the hard limit to unlimited:

ulimit -Sn 64
ulimit -Hn unlimited

When ulimit prints current limits, it prints soft limits unless you specify -H.

10.2.3 Types of Global Customization

The best possible approach to globally-available customization would be a system-wide environment file
that is separate from each user's environment file-just like /etc/profile is separate from each user's
.profile.

Unfortunately, the Korn shell doesn't have this feature. If you assign a filename to the ENV environment
variable, it could be overridden in a user's .profile. This allows you to make a default environment file
available for users who don't have their own, but it doesn't let you have a system-wide environment file
that runs in addition to the users'.

Nevertheless, the shell gives you a few ways to set up customizations that are available to all users at all
times. Environment variables are the most obvious; your /etc/profile file will undoubtedly contain
definitions for several of them, including PATH and TERM.

The variable TMOUT is useful when your system supports dialup lines. Set it to a number N, and if a
user doesn't enter a command within N seconds after the shell last issued a prompt, the shell will
terminate. This feature is helpful in preventing people from "hogging" the dialup lines.

You may want to include some more complex customizations involving environment variables, such as
the prompt string PS1 containing the current directory (as seen in Chapter 4, Basic Shell Programming).

You can also turn on options, such as emacs- or vi- editing modes, trackall to make alias expansion
more efficient and system security tighter, and noclobber to protect against inadvertent file overwriting.
Any shell scripts you have written for general use also contribute to customization.

Unfortunately, it's not possible to create a global alias. You can define aliases in /etc/profile, but there is
no way to make them part of the environment so that their definitions will propagate to subshells. (In
contrast, users can define global aliases by putting their definitions in environment files.)

However, you can set up global functions. These are an excellent way to customize your system's
environment, because functions are part of the shell, not separate processes. For example, if you define
pushd and popd (see Chapters Chapter 4 through Chapter 6, Command-line Options and Typed
Variables) as exported functions, the shell will run them almost as if they were built-in commands, as
they are in the C shell.

The best way to create global functions is to use the built-in variable FPATH and the autoload feature
that we introduced in Chapter 4. Just define FPATH as a function library directory, perhaps
/usr/local/functions, and make it an environment variable by exporting it. In other words, put this or

[Chapter 10] 10.2 Environment Customization

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_02.htm (3 of 4) [2/8/2001 5:01:23 PM]

similar code in /etc/profile:

FPATH=/usr/local/functions
export FPATH

Then put each global function's definition in a file in that directory with the same name as the function,
and put autoload fname for each of these functions in /etc/profile.

In either case, we suggest using exported functions for global customization instead of shell scripts.
Given how cheap memory is nowadays, there is no reason why you shouldn't make generally useful
functions part of your users' environment.

10.1 Installing the Korn Shell
as the Standard Shell

10.3 System Security Features

[Chapter 10] 10.2 Environment Customization

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_02.htm (4 of 4) [2/8/2001 5:01:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Chapter 10
Korn Shell Administration

10.3 System Security Features
UNIX security is a problem of legendary notoriety. Just about every aspect of a UNIX system has some
security issue associated with it, and it's usually the system administrator's job to worry about this issue.

The Korn shell has three features that help solve this problem: the restricted shell, which is intentionally
"brain damaged," the tracked alias facility that we saw in Chapter 3, Customizing Your Environment,
and privileged mode, which is used with shell scripts that run as if the user were root.

10.3.1 Restricted Shell

The restricted shell is designed to put the user into an environment where his or her ability to move
around and write files is severely limited. It's usually used for "guest" accounts. You can make a user's
login shell restricted by putting rksh or ksh -r in the user's /etc/passwd entry.

The specific constraints imposed by the restricted shell disallow the user from doing the following:

Changing working directories: cd is inoperative. If you try to use it, you will get the error message
"ksh: cd: restricted".

●

Redirecting output to a file: the redirectors >, >|, <>, and >> are not allowed.●

Assigning a new value to the environment variables SHELL, ENV, or PATH.●

Specifying any pathnames with slashes (/) in them. The shell will treat files outside of the current
directory as "not found."

●

These restrictions go into effect after the user's .profile and environment files are run.

This means that the restricted shell user's entire environment is set up in .profile. Since the user can't
overwrite that file, this lets the system administrator configure the environment as he or she sees fit.

Two common ways of setting up such environments are to set up a directory of "safe" commands and
have that directory be the only one in PATH, and to set up a command menu from which the user can't
escape without exiting the shell.

[Chapter 10] 10.3 System Security Features

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_03.htm (1 of 4) [2/8/2001 5:01:25 PM]

10.3.2 A System Break-in Scenario

Before we explain the other security features, here is some background information on system security
that should help you understand why they are necessary.

Many problems with UNIX security hinge on a UNIX file attribute called the suid (set user ID) bit. This
is like a permission bit (see umask above): when an executable file has it turned on, the file runs with an
effective user ID equal to the owner of the file, which is usually root. The effective user ID is distinct
from the real user ID of the process.

This feature lets administrators write scripts that do certain things that require root privilege (e.g.,
configure printers) in a controlled way. To set a file's suid bit, the superuser can type chmod 4755
filename; the 4 is the suid bit.

Modern system administration wisdom says that creating suid shell scripts is a very, very bad idea. [5]
This has been especially true under the C shell, because its .cshrc environment file introduces numerous
opportunities for break-ins. The Korn shell's environment file feature creates similar security holes,
although the security features we'll see shortly make this problem less severe.

[5] In fact, some versions of UNIX intentionally disable the suid feature for shell scripts.

We'll show why it's dangerous to set a script's suid bit. Recall that in Chapter 3 we mentioned that it's not
a good idea to put your personal bin directory at the front of your PATH. Here is a scenario that shows
how this combines with suid shell scripts to form a security hole: a variation of the infamous "Trojan
horse" scheme.

For this particular technique to work, the computer cracker has to find a user on the system with an suid
shell script. In addition, the user must have a PATH with his or her personal bin directory listed before
the public bin directories, and the cracker must have write permission on the user's personal bin
directory.

Once the cracker finds a user with these requirements, he or she does the following:

Looks at the suid script and finds a common utility that it calls. Let's say it's grep.●

Creates the Trojan horse: a shell script called grep in the user's personal bin directory that looks
like this:

cp /bin/ksh filename
chown root filename
chmod 4755 filename
/bin/grep "$@"
rm ~/bin/grep

filename should be some unremarkable filename in a directory with public read and execute
permission, such as /bin or /usr/bin. The file, when created, will be that most heinous of security
holes: an suid interactive shell.

●

Sits back and waits for the user to run the suid shell script-which calls the Trojan horse, which in
turn creates the suid shell and then self-destructs.

●

[Chapter 10] 10.3 System Security Features

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_03.htm (2 of 4) [2/8/2001 5:01:25 PM]

Runs the suid shell and creates havoc.●

10.3.3 Tracked Aliases

The Korn shell protects against this type of scheme in two ways. First, it defines tracked aliases (see
Chapter 3) for just about all commonly-used utilities: ls, mv, cp, who, grep, and many others. Since
aliases take priority over executable files, the alias will always run instead of the Trojan horse.

Furthermore, the shell won't let you know about these if you type alias -t to see all tracked aliases. [6]
You'll have trouble finding a command to use as your Trojan horse if you want to break in. This is a very
clever-and undocumented-security feature.

[6] Unless you type whence -v command or type command. If command has a tracked alias,
this will say so, and it will cause alias -t to report it next time.

10.3.4 Privileged Mode

The second type of protection against Trojan horses is privileged mode. This is a set -o option (set -o
privileged or set -p), but the shell enters it automatically whenever it executes a script whose suid bit is
set.

In privileged mode, when an suid Korn shell script is invoked, the shell does not run the user's
environment file-i.e., it doesn't expand the user's ENV environment variable. Instead, it runs the file
/etc/suid_profile.

/etc/suid_profile should be written so as to restrict suid shell scripts in much the same way as the
restricted shell does. At a minimum, it should make PATH read-only (typeset -r PATH or readonly
PATH) and set it to one or more "safe" directories. Once again, this prevents any decoys from being
invoked.

Since privileged mode is an option, it is possible to turn it off with the command set +o privileged (or
set +p). But this doesn't help the potential system cracker: the shell automatically changes its effective
user ID to be the same as the real user ID-i.e., if you turn off privileged mode, you also turn off suid.

Privileged mode is an excellent security feature; it solves a problem that originated when the
environment file idea first appeared in the C shell. Tracked aliases make protection against Trojan horses
even stronger.

Furthermore, both features are strong arguments for installing the Korn shell as /bin/sh. Your system will
be all the more impervious to break-ins if your standard shell has these security features.

Nevertheless, we still recommend against creating suid shell scripts. We have shown how the Korn shell
protects against break-ins in one particular situation, but that certainly does not imply that the Korn shell
is "safe" in any absolute sense. If you really must have suid scripts, you should carefully consider all
relevant security issues.

Finally, if you would like to learn more about UNIX security, we recommend the O'Reilly & Associates
Nutshell Handbook, Practical UNIX Security, by Gene Spafford and Simson Garfinkel.

[Chapter 10] 10.3 System Security Features

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_03.htm (3 of 4) [2/8/2001 5:01:25 PM]

10.2 Environment
Customization

A. Related Shells

[Chapter 10] 10.3 System Security Features

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch10_03.htm (4 of 4) [2/8/2001 5:01:25 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix B

B. Reference Lists
Contents:
Invocation Options
Built-in Commands and Keywords
Built-in Shell Variables
Test Operators
Options
Typeset Options
Emacs Mode Commands
Vi Control Mode Commands

B.1 Invocation Options
Here is a list of the options you can use when invoking the Korn shell. In addition to these, any set option
can be used on the command line; see Table B.5 below. Login shells are usually invoked with the options
-i (interactive), -s (read from standard input), and -m -able job control).

Option Meaning
-c string Execute string, then exit.
-s Read commands from the standard input. If an argument is given, this flag takes precedence

(i.e., the argument won't be treated as a script name and standard input will be read).
-i Interactive shell. Ignore signals TERM, INTR, and QUIT.
-r Restricted shell. See Chapter 10, Korn Shell Administration.

A.7 The Future of the Korn
Shell

B.2 Built-in Commands and
Keywords

[Appendix B] Reference Lists

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_01.htm [2/8/2001 5:01:51 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix A
Related Shells

A.7 The Future of the Korn Shell
David Korn continues to enhance the Korn shell at AT&T Bell Labs. At this writing, a new release is in
beta test-usually the final step before a piece of software is released. However, negotiations between
AT&T and USL (now Novell UNIX Systems Group) over distribution rights could very well postpone
the new shell's public release for a couple of years or more.

Nevertheless, the new Korn shell has significant enhancements that make it worth looking forward to.
These features are subject to change between the time of this writing and the new shell's public release.
Here are some highlights:

The ability to customize key bindings, as in bash and pdksh but applicable to vi- as well as
emacs-mode. This is implemented as another "fake signal" trap (on keystrokes), so it's extremely
flexible.

●

Many new customization variables and options.●

A greatly expanded set of string operators, providing substrings, substitutions, and other
functionality.

●

An enhanced array variable facility that provides for associative arrays, which can be addressed by
their contents rather than by indices.

●

Better prompt string customization capabilities (with command substitution and arithmetic
expression evaluation).

●

Floating point (real number) arithmetic.●

An arithmetic for loop in the style of the C programming language.●

A new option to print that allows C language printf()-style output formatting.●

The ability to add new built-in commands, on systems that support dynamic loading (the dlopen()
system call).

●

More user control over command lookup order, as in the POSIX standard and bash.●

The ability to set timed "alarms" (with the ALRM signal).●

Expanded debugging support through additional fake signal traps.●

[Appendix A] A.7 The Future of the Korn Shell

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_07.htm (1 of 3) [2/8/2001 5:02:01 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Online help for built-in commands through a standard -? option.●

The next release is expected to be incompatible with the 1988 Korn shell in a few ways, some of which
are necessary for POSIX compliance (refer to the section on POSIX in this Appendix for more details):

The alias command will never display tracked aliases unless you specify the option -t.●

Functions defined with fname() (the syntax not used in this book) will have weaker
POSIX-compliant semantics. However, functions defined with function fname will remain the
same.

●

Tilde expansion can take place inside ${...}-style variable expressions, whereas in the 1988 Korn
shell, tildes in these expressions are treated literally.

●

! will be a keyword, as it is in the POSIX standard.●

Command substitution and arithmetic expression evaluation (in addition to parameter expansion)
will be performed on the variables PS1, PS3, and ENV when they are expanded. This will allow
for more flexible customization of prompt strings and environment files. It also means that grave
accents (`) and $(must be quoted to be taken literally.

●

Output of the built-in commands set, typeset, and alias will change so that any words containing
special characters are single-quoted-so that these commands' output can be used directly for input.

●

A new expansion operator, $'...', is used to delimit strings that conform to the ANSI C language
standard for character strings. In the 1988 Korn shell, $' causes the dollar sign to be treated
literally; in future releases, it must be backslash-escaped.

●

command will be a built-in command, as in POSIX.●

Command lookup order will change so that built-in commands will be treated as if they were
installed in /bin, i.e., will be found at the same time as /bin is searched when the shell goes through
your PATH. The rules will also change to comply with the POSIX standard that allows certain
built-in commands to take precedence over functions.

●

Signal traps will propagate to subshells (whether nested or shell scripts invoked from shells) until
the subshell issues a trap command (on any signal). Currently, traps do not propagate to subshells;
see Chapter 8.

●

The built-in variable ERRNO will be dropped; exit statuses will reflect system call error numbers.●

Finally, the following features are expected eventually to become obsolete:

The command fc will be renamed hist; the built-in variable FCEDIT will be renamed
HISTEDIT.

●

The -t option to alias, set -h, and set -o trackall. Alias tracking will always be on.●

The -k or -o keyword option. This will always be off (see Chapter 3).●

Grave accents (`) for command substitution. Use $(...) instead.●

[Appendix A] A.7 The Future of the Korn Shell

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_07.htm (2 of 3) [2/8/2001 5:02:01 PM]

The -a (file existence) condition test will be renamed -e, to avoid clashing with the -a operator
(logical "and") in the old test or [...] syntax.

●

The = pattern-matching operator in [[...]] condition tests will be replaced by == for better syntactic
alignment with the C language.

●

The arithmetic comparisons -eq, -lt, etc. Use ((...)) instead.●

A.6 Workalikes on PC
Platforms

B. Reference Lists

[Appendix A] A.7 The Future of the Korn Shell

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_07.htm (3 of 3) [2/8/2001 5:02:01 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix B
Reference Lists

B.2 Built-in Commands and Keywords
Here is a summary of all built-in commands and keywords.

Command Chapter Summary
: 7 Do nothing (just do expansions of arguments).
. 4 Read file and execute its contents in current shell.
alias 3 Set up shorthand for command or command line.
bg 8 Put job in background.
break 5 Exit from surrounding for, select, while, or until loop.
case 5 Multi-way conditional construct.
cd 1 Change working directory.
continue Skip to next iteration of for, select, while, or until loop.
echo 4 Expand and print arguments (obsolete).
exec 9 Replace shell with given program.
exit 5 Exit from shell.
export 3 Create environment variables.
eval 7 Process arguments as a command line.
fc 2 Fix command (edit history file).
fg 8 Put background job in foreground.
for 5 Looping construct.
function 4 Define function.
getopts 6 Process command-line options.
if 5 Conditional construct.
jobs 1 List background jobs.
kill 8 Send signal to process.
let 6 Arithmetic variable assignment.
newgrp Start new shell with new group ID.
print 1 Expand and print arguments on standard output.
pwd 1 Print working directory.
read 7 Read a line from standard input.
readonly 6 Make variables read-only (unassignable).
return 5 Return from surrounding function or script.
select 5 Menu generation construct.

[Appendix B] B.2 Built-in Commands and Keywords

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_02.htm (1 of 2) [2/8/2001 5:02:03 PM]

set 3 Set options.
shift 6 Shift command-line arguments.
time Run command and print execution times.
trap 8 Set up signal-catching routine.
typeset 6 Set special characteristics of variables.
ulimit 10 Set/show process resource limits.
umask 10 Set/show file permission mask.
unalias 3 Remove alias definitions.
unset 3 Remove definitions of variables or functions.
until 5 Looping construct.
wait 8 Wait for background job(s) to finish.
whence 3 Identify source of command.
while 5 Looping construct.

B.1 Invocation Options B.3 Built-in Shell Variables

[Appendix B] B.2 Built-in Commands and Keywords

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_02.htm (2 of 2) [2/8/2001 5:02:03 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix B
Reference Lists

B.3 Built-in Shell Variables

Variable Chapter Meaning
4 Number of arguments given to current process.
- Options given to shell on invocation.
? 5 Exit status of previous command.
$ 8 Process ID of shell process.
_ Last argument to previous command.
! 8 Process ID of last background command.
CDPATH 3 List of directories for cd command to search.
COLUMNS 3 Width of display in columns (for editing modes and select).
EDITOR 2 Used to set editing mode; also used by mail and other programs.
ERRNO A Error number of last system call that failed.
ENV 3 Name of file to run as environment file when shell is invoked.
FCEDIT 2 Default editor for fc command.
FPATH 4 Search path for autoloaded functions.
IFS 7 Internal field separator: list of characters that act as word separators. Normally

set to SPACE, TAB, and NEWLINE.
HISTFILE 2 Name of command history file.
HISTSIZE 2 Number of lines kept in history file.
HOME 3 Home (login) directory.
LINENO 9 Number of line in script or function that just ran.
LINES 3 Height of display in lines (for select command).
MAIL 3 Name of file to check for new mail.
MAILCHECK 3 How often (in seconds) to check for new mail.
MAILPATH 3 List of file names to check for new mail, if MAIL is not set.
OLDPWD 3 Previous working directory.
OPTARG 6 Argument to option being processed by getopts.
OPTIND 6 Number of first argument after options.
PATH 3 Search path for commands.
PS1 3 Primary command prompt string.
PS2 3 Prompt string for line continuations.
PS3 5 Prompt string for select command.

[Appendix B] B.3 Built-in Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_03.htm (1 of 2) [2/8/2001 5:02:04 PM]

PS4 9 Prompt string for xtrace option.
PPID 8 Process ID of parent process.
PWD 3 Current working directory.
RANDOM 9 Random number between 0 and 32767 (2215-1).
REPLY 5,7 User's response to select command; result of read command if no variable

names given.
SECONDS 3 Number of seconds since shell was invoked.
SHELL 3 Full pathname of shell.
TMOUT 10 If set to a positive integer, number of seconds between commands after which

shell automatically terminates.
VISUAL 2 Used to set editing mode.

B.2 Built-in Commands and
Keywords

B.4 Test Operators

[Appendix B] B.3 Built-in Shell Variables

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_03.htm (2 of 2) [2/8/2001 5:02:04 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix B
Reference Lists

B.4 Test Operators
These are the operators that are used with the [[...]] construct. They can be logically combined with &&
("and") and || ("or") and grouped with parenthesis.

Operator True If...
-a file file exists.
-b file file is a block device file.
-c file file is a character device file.
-d file file is a directory.
-f file file is a regular file.
-g file file has its setgid bit set.
-k file file has its sticky bit set.
-n string string is non-null.
-o option option is set.
-p file file is a pipe or named pipe (FIFO file).
-r file file is readable.
-s file file is not empty.
-t N File descriptor N points to a terminal.
-u file file has its setuid bit set.
-w file file is writeable.
-x file file is executable, or file is a directory that can be searched.
-z string string is null.
-G file file's group ID is the same as that of the shell.
-L file file is a symbolic link.
-O file file is owned by the shell's user ID.
-S file file is a socket.
fileA -nt fileB fileA is newer than fileB.
fileA -ot fileB fileA is older than fileB.
fileA -ef fileB fileA and fileB point to the same file.
string = pattern string matches pattern (which can contain wildcards).
string != pattern string does not match pattern.
stringA < stringB stringA comes before stringB in dictionary order.
stringA > stringB stringA comes after stringB in dictionary order.

[Appendix B] B.4 Test Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_04.htm (1 of 2) [2/8/2001 5:02:06 PM]

exprA -eq exprB Arithmetic expressions exprA and exprB are equal.
exprA -ne exprB Arithmetic expressions exprA and exprB are not equal.
exprA -lt exprB exprA is less than exprB.
exprA -gt exprB exprA is greater than exprB.
exprA -le exprB exprA is less than or equal to exprB.
exprA -ge exprB exprA is greater than or equal to exprB.

B.3 Built-in Shell Variables B.5 Options

[Appendix B] B.4 Test Operators

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_04.htm (2 of 2) [2/8/2001 5:02:06 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix B
Reference Lists

B.5 Options
These are options that can be turned on with the set -o command. All are initially off except where noted.
Abbrevs, where listed, are arguments to set that can be used instead of the full set -o command (e.g., set
-a is an abbreviation for set -o allexport). The abbreviations are actually backward-compatible Bourne
shell options.

Option Abbrev Meaning
allexport -a Export all subsequently defined variables.
errexit -e Exit the shell when a command exits with non-0 status.
bgnice Run all background jobs at decreased priority (on by default).
emacs Use emacs-style command-line editing.
gmacs Use emacs-style command-line editing, but with a slightly different meaning for

[CTRL-T] (See Chapter 2, Command-line Editing).
ignoreeof Disallow [CTRL-D] to exit the shell.
markdirs Add / to all directory names generated from wildcard expansion.
monitor -m Enable job control (on by default).
noclobber Don't allow > redirection to existing files.
noexec -n Read commands and check for syntax errors, but don't execute them.
noglob -f Disable wildcard expansion.
nolog Disable command history.
nounset -u Treat undefined variables as errors, not as null.
privileged -p Script is running in suid mode.
trackall -h Substitute full pathnames for commands in alias expansions.
verbose -v Print commands (verbatim) before running them.
vi Use vi-style command-line editing.
viraw Use vi mode and have each keystroke take effect immediately.
xtrace -x Print commands (after expansions) before running them.

B.4 Test Operators B.6 Typeset Options

[Appendix B] B.5 Options

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_05.htm [2/8/2001 5:02:07 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix B
Reference Lists

B.6 Typeset Options
These are arguments to the typeset command.

Option Meaning
With no option, create local variable within function.

-L Left justify and remove leading blanks.
-R Right justify and remove trailing blanks.
-f With no arguments, prints all function definitions.
-f fname Prints the definition of function fname.
+f Prints all function names.
-ft Turns on trace mode for named function(s).
+ft Turns off trace mode for named function(s).
-fu Defines given name(s) as autoloaded function(s).
-i Declare variable as an integer.
-l Convert all letters to lowercase.
-r Make variable read-only.
-u Convert all letters to uppercase.
-x Export variable, i.e., put in environment so that it is passed to subshells.

B.5 Options B.7 Emacs Mode Commands

[Appendix B] B.6 Typeset Options

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_06.htm [2/8/2001 5:02:08 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix B
Reference Lists

B.7 Emacs Mode Commands
Here is a complete list of all Emacs editing mode commands.

Command Meaning
CTRL-A Move to beginning of line
CTRL-B Move backward one character (without deleting)
CTRL-C Capitalize character after point
CTRL-D Delete one character forward
CTRL-E Move to end of line
CTRL-F Move forward one character
CTRL-J Same as RETURN.
CTRL-K Delete ("kill") forward to end of line
CTRL-L Redisplay the line
CTRL-M Same as RETURN
CTRL-N Next line
CTRL-O Same as RETURN, then display next line in history file
CTRL-P Previous line
CTRL-R Search backward
CTRL-T Transpose two characters
CTRL-U Repeat the following command four times
CTRL-V Print the version of the Korn shell
CTRL-W Delete ("wipe") all characters between point and mark (see below)
CTRL-Y Retrieve ("yank") last item deleted
CTRL-X CTRL-X Exchange point and mark
CTRL-] x Search forward for x, where x is any character
DEL Delete one character backward
CTRL-[Same as ESC (most keyboards)
ESC b Move one word backward
ESC c Change word after point to all capital letters
ESC d Delete one word forward
ESC f Move one word forward
ESC h Delete one word backward
ESC l Change word after point to all lowercase letters

[Appendix B] B.7 Emacs Mode Commands

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_07.htm (1 of 2) [2/8/2001 5:02:10 PM]

ESC p Save characters between point and mark as if deleted
ESC CTRL-H Delete one word backward
ESC CTRL-]x Search backward for x, where x is any character
ESC SPACE Set mark at point
ESC # Insert line in history file for future editing
ESC DEL Delete one word backward
ESC < Move to first line of history file
ESC > Move to last line of history file
ESC . Insert last word in previous command line after point
ESC _ Same as above
ESC ESC Do filename completion on current word
ESC * Do filename expansion on current word
ESC = Insert line in history file for future editing

B.6 Typeset Options B.8 Vi Control Mode
Commands

[Appendix B] B.7 Emacs Mode Commands

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_07.htm (2 of 2) [2/8/2001 5:02:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix B
Reference Lists

B.8 Vi Control Mode Commands
Here is a complete list of all vi control mode commands.

Command Meaning
h Move left one character
l Move right one character
w Move right one word
b Move left one word
W Move to beginning of next non-blank word
B Move to beginning of preceding non-blank word
e Move to end of current word
E Move to end of current non-blank word
0 Move to beginning of line
^ Move to first non-blank character in line
$ Move to end of line
i Insert text before current character
a Insert text after current character
I Insert text at beginning of line
A Insert text at end of line
R Overwrite existing text
dh Delete one character backwards
dl Delete one character forwards
db Delete one word backwards
dw Delete one word forwards
dB Delete one non-blank word backwards
dW Delete one non-blank word forwards
d$ Delete to end of line
d0 Delete to beginning of line
D Equivalent to d$ (delete to end of line)
dd Equivalent to 0d$ (delete entire line)
C Equivalent to c$ (delete to end of line, enter input mode)
cc Equivalent to 0c$ (delete entire line, enter input mode)
x Equivalent to dl (delete character backwards)

[Appendix B] B.8 Vi Control Mode Commands

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_08.htm (1 of 2) [2/8/2001 5:02:11 PM]

X Equivalent to dh (delete character forwards)
k or - Move backward one line
j or + Move forward one line
G Move to line given by repeat count
/string Search forward for string
?string Search backward for string
n Repeat search forward
N Repeat search backward
fx Move right to next occurrence of x
Fx Move left to previous occurrence of x
tx Move right to next occurrence of x, then back one space
Tx Move left to previous occurrence of x, then forward one space
, Undo motion of last character finding command
; Redo last character finding command
\ Do filename completion
* Do wildcard expansion (onto command line)
\= Do wildcard expansion (as printed list)
~ Invert ("twiddle") case of current character(s)
_ Append last word of previous command, enter input mode
v Run the fc command on the current line (actually, run the command fc -e

${VISUAL:-${EDITOR:-vi}}). Usually this means run the full vi on the current line.
[CTRL-L] Start a new line and redraw the current line on it
Prepend # (comment character) to the line and send it
x Insert expansion of alias _x

B.7 Emacs Mode Commands C. Obtaining Sample
Programs

[Appendix B] B.8 Vi Control Mode Commands

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_08.htm (2 of 2) [2/8/2001 5:02:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

By Dale Dougherty & Arnold Robbins; ISBN 1-56592-225-5, 432 pages.
Second Edition, March 1997.
(See the catalog page for this book.)

Search the text of sed & awk.

Index

Symbols | A | B | C | D | E | F | G | H | I | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y

Table of Contents
Preface
Chapter 1: Power Tools for Editing
Chapter 2: Understanding Basic Operations
Chapter 3: Understanding Regular Expression Syntax
Chapter 4: Writing sed Scripts
Chapter 5: Basic sed Commands
Chapter 6: Advanced sed Commands
Chapter 7: Writing Scripts for awk
Chapter 8: Conditionals, Loops, and Arrays
Chapter 9: Functions
Chapter 10: The Bottom Drawer
Chapter 11: A Flock of awks
Chapter 12: Full-Featured Applications
Chapter 13: A Miscellany of Scripts

Appendix A: Quick Reference for sed
Appendix B: Quick Reference for awk
Appendix C: Supplement for Chapter 12

Examples

sed & awk

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index.htm (1 of 2) [2/8/2001 5:02:15 PM]

http://www.oreilly.com/catalog/sed2/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/ssrch.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_0.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_a.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_b.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_c.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_d.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_e.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_f.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_g.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_h.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_i.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_k.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_l.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_m.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_n.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_o.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_p.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_q.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_r.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_s.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_t.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_u.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_v.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_w.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_x.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_y.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/prf1_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch01_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch02_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch03_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch04_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch05_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch06_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch07_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch08_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch09_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch10_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch11_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch12_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch13_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/appa_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/appb_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/appc_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/examples/index.htm

Copyright © 1998 O'Reilly & Associates. All Rights Reserved.

sed & awk

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index.htm (2 of 2) [2/8/2001 5:02:15 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/

By Linda Lamb; ISBN 0-937175-67-6, 173 pages.
Fifth Edition, August 1994.
(See the catalog page for this book.)

Search the text of Learning the vi Editor.

Index

A | B | C | D | E | F | G | H | I | J | L | M | N | O | P | Q | R | S | T | U | V | W | Y

Table of Contents
Preface to the 5th Edition
Preface
Chapter 1: The vi Text Editor
Chapter 2: Simple Editing
Chapter 3: Moving Around in a Hurry
Chapter 4: Beyond the Basics
Chapter 5: Introducing the ex Editor
Chapter 6: Global Replacement
Chapter 7: Advanced Editing

Appendix A: Quick Reference
Appendix B: Setting Environment Options
Appendix C: ex commands
Appendix D: Problem Checklist

Copyright © 1998 O'Reilly & Associates. All Rights Reserved.

Learning the vi Editor

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index.htm [2/8/2001 5:02:16 PM]

http://www.oreilly.com/catalog/vi5/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/vsrch.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_a.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_b.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_c.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_d.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_e.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_f.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_g.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_h.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_i.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_j.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_l.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_m.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_n.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_o.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_p.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_q.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_r.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_s.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_t.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_u.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_v.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_w.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_y.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/prf1_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/prf2_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch01_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch02_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch03_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch04_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch05_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch06_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch07_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/appa_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/appb_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/appc_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/appd_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/

Appendix C

C. Obtaining Sample Programs
Contents:
FTP
FTPMAIL
BITFTP
UUCP

Some of the examples in this book are available electronically in a number of ways: by ftp, ftpmail, bitftp, and uucp. The cheapest,
fastest, and easiest ways are listed first. If you read from the top down, the first one that works for you is probably the best. Use ftp
if you are directly on the Internet. Use ftpmail if you are not on the Internet but can send and receive electronic mail to internet sites
(this includes CompuServe users). Use BITFTP if you send electronic mail via BITNET. Use UUCP if none of the above works.

C.1 FTP
To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with what you should type in
boldface.

% ftp ftp.uu.net
Connected to ftp.uu.net.
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.uu.net:kismet): anonymous
331 Guest login OK, send domain style e-mail address as password.
Password: kismet@ora.com (use your user name and host here)
230 Guest login OK, access restrictions apply.
ftp> cd /published/oreilly/nutshell/ksh
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.
ftp> get ksh.tar.Z
200 PORT command successful.
150 Opening BINARY mode data connection for ksh.tar.Z.
226 Transfer complete.
ftp> quit
221 Goodbye.
%

If the file is a compressed tar archive, extract the files from the archive by typing:

% zcat ksh.tar.Z | tar xf -

System V systems require the following tar command instead:

% zcat ksh.tar.Z | tar xof -

If zcat is not available on your system, use separate uncompress and tar commands.

[Appendix C] Obtaining Sample Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appc_01.htm (1 of 2) [2/8/2001 5:02:31 PM]

B.8 Vi Control Mode
Commands

C.2 FTPMAIL

[Appendix C] Obtaining Sample Programs

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appc_01.htm (2 of 2) [2/8/2001 5:02:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix C
Obtaining Sample Programs

C.4 UUCP
UUCP is standard on virtually all UNIX systems, and is available for IBM-compatible PCs and Apple
Macintoshes. The examples are available by UUCP via modem from UUNET; UUNET's connect-time
charges apply.

You can get the examples from UUNET whether you have an account or not. If you or your company has
an account with UUNET, you will have a system with a direct UUCP connection to UUNET. Find that
system, and type:

% uucp uunet!~/published/oreilly/nutshell/ksh/ksh.tar.Z \
 yourhost!~/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should appear
some time later (up to a day or more) in the directory /usr/spool/uucppublic/yourname. If you don't have
an account but would like one so that you can get electronic mail, then contact UUNET at 703-204-8000.

Try to get the file /published/oreilly/nutshell/ksh/ls-lR.Z as a short test file containing the filenames and
sizes of all the files in the directory.

Once you've got the desired file, follow the directions under FTP to extract the files from the archive.

C.3 BITFTP

[Appendix C] C.4 UUCP

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appc_04.htm [2/8/2001 5:02:36 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix C
Obtaining Sample Programs

C.3 BITFTP
BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting files, and it
sends you back the files by electronic mail. BITFTP currently serves only users who send it mail from
nodes that are directly on BITNET, EARN, or NETNORTH. BITFTP is a public service of Princeton
University. Here's how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For a complete help file,
send HELP as the message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA
USER anonymous
PASS your Internet email address (not your bitnet address)
CD /published/oreilly/nutshell/ksh
DIR
BINARY
GET ksh.tar.Z
QUIT

Once you've got the desired file, follow the directions under FTP to extract the files from the archive.
Since you are probably not on a UNIX system, you may need to get versions of uudecode, uncompress,
atob, and tar for your system. VMS, DOS, and Mac versions are available. The VMS versions are on
gatekeeper.dec.com in /archive/pub/VMS.

Questions about BITFTP can be directed to Melinda Varian, MAINT@PUCC on BITNET.

C.2 FTPMAIL C.4 UUCP

[Appendix C] C.3 BITFTP

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appc_03.htm [2/8/2001 5:02:40 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Appendix C
Obtaining Sample Programs

C.2 FTPMAIL
FTPMAIL is a mail server available to anyone who can send electronic mail to and receive it from
Internet sites. This includes any company or service provider that allows email connections to the
Internet. Here's how you do it.

You send mail to ftpmail@online.ora.com. In the message body, give the FTP commands you want to
run. The server will run anonymous FTP for you and mail the files back to you. To get a complete help
file, send a message with no subject and the single word "help" in the body. The following is an example
mail session that should get you the examples. This command sends you a listing of the files in the
selected directory, and the requested example files. The listing is useful if there's a later version of the
examples you're interested in.

% mail ftpmail@online.ora.com
Subject:
reply alan@ora.com (where you want files mailed)
open
chdir /published/oreilly/nutshell/ksh
dir
mode binary
uuencode (or btoa if you have it)
get ksh.tar.Z
quit
%

A signature at the end of the message is acceptable as long as it appears after "quit."

All retrieved files will be split into 60KB chunks and mailed to you. You then remove the mail headers
and concatenate them into one file, and then uudecode or atob it. Once you've got the desired file, follow
the directions under FTP to extract the files from the archive.

VMS, DOS, and Mac versions of uudecode, atob, uncompress, and tar are available. The VMS versions
are on gatekeeper.dec.com in /archive/pub/VMS.

C.1 FTP C.3 BITFTP

[Appendix C] C.2 FTPMAIL

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appc_02.htm (1 of 2) [2/8/2001 5:03:10 PM]

[Appendix C] C.2 FTPMAIL

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appc_02.htm (2 of 2) [2/8/2001 5:03:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

	www.crypto.nc1uw1aoi420d85w1sos.de
	Learning the Korn Shell
	Search Learning the Korn Shell
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Preface
	[Preface] Summary of Korn Shell Features
	[Preface] Intended Audience
	[Preface] Code Examples
	[Preface] Chapter Summary
	[Preface] Conventions Used in This Handbook
	[Preface] Acknowledgments
	[Preface] We'd Like to Hear From You
	[Appendix A] Related Shells
	[Chapter 1] Korn Shell Basics
	[Chapter 1] 1.2 Scope of This Book
	[Chapter 1] 1.3 History of UNIX Shells
	[Chapter 1] 1.4 Getting the Korn Shell
	[Chapter 1] 1.5 Interactive Shell Use
	[Chapter 1] 1.6 Files
	[Chapter 1] 1.7 Input and Output
	[Chapter 1] 1.8 Background Jobs
	[Chapter 1] 1.9 Special Characters and Quoting
	[Chapter 2] Command-line Editing
	[Chapter 2] 2.2 The History File
	[Chapter 2] 2.3 Emacs Editing Mode
	[Chapter 2] 2.4 Vi Editing Mode
	[Chapter 2] 2.5 The fc Command
	[Chapter 2] 2.6 Finger Habits
	[Chapter 7] Input/Output and Command-line Processing
	[Chapter 3] Customizing Your Environment
	[Chapter 3] 3.2 Aliases
	[Chapter 3] 3.3 Options
	[Chapter 3] 3.4 Shell Variables
	[Chapter 3] 3.5 Customization and Subprocesses
	[Chapter 3] 3.6 Customization Hints
	[Chapter 4] Basic Shell Programming
	[Chapter 4] 4.2 Shell Variables
	[Chapter 4] 4.3 String Operators
	[Chapter 4] 4.4 Command Substitution
	[Chapter 4] 4.5 Advanced Examples: pushd and popd
	[Chapter 5] Flow Control
	[Chapter 5] 5.2 for
	[Chapter 5] 5.3 case
	[Chapter 5] 5.4 select
	[Chapter 5] 5.5 while and until
	[Chapter 6] Command-line Options and Typed Variables
	[Chapter 6] 6.2 Integer Variables and Arithmetic
	[Chapter 6] 6.3 Arrays
	[Chapter 8] Process Handling
	[Chapter 7] 7.3 Command-line Processing
	[Chapter 8] 8.2 Job Control
	[Chapter 8] 8.3 Signals
	[Chapter 8] 8.4 trap
	[Chapter 8] 8.5 Coroutines
	[Chapter 8] 8.6 Subshells
	[Chapter 9] Debugging Shell Programs
	[Chapter 9] 9.2 A Korn Shell Debugger
	[Chapter 10] Korn Shell Administration
	[Chapter 10] 10.2 Environment Customization
	[Chapter 10] 10.3 System Security Features
	[Appendix B] Reference Lists
	[Appendix A] A.7 The Future of the Korn Shell
	[Appendix B] B.2 Built-in Commands and Keywords
	[Appendix B] B.3 Built-in Shell Variables
	[Appendix B] B.4 Test Operators
	[Appendix B] B.5 Options
	[Appendix B] B.6 Typeset Options
	[Appendix B] B.7 Emacs Mode Commands
	[Appendix B] B.8 Vi Control Mode Commands
	[Appendix C] Obtaining Sample Programs
	[Appendix C] C.4 UUCP
	[Appendix C] C.3 BITFTP
	[Appendix C] C.2 FTPMAIL

	HMCKADDACAEKGFFNOGCGFPEDIIAIKAOH:
	form1:
	x:
	f1: FALSE
	f2: FIND
	f3: LOCAL
	f4: 1-56592-054-6
	f5: [EXPANDED]
	f7:

	f6:
	f8:

	KCPBNNAPHGFIKAPDBIDFFGKPCPNMMPPI:
	form1:
	x:
	f1: FALSE
	f2: FIND
	f3: LOCAL
	f4: 1-56592-390-1
	f5: [EXPANDED]
	f7:

	f6:
	f8:

