Learning the Korn Shell

ORELL" Learning the

Korn Shell

By Bill Rosenblatt; ISBN 1-56592-054-6, 336 pages.
First Edition, June 1993.
(See the catalog page for this book.)

Search the text of Learning the Korn Shell.

Index

Table of Contents

Preface

Chapter 1: Korn Shell Basics

Chapter 2: Command-line Editing

Chapter 3: Customizing Y our Environment

Chapter 4: Basic Shell Programming

Chapter 5: Flow Control

Chapter 6. Command-line Options and Typed Variables
Chapter 7: Input/Output and Command-line Processing
Chapter 8: Process Handling

Chapter 9: Debugging Shell Programs

Chapter 10: Korn Shell Administration

Appendix A: Related Shells
Appendix B: Reference Lists
Appendix C: Obtaining Sample Programs

Library Home TOOLS in a Natzhell Learming i sed & awk the Korm Shell Leaming ilil]t

Copyright © 1998 O'Rellly & Associates. All Rights Reserved.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ [2/8/2001 4:51:05 PM]

http://www.oreilly.com/catalog/korn/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/

Search Learning the Korn Shell

Learning the KOTn Sh@ll

Full Text Search

Use thisHTML form to search the contents of Learning the Korn Shell.

Resultsreport format:

Reset search form

Expanded
Sear ch for

Seareh

%‘mas u‘h"l?)

If you are having difficulty searching, or if you have not used this search utility before, please read this.

@ e B8 B &Y

el Leaming
Library Home TOOLS ini & Nutshell Learmiing vi m E awk the Iturl Shell l.l!mlll LMIX

Copyright © 1998 O'Rellly & Associates. All Rights Reserved.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/search/ksrch.htm [2/8/2001 4:51:07 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/server.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm

Index

Index: Symbols and Numbers

built-in variable: 8.4.2. Process ID Variables and Temporary Files

keyword in next release : A.7. The Future of the Korn Shell
negating a condition test : 5.1.3.3. File Attribute Checking
negation in character sets: 1.6.2. Filenames and Wildcards
POSIX shell keyword : A.2. The |EEE 1003.2 POSIX Shell Standard
regular expression operator
4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

pattern-matching operator

4.3.3. Pattern-matching Operators

6.2.2. Arithmetic Variables and Assignment
built-in variable : 4.2.1. Positional Parameters
comments : 4.3.1. Syntax of String Operators

length operator : 4.3.4. Length Operator

pattern-matching operator
4.3.3. Pattern-matching Operators

4.5. Advanced Examples: pushd and popd

5.5. while and until
sizeof an array : 6.3. Arrays

$ ANSI C string delimiter in next release : A.7. The Future of the Korn Shell
$(()) : (see arithmetic expressions)

built-in variable
2.2. The History File

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_0.htm (1 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index

8.4.2. Process ID Variables and Temporary Files

%
%% pattern-matching operator
4.3.3. Pattern-matching Operators
4.5. Advanced Examples: pushd and popd
5.5. while and until
6.2.2. Arithmetic Variables and Assignment

pattern-matching operator
4.3.3. Pattern-matching Operators

5.2. for
5.3. case

specifying jobs
8.2.1. Foreground and Background
8.3.2. kill
A.1. The Bourne Shell
& : (see background jobs)
&&

for condition tests
5.1.3.3. File Attribute Checking

A.1. The Bourne Shell

for exit statuses
5.1.2. Combinations of Exit Statuses

5.5. while and until
A.2. The IEEE 1003.2 POSIX Shell Standard
for condition tests : 7.2.2.3. Code blocks
>:1.7.2. 1/0 Redirection
<:1.7.2.1/0 Redirection
" (weak quotes) : 1.9.1. Quoting
(()) : (see condition tests, arithmetic)

*

accessing entire array : 6.3. Arrays

as default in case statement : 5.3. case

built-in variable : 4.2.1. Positional Parameters
as default list in for statement : 5.2. for

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_0.htm (2 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3

Index
as default list in select statement : 5.4. select
regular expression operator
4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

wildcard
1.6.2. Filenames and Wildcards

9.2.3.3. Breakpoints

regular expression operator
4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep reqular expressions

current directory : 1.6.1.3. Changing working directories
to hidefiles: 1.6.2. Filenames and Wildcards
to run ascript : 4.1. Shell Scripts and Functions

.. (directory) : 1.6.1.3. Changing working directories

4.3.1. Syntax of String Operators
5.2. for

4.3.1. Syntax of String Operators
4.5. Advanced Examples: pushd and popd
9.2.3.4. Break conditions

: 4.3.1. Syntax of String Operators

4.3.1. Syntax of String Operators
4.5. Advanced Examples: pushd and popd
no-op command : 8.4. trap

. in case statement : 5.4. select

statement separator
3.2. Aliases

5.1.3.1. String comparisons

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_0.htm (3 of 6) [2/8/2001 4:51:09 PM]

Index

9.2.5. Exercises
A.6. Workalikes on PC Platforms

built-in variable
5.1.1. Exit Status and Return
9.1.2.2. ERR
9.2.5. Exercises
regular expression operator
4.3.2.1. Reqular expression basics
4.3.2.2. Korn shell versus awk/egrep regular expressions

wildcard
1.6.2. Filenames and Wildcards

4.3.2.2. Korn shell versus awk/egrep regular expressions

built-in variable : 4.2.1. Positional Parameters
preserving whitespace : 6.3. Arrays
regular expression operator
4.3.2.1. Regular expression basics
4.3.2.2. Korn shell versus awk/egrep regular expressions
9.2.3.3. Breakpoints
[]: (seecondition tests, old syntax)

[T (wildcard)
1.6.2. Filenames and Wildcards

4.3.2.2. Korn shell versus awk/egrep regular expressions
[[1] : (see condition tests)
\ (backslash) : 1.9.2. Backslash-escaping

as continuation characters: 1.9.4. Continuing Lines

for quoting quote marks : 1.9.3. Quoting Quotation Marks
\" (weak quotes) : 3.4.1. Variables and Quoting

N

matching beginning of linein regular expressions
2.3.4. Moving Around in the History File
10.1. Installing the Korn Shell as the Standard Shell

as pipe character in Bourne shell

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_0.htm (4 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index

10.1. Installing the Korn Shell as the Standard Shell
A.l. The Bourne Shell
" (grave accent) : A.7. The Future of the Korn Shell

archaic command substitution delimiter
4.4. Command Substitution

A.l. The Bourne Shell
obsolescence in next release : A.7. The Future of the Korn Shell

|&, background job with two-way pipes
8.5.4. Coroutines with Two-way Pipes
8.5.5. Two-way Pipes Versus Standard Pipes

|| for condition tests
5.1.3.3. File Attribute Checking

A.l. The Bourne Shell

|| for exit statuses
5.1.2. Combinations of Exit Statuses

9.2.3.3. Breakpoints
A.2. The |IEEE 1003.2 POSIX Shell Standard
as case pattern separator : 5.3. case
pipe
1.7.3. Pipelines
10.1. Installing the Korn Shell as the Standard Shell
A.l. The Bourne Shell

~ (tilde)
1.6.1.2. Tilde notation
7.3. Command-line Processing
7.3.1. Quoting
A.l. The Bourne Shell
A.2. The IEEE 1003.2 POSIX Shell Standard
in public domain Korn shell : A.4. pdksh
within double quotes : 3.4.1. Variables and Quoting
within variable expressions : A.7. The Future of the Korn Shell

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_0.htm (5 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

Index

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_0.htm (6 of 6) [2/8/2001 4:51:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: A

a.out
5.1.3.2. About C Compilers

6.1.3.1. More About C Compilers
A/UX : 1. Korn Shell Basics

Ada
4.1.1. Functions

4.3.1. Syntax of String Operators
adb : 9. Debugaing Shell Programs
ADM-3atermind : 2.4.4. Moving Around in the History File
AlX

1. Korn Shell Basics
1.9.5. Control Keys

algebraic notation
8.5.4. Coroutines with Two-way Pipes
8.6.2. Nested Subshells

aliases
Summary of Korn Shell Features
2.3.7. Keyboard Shortcuts with Aliases
2.4.7. Miscellaneous Commands

3. Customizing Y our Environment

3.2. Aliases

7.1. 1/O Redirectors

A.1. The Bourne Shell

on arguments of command line: 3.2. Aliases

defining : 3.2. Aliases
lack of system-wide: 10.2.3. Types of Globa Customization

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_a.htm (1 of 4) [2/8/2001 4:51:10 PM]

Index
order of precedence in command lookup
4.1.1. Functions

7.3. Command-line Processing

output of alias command in next release : A.7. The Future of the Korn Shell

preventing lookup as: 5.1.1. Exit Status and Return

recursive
3.2. Aliases

7.3. Command-line Processing

removing (unalias) : 3.2.1. Tracked Aliases
showing : 3.2.1. Tracked Aliases

tracked
3.2.1. Tracked Aliases

3.4.2.6. PATH and Tracked Aliases

10.2.3. Types of Global Customization

defining : 3.2.1. Tracked Aliases

in next release : A.7. The Future of the Korn Shell

as protection against Trojan horses
10.3.3. Tracked Aliases

10.3.4. Privileged Mode
showing

3.2.1. Tracked Aliases

10.3.3. Tracked Aliases

using
as mnemonic : 3.2. Aliases
as shorthand : 3.2. Aliases
for correcting command typos : 3.2. Aliases
ANSI : A.4. pdksh
Apple Macintosh : Preface
Multifinder : 8. Process Handling
OS System 7 : 8. Process Handling
OSVersion 6 : 8. Process Handling

arithmetic expressions
6.1.3. getopts
6.2. Integer Variables and Arithmetic

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_a.htm (2 of 4) [2/8/2001 4:51:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

Index

6.3.3. String Formatting Options
A.2. The IEEE 1003.2 POSIX Shell Standard
bases of numbers: 6.2. Integer Variables and Arithmetic
bash syntax : A.5. bash
condition tests : (see condition tests, arithmetic)
featuresin next release : A.7. The Future of the Korn Shell
floating point (real number) : A.7. The Future of the Korn Shell
MKS Toolkit shell syntax : A.6. Workalikes on PC Platforms
operators : 6.2. Integer Variables and Arithmetic
assignment form : 6.2. Integer Variables and Arithmetic
truth values of relational : 6.2. Integer Variables and Arithmetic
order of evaluation in command-line processing : 7.3. Command-line Processing

arrays
6.3. Arrays
6.3.3. String Formatting Options
A.l. The Bourne Shell

A.4. pdksh

(size of) : 6.3. Arrays
assigning valuesto : 6.3. Arrays

assignment with set -A
6.3. Arrays
6.3.3. String Formatting Options
associative : A.7. The Future of the Korn Shell
extracting values from : 6.3. Arrays
featuresin next release : A.7. The Future of the Korn Shell
initializing
6.3. Arrays
6.3.3. String Formatting Options
preserving whitespacein : 6.3. Arrays

value of entire: 6.3. Arrays
ASCII : 1.6.2. Filenames and Wildcards
assembler : (see assembly language)

assembly language : 5.1.3.2. About C Compilers
AT&T

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_a.htm (3 of 4) [2/8/2001 4:51:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

Index

1.3.1. The Korn Shell
A.7. The Future of the Korn Shell
AT&T Bell Laboratories: 1.3.1. The Korn Shell

autoload
4.1.1.1. Autoloaded functions

10.2.3. Types of Global Customization
(see also functions, autoloading)

awk
Summary of Korn Shell Features

4.3.2. Patterns and Reqular Expressions

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions
7.3.1. Quoting

10.1. Installing the Korn Shell as the Standard Shell

A.6. Workalikes on PC Platforms

using instead of cut : 4.4. Command Substitution

using instead of pr -n: 9.2.3.3. Breakpoints

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_a.htm (4 of 4) [2/8/2001 4:51:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: B

background jobs
1.8. Background Jobs

4.1. Shell Scripts and Functions
8. Process Handling
8.1. Process |IDs and Job Numbers
I'variable (process ID of most recent) : 8.4.2. Process |D Variables and Temporary Files
creating : 8.2. Job Control
lack of in MS-DOS : A.6. Workalikes on PC Platforms
saving standard output and error of : 7.1.2. File Descriptors
with two-way pipes : 8.5.4. Coroutines with Two-way Pipes
Backus-Naur Form (BNF) : A.4. pdksh
basename : 4.3.3. Pattern-matching Operators

bash
1.4. Getting the Korn Shell

A. Related Shells

A.5. bash

obtaining from Internet : A.5. bash
bc : 8.5.4. Coroutines with Two-way Pipes
bg

8.2. Job Control

8.2.2. Suspending a Job

A.l. The Bourne Shell
biff : 3.4.2.2. Mail Variables
/bin

3.4.2.5. Command Search Path
10.3.2. A System Break-in Scenario

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_b.htm (1 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

Index

BITFTP: C.3. BITFTP
Bourne shell
Preface
Summary of Korn Shell Features
1.3. History of UNIX Shells
1.3.1. The Korn Shell
1.3.2. Features of the Korn Shell
1.4. Getting the Korn Shell
2. Command-line Editing
3.3. Options
4.1.1. Functions
4.2. Shell Variables
4.3.2. Patterns and Regular Expressions
4.4. Command Substitution
5.1.3.1. String comparisons
5.4. select
6.1.3. getopts
6.2. Integer Variables and Arithmetic
7.1. 1/O Redirectors
7.1.2. File Descriptors

8.5.4. Coroutines with Two-way Pipes
9. Debugging Shell Programs
10.1. Installing the Korn Shell as the Standard Shell
A. Related Shells
A.l. The Bourne Shell
A.2. The |[EEE 1003.2 POSIX Shell Standard
A.4. pdksh
A.5. bash
Bourne, Steven : 1.3. History of UNIX Shells
break : 5.4. select

BSD
1.3. History of UNIX Shells

1.9.5. Control Keys

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_b.htm (2 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

Index

2.3.4. Moving Around in the History File
2.3.6. Miscellaneous Commands

2.4. Vi Editing Mode

3.4.2.2. Mail Variables

built-in commands
ability to add new in next release : A.7. The Future of the Korn Shell

online help for in next release : A.7. The Future of the Korn Shell

order of precedence in command lookup
4.1.1. Functions

7.3. Command-line Processing

built-in variables
3.4. Shell Variables
(see also environment variables)
#:4.2.1. Positional Parameters
$: 2.2 TheHistory File
* :4.2.1. Positional Parameters
asdefault list in for statement : 5.2. for
as default list in select statement : 5.4. select

* and #in functions: 4.2.1.1. Positional parameters in functions
?

5.1.1. Exit Status and Return
9.1.2.2. ERR
9.2.5. Exercises
@ : 4.2.1. Positional Parameters
CDPATH : 3.4.3. Directory Search Path

COLUMNS
3.4.2.1. Editing mode variables

7.2.2.3. Code blocks

EDITOR
3.4.2.1. Editing mode variables

3.5.1. Environment Variables
ERRNO, obsolescence in next release : A.7. The Future of the Korn Shell
FCEDIT : 3.4.2.1. Editing mode variables
FPATH

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_b.htm (3 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3

Index

4.1.1.1. Autoloaded functions
10.2.3. Types of Global Customization

LINENO
9.1.1. Set Options

9.1.2.2. ERR
9.2.2. The Preamble
LINES: 3.4.2.1. Editing mode variables
list of those not supported in Bourne shell : A.1. The Bourne Shell
list of those not supported in pdksh : A.4. pdksh
MAILCHECK : 3.4.2.2. Mail Variables
MAILPATH : 3.4.2.5. Command Search Path
naming convention : 3.4. Shell Variables

OLDPWD
3.4.3.1. Miscellaneous V ariables

4.5. Advanced Examples: pushd and popd
5.1.1. Exit Status and Return
7.3. Command-line Processing
OPTARG : 6.1.3. getopts
OPTIND : 6.1.3. getopts
PID : A.6. Workalikes on PC Platforms
positional parameters : (see positional parameters)
PS1

3.4.2.3. Prompting Variables

4.4. Command Substitution
PS2 : 3.4.2.3. Prompting Variables
PS3

3.4.2.3. Prompting Variables
5.4. select
command substitution in next release : A.7. The Future of the Korn Shell

P4
3.4.2.3. Prompting Variables

9.1.1. Set Options
in kshdb : 9.2.3. Debugger Functions
RANDOM : 9.1.2.1. EXIT

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_b.htm (4 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index

REPLY
inread statement : 7.2.2. read

in select statement
5.4. select
6.3. Arrays
SECONDS: 3.4.3.1. Miscellaneous Variables
VISUAL : 3.4.2.1. Editing mode variables

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMIMG VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_b.htm (5 of 5) [2/8/2001 4:51:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: C

C compilers
4.3.3. Pattern-matching Operators

5.1.3.1. String comparisons

5.3. case
6.1.3. getopts
optimization : 6.1.3.1. More About C Compilers

options : 6.1.3.1. More About C Compilers

aspipelines: 7.3.2.1. The C Compiler as Pipeline

C programming language
1.3. History of UNIX Shells
1.6.2. Filenames and Wildcards

4. Basic Shell Programming
4.1. Shell Scripts and Functions
4.1.1. Functions

4.3.2.1. Regular expression basics
5.1.1. Exit Status and Return
5.1.1.1. Return

5.1.3.2. About C Compilers

5.2. for

5.3. case

5.4. select

5.5. while and until

6. Command-line Options and Typed Variables
6.1.3. getopts

6.2. Integer Variables and Arithmetic

6.2.1. Arithmetic Conditionals

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (1 of 10) [2/8/2001 4:51:14 PM]

Index

7.2.1. print
7.2.1.1. print escape sequences

7.2.2. read

7.2.2.3. Code blocks

7.3.2.1. The C Compiler as Pipeline
9. Debugging Shell Programs

A.7. The Future of the Korn Shell

C shell
Preface

Intended Audience

1.3. History of UNIX Shells

1.3.2. Features of the Korn Shell

1.4. Getting the Korn Shell

2.3.5. Filename Completion and Expansion

3.2. Aliases

3.4.2.3. Prompting Variables

3.5.2. The Environment File

4.1.1. Functions

4.2. Shell Variables

4.4. Command Substitution

4.5. Advanced Examples: pushd and popd
5.4. select

6.2.2. Arithmetic Variables and Assignment
7.1.2. File Descriptors

10.2.3. Types of Global Customization
10.3.2. A System Break-in Scenario
10.3.4. Privileged Mode

A.4. pdksh

A.5. bash

history mechanism
Summary of Korn Shell Features

2. Command-line Editing
2.1. Enabling Command-line Editing

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (2 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

Index

2.5. The fc Command
list of featuresin Korn shell : Summary of Korn Shell Features
which : 3.2. Aliases

C++ programming language
7.3.2.1. The C Compiler as Pipeline
9. Debuqgaging Shell Programs

case
5.3. case
6.1.1. shift
6.3. Arrays
7.2.2.1. Reading lines from files
9.2.3.1. Commands
double-semicolons : 5.4. select
redirecting /O to : 7.2.2.2. 1/O Redirection and multiple commands
syntax : 5.3. case

cat
1.7.1. Standard |/O

1.7.2. 1/O Redirection

7.1. 1/O Redirectors

8.4.1. Traps and Functions
9.2.1.1. Thedriver script

cd
1.6.1.3. Changing working directories

7.3.1. Quoting
10.1. Installing the Korn Shell as the Standard Shell
A.l. The Bourne Shell

- (to previous directory)
1.6.1.3. Changing working directories

4.5. Advanced Examples: pushd and popd
examples: 1.6.1.3. Changing working directories
inoperative in restricted shell : 10.3.1. Restricted Shell
substitution form : 1.6.1.3. Changing working directories

CD-ROM : 5.1.3.2. About C Compilers
CDPATH : 3.4.3. Directory Search Path

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (3 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2

Index

chapter summary : Chapter Summary

chmod
4.1. Shell Scripts and Functions

10.2.1. umask
chsh : 1.4. Getting the Korn Shell

code blocks
7.2.2.3. Code blocks

8.6.2. Nested Subshells

compared to nested subshells: 8.6.2. Nested Subshells

piping outout to : 7.2.2.3. Code blocks

POSIX shell syntax : A.2. The IEEE 1003.2 POSIX Shell Standard
redirecting standard 1/0 to : 7.2.2.3. Code blocks

COLUMNS
3.4.2.1. Editing mode variables

7.2.2.3. Code blocks

command substitution
2.1. Enabling Command-line Editing

4.4. Command Substitution

A.l. The Bourne Shell

A.2. The |[EEE 1003.2 POSIX Shell Standard
examples : 4.4. Command Substitution

|/O redirection within
4.4. Command Substitution

A.2. The IEEE 1003.2 POSIX Shell Standard
order in command-line processing : 7.3. Command-line Processing

shown in xtrace output : 9.1.1. Set Options

syntax : 4.4. Command Substitution

command-line options : 6.1. Command-line Options

list of : B.1. Invocation Options

command-line processing : 7.3. Command-line Processing
effect of eval on: 7.3.2. eva
effect of quoting on : 7.3.1. Quoting

example : 7.3. Command-line Processing
inside condition tests : 5.1.3. Condition Tests

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (4 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index
order of stepsin : 7.3. Command-line Processing
order of stepsin POSIX shell : A.2. The |IEEE 1003.2 POSIX Shell Standard

commands
built-in command in next release : A.7. The Future of the Korn Shell

list of : B.2. Built-in Commands and Keywords
vi : B.8. Vi Control Mode Commands
comments in scripts : 4.3.1. Syntax of String Operators

compound statements : 7.2.2.2. 1/O Redirection and multiple commands
redirecting /O to : 7.2.2.2. |/O Redirection and multiple commands

compress
1.8. Background Jobs

1.8.1. Background 1/O

condition tests
5.1.3. Condition Tests

6.2. Integer Variables and Arithmetic

A.l. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard
A.4. pdksh

A.5. bash

arithmetic
6.2.1. Arithmetic Conditionals

6.2.2. Arithmetic Variables and Assignment
A.2. The |lEEE 1003.2 POSIX Shell Standard

integer values as truth values
6.2.1. Arithmetic Conditionals

9.2.3.5. Execution tracing
file attribute operators : 5.1.3.3. File Attribute Checking

-a
5.1.3.3. File Attribute Checking
5.2. for
A.7. The Future of the Korn Shell
-d

5.1.3.3. File Attribute Checking
5.2. for

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (5 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index

5.5. while and until

-f
5.1.3.3. File Attribute Checking
5.2. for
-G : 5.1.3.3. File Attribute Checking
-nt
5.1.3.3. File Attribute Checking
7.3.2. eva
-0
5.1.3.3. File Attribute Checking
5.2. for
-ot : 5.1.3.3. File Attribute Checking
-r
5.1.3.3. File Attribute Checking
5.2. for
-s:5.1.3.3. File Attribute Checking
-W
5.1.3.3. File Attribute Checking
5.2. for
-X

5.1.3.3. File Attribute Checking
5.2. for
5.5. while and until
function of : 5.1.3. Condition Tests
integer comparison operators : 5.1.4. Integer Conditionals

-eq : 5.1.4. Integer Conditionals

-ge: 5.1.4. Integer Conditionals

-gt : 5.1.4. Integer Conditionals

-le: 5.1.4. Integer Conditionals
-1t : 5.1.4. Integer Conditionals
-ne: 5.1.4. Integer Conditionals

obsolescence in next release : A.7. The Future of the Korn Shell

old syntax
5.1.3. Condition Tests

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (6 of 10) [2/8/2001 4:51:14 PM]

Index

5.1.3.1. String comparisons
A.l. The Bourne Shell
A.4. pdksh
A.5. bash
A.6. Workalikes on PC Platforms
processing of text inside : 5.1.3. Condition Tests
string comparison operators : 5.1.3.1. String comparisons
I=:5.1.3.1. String comparisons

>:5.1.3.1. String comparisons

<:5.1.3.1. String comparisons

-n
5.1.3.1. String comparisons
5.4. select
5.5. while and until

-z : 5.1.3.1. String comparisons

5.1.3.1. String comparisons

7.2.2.3. Code blocks

9.2.3.3. Breakpoints

A.7. The Future of the Korn Shell
string vs. integer comparisons : 5.1.4. Integer Conditionals
supported in MK S Toolkit shell : A.6. Workalikes on PC Platforms
in while and until statements: 5.5. while and until

conditionals: (seeif)

constants : 6.3.4. Type and Attribute Options

control keys: 1.9.5. Control Keys
clashes with editing modes : 2. Command-line Editing
CTRL-\: 1.9.5. Control Keys
CTRL-C: 1.9.5. Control Keys

CTRL-D
1.4. Getting the Korn Shell

1.5. Interactive Shell Use
1.9.5. Control Keys

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (7 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index

5.4. select
CTRL-H : 1.9.5. Control Keys
CTRL-M : 1.9.5. Control Keys
CTRL-Q: 1.9.5. Control Keys
CTRL-S: 1.9.5. Control Keys
CTRL-U : 1.9.5. Control Keys

DEL
1.9.5. Control Keys

2.3.1. Basic Commands

conventions, typographical : Conventions Used in This Handbook

core dumps
8.3.1. Control-key Signals

8.4. trap
8.6.2. Nested Subshells
10.2.2. ulimit

coroutines
8. Process Handling

8.5. Coroutines
A.l. The Bourne Shell

A.4. pdksh
definition : 8.5. Coroutines

on multiple-CPU computers : 8.5.3. Parallelization

performance issues : 8.5.2. Advantages and Disadvantages of Coroutines

pipelines as example of : 8.5. Coroutines

two-way pipes : (see two-way pipes)

cp
1.7.2. 1/O Redirection

8.5.3. Pardllelization
crontab : 2.2. The History File

CTRL-\
1.9.5. Control Keys

8.3.1. Control-key Signals
8.6.2. Nested Subshells
CTRL-C

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (8 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

Index
1.9.5. Control Keys
7.1. 1/O Redirectors
8.2.2. Suspending a Job
8.3. Signals
8.3.1. Control-key Signals
8.3.2. kill
8.4. trap
8.4.2. Process ID Variables and Temporary Files
8.6.2. Nested Subshells
9.1.2.1. EXIT

CTRL-D
1.4. Getting the Korn Shell

1.5. Interactive Shell Use

1.9.5. Control Keys

5.4. select

7.1. 1/O Redirectors

8.4.1. Traps and Functions
CTRL-H : 1.9.5. Control Keys
CTRL-M : 1.9.5. Control Keys
CTRL-Q: 1.9.5. Control Keys
CTRL-S: 1.9.5. Control Keys
CTRL-U : 1.9.5. Control Keys

CTRL-Z
8.2. Job Control

8.2.2. Suspending a Job

8.3. Signals
8.3.1. Control-key Signals

cut
1.7.1. Standard 1/O

1.7.3. Pipelines

4.4. Command Substitution
5.2. for

7.1.1. Here-documents

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (9 of 10) [2/8/2001 4:51:14 PM]

Index

7.2.2. read
7.3.1. Quoting
9.1.1. Set Options
10.1. Installing the Korn Shell as the Standard Shell
-C (extract columns) : 4.4. Command Substitution
-d (field delimiter)
4.4. Command Substitution
6.1.2. Options with Arguments
using awk instead of : 4.4. Command Substitution

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_c.htm (10 of 10) [2/8/2001 4:51:14 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: D

date
1.7.2. 1/O Redirection

6.2. Integer Variables and Arithmetic

dc
8.5.4. Coroutines with Two-way Pipes

8.6.2. Nested Subshells

debuggers
6.1.3.1. More About C Compilers

9. Debugging Shell Programs
dbx : 10.2.2. ulimit
essential features: 9.2. A Korn Shell Debugger
sdb : 10.2.2. ulimit
debugging
core dumps: 10.2.2. ulimit

shell code
Summary of Korn Shell Features

9.1. Basic Debugging Aids

9.2. A Korn Shell Debugger

(see also kshdb)

basics: 9.1. Basic Debugging Aids

options : (see options, noexec, verbose, xtrace)

with print : 9.1. Basic Debugging Aids

DEL
1.9.5. Control Keys

2.3.1. Basic Commands

/dev/null

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_d.htm (1 of 2) [2/8/2001 4:51:15 PM]

Index

5.2. for
6.1.3. getopts
10.1. Installing the Korn Shell as the Standard Shell

diff
1.8.1. Background I/O
5.1.1. Exit Status and Return
directories
.. 1.6.1.3. Changing working directories

... 1.6.1.3. Changing working directories

home (login) : 1.6.1.1. The working directory
dirname : 4.3.3. Pattern-matching Operators

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_d.htm (2 of 2) [2/8/2001 4:51:15 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: E

EBCDIC : 1.6.2. Filenames and Wildcards

echo
Summary of Korn Shell Features

1.4. Getting the Korn Shell

3.4. Shell Variables

7.2.1. print

A.1l. The Bourne Shell

differencein versionsof : 7.2.1. print

3.5.1. Environment Variables

4.3.2.2. Korn shell versus awk/egrep reqular expressions

7.1.1. Here-documents

9. Debuqgging Shell Programs

EDITOR
3.4.2.1. Editing mode variables

3.5.1. Environment Variables

egrep
4.3.2. Patterns and Reqular Expressions

4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions
elif : (seeif)
emacs editor

2. Command-line Editing

2.3. Emacs Editing Mode

2.3.1. Basic Commands

2.3.5. Filename Compl etion and Expansion

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_e.htm (1 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1

Index

2.3.6. Miscellaneous Commands

2.4.6. Filename Completion

2.6. Finger Habits

3.1. The .profile File

3.4.2.4. Termina Types

3.5.1. Environment Variables

4.3.2. Patterns and Regular Expressions
4.3.2.1. Regular expression basics

4.4. Command Substitution

9. Debugaging Shell Programs

A.4. pdksh

commands : B.7. Emacs Mode Commands

GNU emacs
2.3.6. Miscellaneous Commands

3.1. The .profile File
A.5. bash
Godling (Unipress) emacs : 2.3.6. Miscellaneous Commands

search commands : 2.3.4. Moving Around in the History File

emacs-mode
Korn Shell Versions

Summary of Korn Shell Features

2.3. Emacs Editing Mode

7.2.1.2. Optionsto print

10.2.3. Types of Global Customization

A.4. pdksh
basic commands: 2.3.1. Basic Commands

case-changing commands : 2.3.6. Miscellaneous Commands

enabling : 2.1. Enabling Command-line Editing
exchanging point and mark : 2.3.6. Miscellaneous Commands
filename completion : 2.3.5. Filename Completion and Expansion

filename expansion : 2.3.5. Filename Completion and Expansion

history file commands : 2.3.4. Moving Around in the History File
key customization in next release : A.7. The Future of the Korn Shell

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_e.htm (2 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

Index

keyboard shortcuts with aliases : 2.3.7. Keyboard Shortcuts with Aliases

line commands : 2.3.3. Line Commands

mark : 2.3.6. Miscellaneous Commands

point (dot) : 2.3.1. Basic Commands

repeat counts : 2.3.6. Miscellaneous Commands

searching the history file : 2.3.4. Moving Around in the History File

terminal requirements: 2.3.1. Basic Commands

transpose characters command : 2.3.6. Miscellaneous Commands
useful command subset : 2.6. Finger Habits
word commands : 2.3.2. Word Commands
in workalike shells: A.6. Workalikes on PC Platforms
email : (see mail)
ENV
3.5.2. The Environment File
10.2.3. Types of Global Customization
A.l. The Bourne Shell
command subsitution in next release : A.7. The Future of the Korn Shell
in privileged mode : 10.3.4. Privileged Mode
environment files: 3.5.2. The Environment File

compared to .profile : 3.5.2. The Environment File

creating : 3.5.2. The Environment File

customization in next release : A.7. The Future of the Korn Shell

lack of system-wide: 10.2.3. Types of Globa Customization
in: 10.3.4. Privileged Mode

security holesin: 10.3.2. A System Break-in Scenario

in subshells: 8.6.1. Subshell Inheritance

environment variables
3.4. Shell Variables

(see aso built-in variables)
about : 3.5.1. Environment Variables
creating : 3.5.1. Environment Variables

ENV
3.5.2. The Environment File

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_e.htm (3 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index

10.2.3. Types of Global Customization
A.l. The Bourne Shell
command substitution in next release : A.7. The Future of the Korn Shell
in privileged mode : 10.3.4. Privileged Mode
FCEDIT : 2.5. The fc Command

HISTFILE
2.2. The History File

3.4.2.1. Editing mode variables
3.5.1. Environment Variables
HISTSIZE : 2.2. The History File

HOME
3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

7.3. Command-line Processing

IFS
4.2.1. Positional Parameters

4.2.1.1. Positional parameters in functions
7.2.2. read
7.3. Command-line Processing

role in command-line processing : 7.3. Command-line Processing
inheritance by subshells: 8.6.1. Subshell Inheritance

LOGNAME
3.4.2.3. Prompting Variables

3.5.1. Environment Variables

MAIL
3.4.2.2. Mail Variables

3.5.1. Environment Variables

MAILPATH
3.4.2.2. Mail Variables

3.5.1. Environment Variables
4.5. Advanced Examples: pushd and popd
A.6. Workalikes on PC Platforms

PATH
3.4.2.5. Command Search Path

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_e.htm (4 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index
3.5.1. Environment Variables
4.1. Shell Scripts and Functions
4.5. Advanced Examples. pushd and popd
5.5. while and until
6.2.2. Arithmetic Variables and Assignment
6.3.4. Type and Attribute Options
7.2.1.2. Options to print
7.3. Command-line Processing
10.1. Installing the Korn Shell as the Standard Shell
10.2.3. Types of Global Customization
10.3.4. Privileged Mode
A.l. The Bourne Shell
A.6. Workalikes on PC Platforms
in restricted shell : 10.3.1. Restricted Shell

security problem with
3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario

PS1
7.3.1. Quoting

10.2.3. Types of Global Customization
A.5. bash
command substitution in next release : A.7. The Future of the Korn Shell

PWD
3.4.2.3. Prompting Variables

3.4.3.1. Miscellaneous Variables
3.5.1. Environment Variables
5.1.1. Exit Status and Return
7.3. Command-line Processing
read-only variablesin restricted shell : 10.3.1. Restricted Shell

SHELL
3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables
A.l. The Bourne Shell
showing : 3.5.1. Environment Variables

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_e.htm (5 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

Index

TERM
3.4.2.4. Termina Types

3.5.1. Environment Variables

5.3. case
5.4. select
6.3. Arrays
7.2.2.1. Reading lines from files
10.2.3. Types of Global Customization
TMOUT : 10.2.3. Types of Global Customization
visibility in subshells: 4.1. Shell Scripts and Functions
VISUAL : 2.1. Enabling Command-line Editing
environments : 3. Customizing Y our Environment
ERRNO, obsolescence in next release : A.7. The Future of the Korn Shell
/etc/hosts : 7.2.2.3. Code blocks

/etc/passwd
1.7.3. Pipelines

7.1.1. Here-documents

7.3.1. Quoting

7.3.2.1. The C Compiler as Pipeline
10.3.1. Restricted Shell

/etc/profile
5.3. case

5.4. select
6.3.4. Type and Attribute Options
7.2.2.1. Reading lines from files
10.2. Environment Customization
10.2.3. Types of Global Customization
letc/suid_profile: 10.3.4. Privileged Mode
/etc/termcap : 3.4.2.4. Terminal Types
eva : 7.3.2. evd

for constructing pipelines
7.3.2. evd

7.3.2.1. The C Compiler as Pipeline
role in command-line processing : 7.3.2. evad

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_e.htm (6 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1

Index
exec : 9.2.1.2. exec
with 1/O redirectors: 9.2.1.2. exec
executablefiles: (seefiles, executable)

exit
1.4. Getting the Korn Shell
1.5. Interactive Shell Use
5.1.1.1. Return
8.4.2. Process ID Variables and Temporary Files

exit status
5.1.1. Exit Status and Return

5.1.3.1. String comparisons

9.2.3.4. Break conditions

9.2.5. Exercises

conventional values: 5.1.1. Exit Status and Return

in job status messages : 8.1. Process |Ds and Job Numbers
logical combinations: 5.1.2. Combinations of Exit Statuses
trapping whennon-0: 9.1.2.2. ERR

export
3.5.1. Environment Variables

4.1. Shell Scripts and Functions
6.3.4. Type and Attribute Options
10.2.3. Types of Global Customization

expr
Summary of Korn Shell Features
6.2. Integer Variables and Arithmetic
A.l. The Bourne Shell

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_e.htm (7 of 7) [2/8/2001 4:51:17 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: F

fake signals: 9.1.2. Fake Signals

DEBUG
9.1.2. Fake Signals

9.1.2.3. DEBUG

9.2.3.1. Commands

9.2.3.6. Limitations

A.1l. The Bourne Shell

A.5. bash

A.6. Workalikes on PC Platforms

ERR
9.1.2. Fake Signals

9.1.2.2. ERR

A.l. The Bourne Shell

A.4. pdksh

A.6. Workalikes on PC Platforms

EXIT
9.1.2. Fake Signals

9.2.2. The Preamble
9.2.3.6. Limitations
A.1l. The Bourne Shell
A.4. pdksh
A.6. Workalikes on PC Platforms
in next release : A.7. The Future of the Korn Shell
trapping in scripts being debugged with kshdb : 9.2.3.6. Limitations

fc
2. Command-line Editing

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_f.htm (1 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index
2.1. Enabling Command-line Editing
2.5. The fc Command
-e (edit) : 2.5. The fc Command
- (list previous commands) : 2.5. The fc Command

obsolescence in next release : A.7. The Future of the Korn Shell

FCEDIT
2.5. The fc Command

3.4.2.1. Editing mode variables

fg
8.2. Job Control

8.2.1. Foreground and Background

8.2.2. Suspending a Job

A.l. The Bourne Shell

to resume suspended jobs : 8.2.2. Suspending a Job
fi : (seeif)
file (command)

5.5. while and until

9.2.5. Exercises

10.1. Installing the Korn Shell as the Standard Shell

file descriptors
7.1. 1/O Redirectors

7.1.2. File Descriptors

[/O redirection to/from
7.1. 1/0O Redirectors

7.1.2. File Descriptors
7.2.2.4. Reading User Input
of standard I/O : 7.1.2. File Descriptors
files
environment : (see environment files)

executable
3.4.2.5. Command Search Path

5.1.3.2. About C Compilers
5.5. while and until
a.out : 5.1.3.2. About C Compilers

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_f.htm (2 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4

Index
order of precedence in command lookup
4.1.1. Functions

7.3. Command-line Processing

modification times: 7.3.2. eval
permissions
4.1. Shell Scripts and Functions
10.2.1. umask
A.6. Workalikes on PC Platforms
octal notation : 10.2.1. umask
suid : (see suid shell scripts)

temporary (namesfor) : 8.4.2. Process ID Variables and Temporary Files
find : 1.9.2. Backslash-escaping
finding commands
order of precedence
4.1.1. Functions

7.3. Command-line Processing

control over in next release : A.7. The Future of the Korn Shell
in next release : A.7. The Future of the Korn Shell
PATH : 3.4.2.5. Command Search Path
tracked aliases : 3.4.2.6. PATH and Tracked Aliases
finger : 5.2. for

flow control
general description : 5. Flow Control

summary of constructs : 5. Flow Control

for
5.2. for

5.3. case
6.3.3. String Formatting Options
comparison to for statement in C and Pascal : 5.2. for

lists of namesin : 5.2. for
in next release : A.7. The Future of the Korn Shell
overview : 5.2. for

syntax : 5.2. for
Forsyth, Charles: A.4. pdksh

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_f.htm (3 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

Index

FORTRAN
5.1.4. Integer Conditionals

5.5. while and until

FPATH
4.1.1.1. Autoloaded functions

10.2.3. Types of Global Customization
Free Software Foundation (FSF) : A.5. bash
from : 3.5.2. The Environment File
FTP

9.2. A Korn Shell Debugger
A.5. bash
full pathnames : 1.6.1. Directories

functions
Summary of Korn Shell Features

A.1l. The Bourne Shell
A.5. bash
advantages over scripts: 4.1.1. Functions

autoloading
4.1.1.1. Autoloaded functions

6.3.5. Function Options

10.2.3. Types of Global Customization
definition : 4.1.1. Functions
deleting : 4.1.1. Functions
differences between scriptsand : 4.1.1. Functions

exporting : 6.3.5. Function Options

listing
4.1.1. Functions

6.3.5. Function Options
local variablesin: 6.3.2. Local Variablesin Functions
in next release : A.7. The Future of the Korn Shell

order of precedence in command lookup
4.1.1. Functions

7.3. Command-line Processing
POSIX shell syntax : A.2. The IEEE 1003.2 POSI X Shell Standard

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_f.htm (4 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index
preventing lookup as: 5.1.1. Exit Status and Return
recursive : 8.6.2. Nested Subshells
running : 4.1.1. Functions
in SUNnOS Bourne shell : A.1. The Bourne Shell
syntax : 4.1.1. Functions
system-wide : 10.2.3. Types of Global Customization
tracing execution of
6.3.5. Function Options
9.1.1. Set Options
in workalike shells: A.6. Workalikes on PC Platforms

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_f.htm (5 of 5) [2/8/2001 4:51:18 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: G

getopt
Summary of Korn Shell Features
6.1.3. getopts
A.1l. The Bourne Shell
getopts
6.1.3. getopts
6.2. Integer Variables and Arithmetic
A.l. The Bourne Shell
advantages : 6.1.3. getopts

arguments : 6.1.3. getopts

error messages : 6.1.3. getopts

exit status : 6.1.3. getopts

OPTARG variable : 6.1.3. getopts
OPTIND variable: 6.1.3. getopts
summary of functionality : 6.1.3. getopts

suppressing error messages : 6.1.3. getopts

Gisin, Eric: A.4. pdksh
GNU : A.5. bash

graphical user interface (GUI)
1. Korn Shell Basics

A.3. wksh
grep
Summary of Korn Shell Features
1.7.1. Standard I/O
4.3.2. Patterns and Regular Expressions

4.3.2.1. Regular expression basics

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_g.htm (1 of 2) [2/8/2001 4:51:19 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm

Index
4.3.2.2. Korn shell versus awk/egrep regular expressions
4.4. Command Substitution
5.1.2. Combinations of Exit Statuses
5.2. for
7.2.2. read
7.2.2.3. Code blocks
8.2.2. Suspending a Job
10.1. Installing the Korn Shell as the Standard Shell
10.3.2. A System Break-in Scenario
-i (caseinsengitive) : 4.4. Command Substitution
- : 4.4. Command Substitution
older BSD version of : 4.4. Command Substitution

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_g.htm (2 of 2) [2/8/2001 4:51:19 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: H

head
4.3.1. Syntax of String Operators

6.2.2. Arithmetic Variables and Assignment
7.3.2. eva
here-documents : 7.1.1. Here-documents
deleting leading TABsin: 7.1.1. Here-documents
parameter and command substitution in : 7.1.1. Here-documents

HISTFILE
2.2. The History File

3.4.2.1. Editing mode variables

3.5.1. Environment Variables
history (alias) : 2.5. The fc Command
history file: 2.2. The History File

printing to : 7.2.1.2. Optionsto print
HISTSIZE : 2.2. The History File

HOME
3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

7.3. Command-line Processing
hostname : 4.4. Command Substitution

HP/UX
1. Korn Shell Basics

1.9.5. Control Keys

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_h.htm (1 of 2) [2/8/2001 4:51:20 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/

Index

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_h.htm (2 of 2) [2/8/2001 4:51:20 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: |

/0
pipelines: 1.7.3. Pipelines

redirection
1.7.2. 1/O Redirection

7.1. 1/0O Redirectors
A.1. The Bourne Shell

A.4. pdksh
>

1.7.2. 1/0 Redirection
7.1. 1/0O Redirectors

>& -
7.1. 1/0O Redirectors
7.1.2. File Descriptors

>&p: 7.1.1/0 Redirectors
>>

7.1. 1/0 Redirectors
7.1.1. Here-documents
>|: 7.1. 1/0 Redirectors

<
1.7.2. 1/0O Redirection
6.2.2. Arithmetic Variables and Assignment
7.1. 1/O Redirectors

<&-

7.1. 1/0 Redirectors
7.1.2. File Descriptors
<&p:7.1.1/0 Redirectors

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_i.htm (1 of 3) [2/8/2001 4:51:22 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm

Index

<>
7.1. 1/O Redirectors
7.1.2. File Descriptors
A.l. The Bourne Shell
A.4. pdksh
<< (see here-documents)
| : 7.1. 1/O Redirectors
|& : 7.1.1/O Redirectors
to code blocks: 7.2.2.3. Code blocks

to/from file descriptors
7.1. 1/O Redirectors

7.1.2. File Descriptors
7.2.2.4. Reading User Input
7.2.2.5. Optionsto read
to functions: 7.2.2.2. 1/0O Redirection and multiple commands
limitationsin restricted shell : 10.3.1. Restricted Shell
to multiline flow-control constructs: 7.2.2.2. 1/O Redirection and multiple commands
order in command-line processing : 7.3. Command-line Processing

sending standard error to apipe: 7.1.2. File Descriptors

with exec: 9.2.1.2. exec

standard I/0 : 1.7.1. Standard 1/O
inheritance by subshells: 8.6.1. Subshell Inheritance
in kshdb break conditions : 9.2.3.4. Break conditions
saving standard error in afile: 7.1.2. File Descriptors

strings : (see print, read)

|EEE
A.2. The IEEE 1003.2 POSIX Shell Standard

(see aso POSIX)
|EEE POSIX 1003.2 : (see POSI X, shell)
if

5.1. if/else

6.2.2. Arithmetic Variables and Assignment
6.3.3. String Formatting Options

7.2.2.1. Reading lines from files

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_i.htm (2 of 3) [2/8/2001 4:51:22 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1

Index

7.3.1. Quoting

9.2.3.2. Stepping

9.2.3.4. Break conditions

redirecting /O to : 7.2.2.2. 1/O Redirection and multiple commands
syntax : 5.1. if/else

IFS
4.2.1. Positional Parameters

4.2.1.1. Positional parametersin functions
7.2.2. read
7.3. Command-line Processing

role in command-line processing : 7.3. Command-line Processing
incompatibilitesin next release : A.7. The Future of the Korn Shell

installing the Korn shell as/bin/sh
10.1. Installing the Korn Shell as the Standard Shell

10.3.4. Privileged Mode
Institute of Electrical and Electronic Engineers : (see |EEE)
INT : 8.6.2. Nested Subshells

I nternet
7.1.1. Here-documents

9.2. A Korn Shell Debugger

A.4. pdksh

A.5. bash
interprocess communication (IPC) : 8.3. Signals
ISO : A.2. The IEEE 1003.2 POSI X Shell Standard

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_i.htm (3 of 3) [2/8/2001 4:51:22 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: J

job control
Summary of Korn Shell Features

8.2. Job Control
lack of support for in MS-DOS : A.6. Workalikes on PC Platforms

job numbers
8.1. Process | Ds and Job Numbers

8.6.2. Nested Subshells
difference between process IDs and : 8.1. Process |Ds and Job Numbers

in job status messages : 8.1. Process |Ds and Job Numbers

jobs
7.1.2. File Descriptors

8. Process Handling
8.6.2. Nested Subshells
(see al'so processes)

background : (see background jobs)

command
1.8. Background Jobs

8.2. Job Control

8.2.1. Foreground and Background

A.l. The Bourne Shell

+ and - in output of : 8.2.1. Foreground and Background

-| (also list processIDs) : 8.2.1. Foreground and Background

-n (list suspended or exited jobs) : 8.2.1. Foreground and Background

-p (only list process IDs)
8.2.1. Foreground and Background

8.3.2. kill

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_j.htm (1 of 2) [2/8/2001 4:51:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index
similarity to ps: 8.3.3. ps
definition : 8.1. Process IDs and Job Numbers
resuming : 8.2.2. Suspending a Job
In background : (see bg)
in background, pitfalls of : 8.2.2. Suspending a Job
status messages : 8.1. Process | Ds and Job Numbers

suspending
8.2. Job Control
8.2.2. Suspending a Job

waysto refer to
%% (most recent) : 8.2.1. Foreground and Background

%+ (most recent) : 8.2.1. Foreground and Background

%- (second most recent) : 8.2.1. Foreground and Background

by command name
8.2.1. Foreground and Background

8.4. trap
by job number
8.2.1. Foreground and Background

8.3.2. kill
by string search : 8.2.1. Foreground and Background
Joy, Bill : 1.3. History of UNIX Shells

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_j.htm (2 of 2) [2/8/2001 4:51:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: K

keywords
order of precedence in command lookup
4.1.1. Functions

7.3. Command-line Processing

Kill
8.2. Job Control
8.3.2. kill
8.4. trap
A.1l. The Bourne Shell
-I (list signals) : 8.3. Signals
argumentsto : 8.3.2. kill
default signal sent : 8.3.2. kill
Killing runaway processes : 8.3.3.1. System V
used with process IDs: 8.3.3.1. System V

Korn, David
1.3.1. The Korn Shell

A.7. The Future of the Korn Shell
kshdb

9. Debugging Shell Programs

9.2. A Korn Shell Debugger

commands : 9.2.3.1. Commands
*bc (set break condition) : 9.2.3.4. Break conditions
*bp (set breakpoint) : 9.2.3.3. Breakpoints
*bp (without arguments; list breakpoints) : 9.2.3.3. Breakpoints
*cb (clear breakpoints) : 9.2.3.3. Breakpoints
*g(go) : 9.2.3.1. Commands

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_k.htm (1 of 2) [2/8/2001 4:51:24 PM]

Index

*q (quit) : 9.2.3.2. Stepping
*s (step) : 9.2.3.2. Stepping
*X (execution tracing) : 9.2.3.5. Execution tracing

enhancing : 9.2.5. Exercises
limitations : 9.2.3.6. Limitations
sample session : 9.2.4. Sample kshdb Session

source code
debugging functions : 9.2.5. Exercises

driver script : 9.2.1.1. The driver script

online availability : 9.2. A Korn Shell Debugger

preamble : 9.2.2. The Preamble

structure : 9.2.1. Structure of the Debugger
kshrc : 3.5.2. The Environment File

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_k.htm (2 of 2) [2/8/2001 4:51:24 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: L

let
6.2.2. Arithmetic Variables and Assignment

6.3.3. String Formatting Options
A.1l. The Bourne Shell
(see also arithmetic expressions)

examples: 6.2.2. Arithmetic Variables and Assignment

syntax : 6.2.2. Arithmetic Variables and Assignment

LINENO
9.1.1. Set Options

9.1.2.2. ERR

9.2.2. The Preamble
LINES: 3.4.2.1. Editing mode variables
linkers : (see linking)

linking
5.1.3.2. About C Compilers
5.3. case
6.1.3.1. More About C Compilers

LISP
1.7. Input and Output

5.1.1. Exit Status and Return
LOGNAME : 3.5.1. Environment Variables
logout command files: 3.2. Aliases

Ip

1.5.1. Commands, Arguments, and Options

1.6.1.1. The working directory
1.7.3. Pipelines

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_|.htm (1 of 2) [2/8/2001 4:51:25 PM]

Index

7.1.1. Here-documents

Is
1.6.2. Filenames and Wildcards

7.2.2.3. Code blocks
8.5. Coroutines
-F (show file type) : 3.2. Aliases
-I (long listing)
1.6.2. Filenames and Wildcards
5.1.3.3. File Attribute Checking
column formats of : 4.4. Command Substitution

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMIMG VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_|.htm (2 of 2) [2/8/2001 4:51:25 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: M

mail
1.5.1. Commands, Arguments, and Options
1.7.1. Standard I/O
3.1. The .profile File
3.4.2.2. Mail Variables
3.5.1. Environment Variables
4.4. Command Substitution
7.1.1. Here-documents
7.2.2.5. Optionsto read
8.4.1. Traps and Functions
8.4.2. Process ID Variables and Temporary Files
8.4.4. Resetting Traps
A.1l. The Bourne Shell
dead.letter : 8.4.2. Process ID Variables and Temporary Files

MAIL
3.4.2.2. Mail Variables

3.5.1. Environment Variables
MAILCHECK : 3.4.2.2. Mail Variables

MAILPATH
3.4.2.2. Mall Variables

3.4.2.5. Command Search Path
3.5.1. Environment Variables
4.5. Advanced Examples: pushd and popd
A.6. Workalikes on PC Platforms
.mailrc: 7.1. I/O Redirectors
make

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_m.htm (1 of 3) [2/8/2001 4:51:26 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index

7.3.2. evd
A.6. Workalikes on PC Platforms

man
4.1. Shell Scripts and Functions

8.3.3.2. BSD
metacharacters : 7.3. Command-line Processing

Microsoft Windows
8. Process Handling

A. Related Shells
Microsoft Windows NT : 8. Process Handling

mknod : 8.3. Signals

MKS Toolkit
A.2. The |[EEE 1003.2 POSI X Shell Standard

A.6. Workalikes on PC Platforms

shell
A. Related Shells
A.6. Workalikes on PC Platforms
names for standard shell files: A.6. Workalikes on PC Platforms
obtaining : A.6. Workalikes on PC Platforms
Modula

4.1.1. Functions
4.3.1. Syntax of String Operators

more
1.7.3. Pipelines

3.4.2.4. Termina Types
8.5. Coroutines

MS-DOS
Preface

1.6.2. Filenames and Wildcards

2.6. Finger Habits

5.2. for

8. Process Handling

A. Related Shells

A.2. The IEEE 1003.2 POSIX Shell Standard

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_m.htm (2 of 3) [2/8/2001 4:51:26 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index

A.6. Workalikes on PC Platforms
multitasking in POSIX shell standard : A.2. The IEEE 1003.2 POSIX Shell Standard

mv

5.2. for
6.1.3.1. More About C Compilers
8.4.2. Process ID Variables and Temporary Files

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_m.htm (3 of 3) [2/8/2001 4:51:26 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: N

Network Information Service (NIS) : 7.3.2.1. The C Compiler as Pipeline
new featuresin next release : A.7. The Future of the Korn Shell
newgrp : A.6. Workalikes on PC Platforms

next release
incompatibilities: A.7. The Future of the Korn Shell

new features: A.7. The Future of the Korn Shell
obsolete featuresin ;: A.7. The Future of the Korn Shell
nice : 1.8.2. Background Jobs and Priorities

nohup
8.4.3. Ignoring Signals

A.l. The Bourne Shell
Novell : A.7. The Future of the Korn Shell
Novell NetWare : A. Related Shells
null string : 4.2.1. Positional Parameters

Copyright © 1998 O'Rellly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_n.htm [2/8/2001 4:51:27 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: O

object-code libraries: 6.1.3.1. More About C Compilers

C runtime library : 6.1.3.1. More About C Compilers

names of : 6.1.3.1. More About C Compilers
obsolete features in next release : A.7. The Future of the Korn Shell

OLDPWD
3.4.3.1. Miscellaneous Variables

4.5. Advanced Examples: pushd and popd
5.1.1. Exit Status and Return
7.3. Command-line Processing
OPEN LOOK : A.3. wksh
OPTARG : 6.1.3. getopts
OPTIND : 6.1.3. getopts
options
3. Customizing Y our Environment
3.3. Options
bgnice
3.3. Options
8.5.2. Advantages and Disadvantages of Coroutines
A.6. Workalikes on PC Platforms
command-line : (see command-line options)

dash : (see command-line options)

emacs
2.1. Enabling Command-line Editing
3.3. Options

ignoreeof : 3.3. Options
keyword : 3.5.1. Environment Variables

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_o.htm (1 of 3) [2/8/2001 4:51:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index

obsolescence in next release : A.7. The Future of the Korn Shell
list of : B.1. Invocation Options

set -0: B.5. Options

typeset : B.6. Typeset Options
list of those not supported in pdksh : A.4. pdksh
markdirs : 3.3. Options

monitor
8.2. Job Control

A.6. Workalikes on PC Platforms
in next release : A.7. The Future of the Korn Shell
noclobber

3.3. Options
7.1. 1/0O Redirectors

10.2.3. Types of Global Customization
noexec : 9.1.1. Set Options

turning on and off : 9.1.1. Set Options
noglob : 3.3. Options
privileged

10.3.4. Privileged Mode

A.6. Workalikes on PC Platforms
trackall

3.3. Options
10.2.3. Types of Global Customization

obsolescence in next release : A.7. The Future of the Korn Shell

turning on and off

3.3. Options
9.1.1. Set Options

verbose : 9.1.1. Set Options
Vi

2.1. Enabling Command-line Editing
3.3. Options
xtrace: 9.1.1. Set Options
P prompt in: 9.1.1. Set Options
tracing function execution : 9.1.1. Set Options

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_o.htm (2 of 3) [2/8/2001 4:51:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index
orphans : (see processes, in pathological states)
0S/2 . A.6. Workalikes on PC Platforms
Version 2 : 8. Process Handling
OSF/Maotif : A.3. wksh
other shells: (see entries for individual shells)

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_o.htm (3 of 3) [2/8/2001 4:51:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: P

parallelizing shell scripts: 8.5.3. Parallelization
parenthesis
for grouping condition tests : 5.1.3.3. File Attribute Checking
for nested subshells
5.1.3.3. File Attribute Checking
8.6.2. Nested Subshells
within arithmetic expressions : 6.2. Integer Variables and Arithmetic
Pascal
4. Basic Shell Programming

4.1.1. Functions

4.2. Shell Variables

4.3.1. Syntax of String Operators
5.1.1. Exit Status and Return
5.1.1.1. Return

5.2. for

5.3. case

5.5. while and until

6. Command-line Options and Typed Variables
7.3.2.1. The C Compiler as Pipeline
PATH
3.4.2.5. Command Search Path
3.5.1. Environment Variables
4.1. Shell Scripts and Functions
4.5. Advanced Examples. pushd and popd
5.5. while and until
6.2.2. Arithmetic Variables and Assignment

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_p.htm (1 of 8) [2/8/2001 4:51:31 PM]

Index

6.3.4. Type and Attribute Options

7.2.1.2. Optionsto print

7.3. Command-line Processing

10.1. Installing the Korn Shell as the Standard Shell
10.2.3. Types of Global Customization

10.3.4. Privileged Mode

A.l. The Bourne Shell

A.6. Workalikes on PC Platforms

in restricted shell : 10.3.1. Restricted Shell

security problem with
3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario

pathnames
full : 1.6.1. Directories

limitations in restricted shell : 10.3.1. Restricted Shell
relative: 1.6.1.1. The working directory

pattern-matching operators : 4.3.3. Pattern-matching Operators

#
4.3.3. Pattern-matching Operators
4.5. Advanced Examples: pushd and popd
5.5. while and until

#Hit

4.3.3. Pattern-matching Operators
6.2.2. Arithmetic Variables and Assignment

%
4.3.3. Pattern-matching Operators
5.2. for
5.3. case

%%
4.3.3. Pattern-matching Operators
4.5. Advanced Examples: pushd and popd
5.5. while and until
6.2.2. Arithmetic Variables and Assignment
examples : 4.3.3. Pattern-matching Operators

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_p.htm (2 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index

syntax : 4.3.3. Pattern-matching Operators

3.4.2.4. Termina Types

A. Related Shells

A.6. Workalikes on PC Platforms
pdksh : (see public domain Korn shell)
PID : A.6. Workalikes on PC Platforms
pipelines

7.3. Command-line Processing

8.5. Coroutines

system callsused in : 8.5. Coroutines

pipes : 8. Process Handling
to code blocks: 7.2.2.3. Code blocks
compared to two-way pipes: 8.5.5. Two-way Pipes Versus Standard Pipes
two-way : (see two-way pipes)
popd
4.5. Advanced Examples: pushd and popd
5.1.3.1. String comparisons
6.2.2. Arithmetic Variables and Assignment
10.2.3. Types of Global Customization
A.5. bash
additional arguments : 6.2.2. Arithmetic Variables and Assignment
functionality : 4.5. Advanced Examples. pushd and popd

positional parameters
4.2.1. Positional Parameters

6.1. Command-line Options

9.1.1. Set Options

9.2.2. The Preamble

in functions: 4.2.1.1. Positiona parameters in functions
number of (#) : 4.2.1. Positional Parameters

syntax for higher than nine : 4.2.2. More on Variable Syntax

POSIX
1003.1: A.2. The |EEE 1003.2 POSIX Shell Standard

1003.2

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_p.htm (3 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index

(see POSI X, shell)

(see
1003.2a (UPE) : A.2. The |EEE 1003.2 POSIX Shell Standard
history : A.2. The IEEE 1003.2 POSIX Shell Standard

shell

A. Related Shells
A.2. The |EEE 1003.2 POSIX Shell Standard
Korn shell featuresin: A.2. The |IEEE 1003.2 POSIX Shell Standard
pr : 9.2.3.3. Breakpoints
using awk instead of pr -n: 9.2.3.3. Breakpoints

print
1.9.1. Quoting
3.4. Shell Variables
7.2.1. print
7.2.2.4. Reading User Input
7.2.2.5. Optionsto read
9.2.3.6. Limitations
A.1l. The Bourne Shell
as debugging aid : 9.1. Basic Debugging Aids
escape sequences : 7.2.1.1. print escape sequences
featuresin next release : A.7. The Future of the Korn Shell
for emulating eval : 7.3.2. eval
options : 7.2.1.2. Options to print

-n
4.3.1. Syntax of String Operators
7.2.1.2. Options to print

-n (suppress LINEFEED)
5.1.3.3. File Attribute Checking

6.3.3. String Formatting Options
-p: 7.2.1.2. Optionsto print
-p (to two-way pipe)

8.5.4. Coroutines with Two-way Pipes

8.5.5. Two-way Pipes Versus Standard Pipes
-r: 7.2.1.2. Options to print

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_p.htm (4 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2

Index

-s: 7.2.1.2. Options to print

-u: 7.2.1.2. Options to print
priorities: 1.8.2. Background Jobs and Priorities
privileged mode

10.3.4. Privileged Mode
A.1l. The Bourne Shell
/etc/suid_profile as environment file : 10.3.4. Privileged Mode
turning off : 10.3.4. Privileged Mode
process IDs
8.1. Process |IDs and Job Numbers
8.3.3.ps
8.6.2. Nested Subshells
A.l. The Bourne Shell

I variable (process ID of most recent background job) : 8.4.2. Process |D Variables and Temporary
Files

$variable (ID of current shell)
2.2. The History File
8.4.2. Process ID Variables and Temporary Files
for constructing temp filenames : 8.4.2. Process |ID Variables and Temporary Files

difference between job numbers and : 8.1. Process IDs and Job Numbers

processes
8. Process Handling

(see also jobs)
daemons: 8.3.3.2. BSD

group leaders
8.3.3.1. System V
8.3.3.2.BSD

in pathological states
8.3.3.2.BSD
8.5. Coroutines

performance characteristics of : 8.5.2. Advantages and Disadvantages of Coroutines

profile
2.1. Enabling Command-line Editing
2.2. The History File

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_p.htm (5 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2

Index

3.1. The .profile File

3.5.1. Environment Variables

7.1. 1/O Redirectors

7.2.2.1. Reading lines from files

for setting up restricted shell environment : 10.3.1. Restricted Shell
prompting

in read statement : 7.2.2.4. Reading User Input
prompts : 3.4.2.3. Prompting Variables

customizing
with command number : 3.4.2.3. Prompting Variables

with current directory
3.4.2.3. Prompting Variables

7.3.1. Quoting
featuresin next release : A.7. The Future of the Korn Shell
with user name : 3.4.2.3. Prompting Variables

with machine name : 4.4. Command Substitution

primary : 3.4.2.3. Prompting Variables

processing of PS1 : 7.3.1. Quoting

ps
8.3.3.ps
8.6.2. Nested Subshells
-a
8.3.3.ps
8.3.3.2. BSD
-ax (BSD) : 8.3.3.2. BSD
-e (System V) : 8.3.3.2. BSD
listing all processes on the system : 8.3.3.2. BSD
output of BSD version : 8.3.3. ps
output of System V version : 8.3.3. ps
PS1

3.4.2.3. Prompting Variables

4.4. Command Substitution

7.3.1. Quoting

10.2.3. Types of Global Customization

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_p.htm (6 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4

Index
A.5. bash
command subsitution in next release : A.7. The Future of the Korn Shell
PS2 : 3.4.2.3. Prompting Variables
PS3

3.4.2.3. Prompting Variables
5.4. select
command subsitution in next release : A.7. The Future of the Korn Shell

P4
3.4.2.3. Prompting Variables

9.1.1. Set Options
in kshdb : 9.2.3. Debugger Functions

public domain Korn shell
Korn Shell Versions

A. Related Shells

A.4. pdksh

documentation : A.4. pdksh

for OS2 : A.6. Workalikes on PC Platforms

pushd
4.5. Advanced Examples: pushd and popd

5.1.1. Exit Status and Return

5.1.3.3. File Attribute Checking

6.2.2. Arithmetic Variables and Assignment

10.2.3. Types of Global Customization

A.5. bash

additional arguments : 6.2.2. Arithmetic Variables and Assignment
functionality : 4.5. Advanced Examples. pushd and popd

PWD
3.4.2.3. Prompting Variables

3.4.3.1. Miscellaneous Variables
3.5.1. Environment Variables
5.1.1. Exit Status and Return
7.3. Command-line Processing

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_p.htm (7 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

Index

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_p.htm (8 of 8) [2/8/2001 4:51:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: Q

guoting : 1.9.1. Quoting

arithmetic expressions in double quotes : 6.2. Integer Variables and Arithmetic

command substitution with double quotes : 4.4. Command Substitution

in command-line processing : 7.3.1. Quoting

difference between single and double quotes : 7.3.1. Quoting

double quotes with $@ and $* : 4.2.1.1. Positiona parametersin functions

examples: 7.3.1. Quoting

rulesfor quoting character strings : 6.2. Integer Variables and Arithmetic
variablesand : 3.4.1. Variables and Quoting

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_g.htm [2/8/2001 4:51:32 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: R

r (aias) : 2.5. The fc Command

RANDOM :9.1.2.1. EXIT

read : 7.2.2. read
exit status of : 7.2.2.1. Reading lines from files
fromfiles: 7.2.2.2. 1/O Redirection and multiple commands
options : 7.2.2.5. Options to read

P

7.2.2.5. Optionsto read

8.5.4. Coroutines with Two-way Pipes

8.5.5. Two-way Pipes Versus Standard Pipes
-r: 7.2.2.5. Options to read
-S

7.2.2.5. Optionsto read
9.2.3.1. Commands
-u: 7.2.2.5. Optionsto read
syntax : 7.2.2. read
from user input : 7.2.2.4. Reading User |nput
continuing on next line : 7.2.2.5. Options to read
prompting : 7.2.2.4. Reading User Input

readonly
6.3.4. Type and Attribute Options
10.3.4. Privileged Mode

regular expressions
Summary of Korn Shell Features
4.3.2. Patterns and Regular Expressions
A.l. The Bourne Shell

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_r.htm (1 of 3) [2/8/2001 4:51:34 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4

Index
A.4. pdksh
I operator
4.3.2.1. Reqular expression basics

4.3.2.2. Korn shell versus awk/egrep regular expressions

* operator
4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep reqular expressions

+ operator
4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep reqular expressions
6.1.1. shift

? operator
4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep reqular expressions

@ operator
4.3.2.1. Regular expression basics

4.3.2.2. Korn shell versus awk/egrep reqular expressions

compared to awk and egrep : 4.3.2.1. Regular expression basics

operator examples : 4.3.2.1. Regular expression basics

order of evaluation in command-line processing : 7.3. Command-line Processing

relationship to wildcards : 4.3.2.2. Korn shell versus awk/egrep regular expressions

syntax : 4.3.2.1. Regular expression basics

relative pathnames : 1.6.1.1. The working directory
REPLY
In read statement : 7.2.2. read

in select statement
5.4. select
6.3. Arrays
restricted shell : 10.3.1. Restricted Shell
installing asauser'slogin shell : 10.3.1. Restricted Shell
restrictions : 10.3.1. Restricted Shell
role of .profilein: 10.3.1. Restricted Shell
return: 5.1.1.1. Return
Reverse Polish Notation (RPN)

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_r.htm (2 of 3) [2/8/2001 4:51:34 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2

Index

8.5.4. Coroutines with Two-way Pipes

8.6.2. Nested Subshells
rksh : (see security, restricted shell)
rm: 8.4.2. Process ID Variables and Temporary Files
root : 1.6.1. Directories

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_r.htm (3 of 3) [2/8/2001 4:51:34 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: S

SCO: 1.9.5. Control Keys
scripts
built-in commands implemented as : 4.1. Shell Scripts and Functions

commentsin : 4.3.1. Syntax of String Operators

order of precedence in command lookup
4.1.1. Functions

7.3. Command-line Processing

running : 4.1. Shell Scripts and Functions
SECONDS: 3.4.3.1. Miscellaneous Variables
security
Summary of Korn Shell Features
3.2.1. Tracked Aliases
10.3. System Security Features
Korn shell features pertaining to : 10.3. System Security Features

problem with PATH
3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario
restricted shell : (see restricted shell)
suid interactive shells: 10.3.2. A System Break-in Scenario
Trojan horse schemes : 10.3.2. A System Break-in Scenario

sed
1.7.1. Standard I/O
4.3.2. Patterns and Regular Expressions
4.3.2.2. Korn shell versus awk/egrep regular expressions
10.1. Installing the Korn Shell as the Standard Shell
select

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_s.htm (1 of 6) [2/8/2001 4:51:37 PM]

Index

Summary of Korn Shell Features

5.4. select

6.3. Arrays

7.2.2.4. Reading User Input

A.l. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard
description : 5.4. select

lists of namesin : 5.4. select
PS3 prompt in : 5.4. select
redirecting /O to : 7.2.2.2. |/O Redirection and multiple commands
syntax : 5.4. select
set : (see options)
+0 (turn off option)

3.3. Options
9.1.1. Set Options

-A (array assignment)
6.3. Arrays
6.3.3. String Formatting Options
-0 (turn on option)
3.3. Options
9.1.1. Set Options
A.1. The Bourne Shell
output of in next release : A.7. The Future of the Korn Shell

SHELL
3.4.3.1. Miscellaneous Variables

3.5.1. Environment Variables

A.1. The Bourne Shell
shell compilers: 9. Debugging Shell Programs
shell variables, list of : B.3. Built-in Shell Variables
shift

6.1.1. shift

6.1.3. getopts
signals

8.2. Job Control

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_s.htm (2 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2

Index

8.3. Signals
ALRM
A.6. Workalikes on PC Platforms

A.7. The Future of the Korn Shell
DEBUG : (seefake signals)

description : 8.3. Signals

effect of on processes : 8.3.2. kill
ERR : (seefake signals)

EXIT : (seefake signals)

fake : (seefake signals)

hangup : (see HUP)

HUP: 8.4.3. Ignoring Signals
ignoring : 8.4.3. Ignoring Signals
INT

8.3.1. Control-key Signals
8.3.2. kill

8.4. trap
8.4.1. Traps and Functions

8.4.2. Process ID Variables and Temporary Files
9.1.2.1. EXIT

A.2. The |IEEE 1003.2 POSIX Shell Standard
A.6. Workalikes on PC Platforms

KILL
8.3.1. Control-key Signals

8.3.2. kill
8.3.3.1. System V

lack of propagation to subshells
8.6.1. Subshell Inheritance

A.7. The Future of the Korn Shell
listing : 8.3. Signals
other typesof : 8.3.1. Control-key Signals
in POSIX shell : A.2. The IEEE 1003.2 POSIX Shell Standard
propagation to subshellsin next release : A.7. The Future of the Korn Shell
QUIT

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_s.htm (3 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index

8.3.1. Control-key Signals

8.3.2. kill

8.3.3.1. SystemV
sending with control keys: 8.3.1. Control-key Signals
shown in background job status messages : 8.3.2. kill
specifying in trap command : 8.4. trap
STOP : A.6. Workalikes on PC Platforms
TERM

8.3.2. kill

8.4. trap

8.4.2. Process ID Variables and Temporary Files

9.1.2.1. EXIT

A.2. The IEEE 1003.2 POSIX Shell Standard
trapping : (see traps)
TSTP

8.2. Job Control

8.3.1. Control-key Signals
seep : 8.4. trap
SNOBOL : 4.2. Shell Variables
sort

1.7.1. Standard I/O

1.7.2. 1/O Redirection

1.7.3. Pipelines

1.8. Background Jobs

1.8.1. Background I/O

4.3.1. Syntax of String Operators

5.2. for

7.2.2. read

8.2.2. Suspending a Job
special characters: 4.2.2. More on Variable Syntax
spell : 4.1. Shell Scripts and Functions
stacks: 4.5. Advanced Examples. pushd and popd
Stallman, Richard : A.5. bash

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_s.htm (4 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm

Index

standard I/O : (see l/O)

string 1/O : (see print, read)

string operators
4.3. String Operators
A.l. The Bourne Shell
(length) : 4.3.4. L ength Operator
-+

4.3.1. Syntax of String Operators
5.2. for

4.3.1. Syntax of String Operators
4.5. Advanced Examples: pushd and popd
9.2.3.4. Break conditions

'=:4.3.1. Syntax of String Operators
:?

4.3.1. Syntax of String Operators
4.5. Advanced Examples. pushd and popd
Innext release : A.7. The Future of the Korn Shell
summary of functionality : 4.3. String Operators
syntax : 4.3.1. Syntax of String Operators
stty : 1.9.5. Control Keys
to customize control-key signals: 8.3.1. Control-key Signals
subprocesses : 3.5. Customization and Subprocesses

subshells
4.1. Shell Scripts and Functions

8. Process Handling
8.6. Subshells
information passed from parent processes : 3.5. Customization and Subprocesses
inheritance of properties from parent shells: 8.6.1. Subshell Inheritance
nested
8.6.2. Nested Subshells

9.2.3.6. Limitations
A.2. The IEEE 1003.2 POSIX Shell Standard
compared to code blocks : 8.6.2. Nested Subshells

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_s.htm (5 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index

suid : A.6. Workalikes on PC Platforms

suid shell scripts
10.3.2. A System Break-in Scenario

10.3.4. Privileged Mode
creating : 10.3.2. A System Break-in Scenario
dangersof : 10.3.2. A System Break-in Scenario

SunOS
1. Korn Shell Basics

1.3. History of UNIX Shells
1.9.5. Control Keys
4.4. Command Substitution

system calls
exec : 8.5. Coroutines

fork : 8.5. Coroutines

pipe: 8.5. Coroutines
wait : 8.5. Coroutines
System |11 : 1.9.5. Control Keys

System V
1.9.5. Control Keys

3.4.2.4. Terminal Types

System V Release 4
1.3.1. The Korn Shell

1.4. Getting the Korn Shell

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_s.htm (6 of 6) [2/8/2001 4:51:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: T

tail : 5.2. for
TCP/IP : 7.2.2.3. Code blocks
tee: 7.1.2. File Descriptors

temporary files: 8.4.2. Process ID Variables and Temporary Files

TERM
3.4.2.4. Termina Types

3.5.1. Environment Variables

5.3. case

5.4. select

6.3. Arrays

7.2.2.1. Reading lines from files

10.2.3. Types of Global Customization
termcap : 3.4.2.4. Termina Types

terminfo
3.4.2.4. Termina Types
5.4. select

test

Summary of Korn Shell Features
(see also condition tests, old syntax)
test operators, list of : B.4. Test Operators
testopt : 3.3. Options
thrashing : (see processes, performance characteristics of)
tilde (~) notation
1.6.1.2. Tilde notation
7.3. Command-line Processing
7.3.1. Quoting

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_t.htm (1 of 4) [2/8/2001 4:51:38 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1

Index

A.1. The Bourne Shell

A.2. The IEEE 1003.2 POSIX Shell Standard

within double quotes : 3.4.1. Variables and Quoting

within variable expressions : A.7. The Future of the Korn Shell

~+ (current directory) : 7.3. Command-line Processing

~- (previous directory) : 7.3. Command-line Processing
TMOUT : 10.2.3. Types of Global Customization

/tmp
8.4.2. Process ID Variables and Temporary Files

9.2.1.1. Thedriver script

TOPS-20
2.3.5. Filename Compl etion and Expansion

2.4.6. Filename Completion

tr
1.7.1. Standard 1/O

5.2. for
6.3.3. String Formatting Options

trap command : 8.4. trap
- (to reset default) : 8.4.4. Resetting Traps
null string argument (for ignoring signals) : 8.4.3. Ignoring Signals

syntax : 8.4. trap
traps
8.4. trap

A.1. The Bourne Shell
after every statement : 9.1.2.3. DEBUG
for ignoring signals : 8.4.3. Ignoring Signals

lack of propagation to subshells
8.6.1. Subshell Inheritance

A.7. The Future of the Korn Shell
listing : 8.4. trap
propagation to subshellsin next release : A.7. The Future of the Korn Shell
resetting defaults : 8.4.4. Resetting Traps
setting global traps within functions : 8.4.1. Traps and Functions

trapping fake signals

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_t.htm (2 of 4) [2/8/2001 4:51:38 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm

Index

9.1.2. Fake Signals
9.2.2. The Preamble
9.2.3.1. Commands
within functions : 8.4.1. Traps and Functions

troff
1.6. Files

5.5. while and until
8.2.2. Suspending a Job
true: 8.4. trap
tty : 5.3. case
two-way pipes
Summary of Korn Shell Features
8.5.4. Coroutines with Two-way Pipes

for building interfaces to existing programs : 8.5.4. Coroutines with Two-way Pipes
compared to standard pipes : 8.5.5. Two-way Pipes Versus Standard Pipes
creating : 8.5.4. Coroutines with Two-way Pipes
flow of 1/O : 8.5.4. Coroutines with Two-way Pipes
relationship to standard I/O : 8.5.4. Coroutines with Two-way Pipes
typeset
6.3.1. typeset
A.l. The Bourne Shell

function options
+f : 6.3.5. Function Options

+ft : 6.3.5. Function Options
-f : 6.3.5. Function Options
-ft

6.3.5. Function Options
9.1.1. Set Options
-fu: 6.3.5. Function Options

-fx
6.3.5. Function Options
10.2.3. Types of Global Customization

making variables local to functions
4.2.1.1. Positiona parametersin functions

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_t.htm (3 of 4) [2/8/2001 4:51:38 PM]

Index

6.3.2. Local Variables in Functions
options supported in pdksh : A.4. pdksh

output of in next release : A.7. The Future of the Korn Shell

string formatting options : 6.3.3. String Formatting Options
- : 6.3.3. String Formatting Options
-L

6.3.3. String Formatting Options
7.2.2.5. Optionsto read
combined effect : 6.3.3. String Formatting Options
examples : 6.3.3. String Formatting Options
syntax : 6.3.1. typeset
turning off options : 6.3.3. String Formatting Options

type and attribute options : 6.3.4. Type and Attribute Options
-f

6.3.4. Type and Attribute Options
6.3.5. Function Options

-1 1 6.3.4. Type and Attribute Options

-r

6.3.4. Type and Attribute Options
10.3.4. Privileged Mode
-X : 6.3.4. Type and Attribute Options
variables in kshdb break conditions: 9.2.3.6. Limitations
with no arguments (to list variables) : 6.3.5. Function Options

typographical conventions : Conventions Used in This Handbook

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_t.htm (4 of 4) [2/8/2001 4:51:38 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: U

ulimit
10.2.2. ulimit
A.l. The Bourne Shell
hard vs. soft limits: 10.2.2. ulimit

options
-a(print al limits) : 10.2.2. ulimit
-C (corefilesize) : 10.2.2. ulimit

-d (process data segment) : 10.2.2. ulimit
-f (file size) : 10.2.2. ulimit
-n (file descriptors) : 10.2.2. ulimit

-S (process stack segment) : 10.2.2. ulimit
-t (process CPU time) : 10.2.2. ulimit
-v (virtual memory) : 10.2.2. ulimit

privileged (superuser) optionsto : 10.2.2. ulimit

removing limits: 10.2.2. ulimit

Ultrix
1. Korn Shell Basics

1.3. History of UNIX Shells
1.9.5. Control Keys

umask
10.2.1. umask

A.6. Workalikes on PC Platforms

aslogica XOR with file permission : 10.2.1. umask
unalias: 3.2.1. Tracked Aliases
uncompress : 1.8. Background Jobs
UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_u.htm (1 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

Index

Command Syntax Standard Rules: 6.1.3. getopts
documentation conventions : 4.3.1. Syntax of String Operators
filenamesin BSD : 7.2.2.3. Code blocks

filenamesin System V
6.3.3. String Formatting Options

7.2.2.3. Code blocks
interprocess communication in : 8.3. Signals

Programmer's Manual
8. Process Handling

8.3.3.2.BSD
security : (see security)
shell history : 1.3. History of UNIX Shells

terminal interface
2. Command-line Editing

2.3.4. Moving Around in the History File
2.3.6. Miscellaneous Commands
2.4. Vi Editing Mode

utilities: 1.7.1. Standard I/O

Versions
A/UX
1. Korn Shell Basics

1.9.5. Control Keys

AlX
1. Korn Shell Basics

8.3.3. ps
BSD
1.3. History of UNIX Shells

1.9.5. Control Keys

2.3.4. Moving Around in the History File
2.3.6. Miscellaneous Commands

2.4. Vi Editing Mode

3.4. Shell Variables

3.4.2.2. Mail Variables

4.4. Command Substitution

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_u.htm (2 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3

Index

7.2.2.3. Code blocks

8.3. Signals

8.3.3. ps
8.3.3.2. BSD

9.2.3.3. Breakpoints
A.2. The |lEEE 1003.2 POSI X Shell Standard
A.4. pdksh

HP/UX
1. Korn Shell Basics

1.9.5. Control Keys
8.3.3. ps
SCO: 1.9.5. Control Keys

SunOS
1. Korn Shell Basics

1.3. History of UNIX Shells
1.9.5. Control Keys

4.4. Command Substitution
8.3.3. ps

A.l. The Bourne Shell

A.3. wksh

A.4. pdksh

System |11
1.9.5. Control Keys

8.2. Job Control

System V
1.9.5. Control Keys

3.4. Shell Variables

3.4.2.4. Termina Types

6.3.3. String Formatting Options
7.2.2.3. Code blocks

8.2. Job Control

8.3. Signals

8.3.3. ps
9.2.3.3. Breakpoints

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_u.htm (3 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3

Index

A.2. The IEEE 1003.2 POSIX Shell Standard

System V Release 4
Korn Shell Versions

1.3.1. The Korn Shell
1.4. Getting the Korn Shell
6.1.3.1. More About C Compilers
A.3. wksh
that don't support job control : 8.2. Job Control

Ultrix
1. Korn Shell Basics

1.3. History of UNIX Shells
1.9.5. Control Keys
8.3.3.ps
UTS: 1. Korn Shell Basics
Version 6 : 4.3.2. Patterns and Regular Expressions

Version 7
1.3. History of UNIX Shells

A.l. The Bourne Shell
A.2. The |IEEE 1003.2 POSIX Shell Standard
A.4. pdksh
Xenix
1. Korn Shell Basics
1.9.5. Control Keys
8.2. Job Control

workalikes
Coherent : A.6. Workalikes on PC Platforms

Minix : A.6. Workalikes on PC Platforms
UNIX commands : C.4. UUCP

UNIX System Laboratories (USL)
1.3.1. The Korn Shell

A.3. wksh

A.7. The Future of the Korn Shell

address and phone number : A.3. wksh
unset

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_u.htm (4 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm

Index

in POSIX shell : A.2. The IEEE 1003.2 POSIX Shell Standard

until
5.4. select

5.5. while and until

differences with while : 5.5. while and until
redirecting /O to : 7.2.2.2. |/O Redirection and multiple commands
syntax : 5.5. while and until

USENET
comp.binaries.os2 newsgroup : A.6. Workalikes on PC Platforms

comp.sources.unix newsgroup : A.4. pdksh
user-controlled multitasking : 8. Process Handling

/usr/bin
3.4.2.5. Command Search Path

10.3.2. A System Break-in Scenario
/usr/lib : 9.2.1.1. The driver script
Jusr/tmp : 8.4.2. Process ID Variables and Temporary Files
UTS: 1. Korn Shell Basics

uucp
7.1.1. Here-documents

A.6. Workalikes on PC Platforms
uucp command : C.4. UUCP

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_u.htm (5 of 5) [2/8/2001 4:51:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: V

variables
3. Customizing Y our Environment

3.4. Shell Variables

arrays : (see arrays)

assignment to : 3.4. Shell Variables
built-in : (see built-in variables)

compared to conventional programming languages : 4.2. Shell Variables
defining : 3.4. Shell Variables

deleting : 3.4. Shell Variables

environment : (see environment variabl es)

global : 4.2.1.1. Positional parametersin functions

integer
6.2. Integer Variables and Arithmetic
6.2.2. Arithmetic Variables and Assignment
6.3.4. Type and Attribute Options
A.1l. The Bourne Shell
(see also arithmetic expressions; let; typeset, -i)
(seealso let)

listing : 6.3.5. Function Options

local (in functions)
4.2.1.1. Positional parameters in functions

6.3.2. Local Variablesin Functions
in next release : A.7. The Future of the Korn Shell
order of substitution in command-line processing : 7.3. Command-line Processing

pattern-matching operators : (see pattern-matching operators)

positional parameters : (see positional parameters)

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_v.htm (1 of 3) [2/8/2001 4:51:42 PM]

Index

guoting rulesand : 3.4.1. Variables and Quoting
string operators : (see string operators)

value of
full syntax : 4.2.2. More on Variable Syntax

short form : 3.4. Shell Variables

VAX/VMS
1.6.2. Filenames and Wildcards

1.7.3. Pipelines
4.3.2.1. Regular expression basics
4.4. Command Substitution
5.2. for
8. Process Handling
Version 7 : 1.3. History of UNIX Shells
version of Korn shell, determining : Korn Shell Versions
vi editor
2. Command-line Editing
2.4. Vi Editing Mode
2.6. Finger Habits
3.1. The .profile File
3.4.2.4. Termina Types
3.5.1. Environment Variables
4.3.2. Patterns and Regular Expressions
4.3.2.2. Korn shell versus awk/egrep regular expressions
8.2.2. Suspending a Job
9. Debugaging Shell Programs
A.6. Workalikes on PC Platforms

vi-mode
Summary of Korn Shell Features

2.4. Vi Editing Mode

7.2.1.2. Options to print

10.2.3. Types of Global Customization

basic control mode commands : 2.4.1. Simple Control Mode Commands
case-changing command : 2.4.7. Miscellaneous Commands

character-finding commands : 2.4.5. Character-finding Commands

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_v.htm (2 of 3) [2/8/2001 4:51:42 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.1.2

Index

control mode : 2.4. Vi Editing Mode

delete buffer : 2.4.3. Deletion Commands

deletion commands : 2.4.3. Deletion Commands
abbreviations : 2.4.3. Deletion Commands

enabling : 2.1. Enabling Command-line Editing

entering and changing text : 2.4.2. Entering and Changing Text

entering input mode : 2.4.2. Entering and Changing Text

filename completion : 2.4.6. Filename Compl etion

filename expansion : 2.4.6. Filename Completion

input mode : 2.4. Vi Editing Mode

key customization in next release : A.7. The Future of the Korn Shell
keyboard shortcuts with aliases : 2.4.7. Miscellaneous Commands

moving around in the history file: 2.4.4. Moving Around in the History File

repeat counts : 2.4.1. Simple Control Mode Commands

retrieving words from previous commands : 2.4.7. Miscellaneous Commands
searching the history file: 2.4.4. Moving Around in the History File
undelete commands : 2.4.3. Deletion Commands

word definitions : 2.4.1. Simple Control Mode Commands

in workalike shells: A.6. Workalikes on PC Platforms
VISUAL

2.1. Enabling Command-line Editing

3.4.2.1. Editing mode variables

VM/CMS
Preface

1.8. Background Jobs
8. Process Handling
VT100 termina : 3.4.2.4. Termina Types

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_v.htm (3 of 3) [2/8/2001 4:51:42 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: W

wait
8.5.1. wait
A.l. The Bourne Shell

argumentsto : 8.5.1. wait

wc : 6.2.2. Arithmetic Variables and Assignment

whence
2.1. Enabling Command-line Editing

4.1.1. Functions

5.5. while and until
A.l. The Bourne Shell

A.5. bash
-p : 4.4. Command Substitution
-V

4.1.1. Functions
9.2.5. Exercises
to show tracked aliases: 10.3.3. Tracked Aliases

while
5.2. for

5.4. select

5.5. while and until

6.2.2. Arithmetic Variables and Assignment
6.3.3. String Formatting Options

7.2.2.1. Reading lines from files

7.2.2.3. Code blocks

7.2.2.4. Reading User Input

7.2.2.5. Optionsto read

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_w.htm (1 of 2) [2/8/2001 4:51:44 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.1
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.3
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.4
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.5

Index

7.3.1. Quoting
differences with until : 5.5. while and until
redirecting /O to : 7.2.2.2. |/O Redirection and multiple commands

syntax : 5.5. while and until
who : 4.4. Command Substitution
whoami : 7.1. I/O Redirectors

wildcards
* + 1.6.2. Filenames and Wildcards
?

1.6.2. Filenames and Wildcards
4.3.2.2. Korn shell versus awk/egrep reqular expressions

[]

1.6.2. Filenames and Wildcards
4.3.2.2. Korn shell versus awk/egrep regular expressions

in aliasexpansions : 3.2. Aliases
basic : 1.6.2. Filenames and Wildcards
character ranges : 1.6.2. Filenames and Wildcards

examples: 1.6.2. Filenames and Wildcards

order of expansion in command-line processing : 7.3. Command-line Processing

Windowing Korn shell (wksh)
A. Related Shells

A.3. wksh
wksh : A. Related Shells
words: 1.1. What Isa Shell?
order of separation in command-line processing : 7.3. Command-line Processing

Copyright © 1998 O'Reilly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_w.htm (2 of 2) [2/8/2001 4:51:44 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm#KSH-CH-7-SECT-2.2.2
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: X

X Window System
2.2. The History File

3.1. The .profile File
3.4.2.4. Termina Types
7.1. 1/O Redirectors
8.3.3.1. System V
8.5.4. Coroutines with Two-way Pipes
A. Related Shells
A.3. wksh
xcalc : 8.5.4. Coroutines with Two-way Pipes

Xenix
1. Korn Shell Basics
1.9.5. Control Keys

xterm
2.2. The History File

3.4.2.4. Termina Types
7.1. 1/O Redirectors
8.3.3.1. System V

xtrace mode : (see options, xtrace)

Copyright © 1998 O'Rellly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/index/idx_x.htm [2/8/2001 4:51:45 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: Y

y.tab.c : 4.3.3. Pattern-matching Operators

Copyright © 1998 O'Rellly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_y.htm [2/8/2001 4:51:45 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Index

Index: Z

zombies : (see processes, in pathological states)

Copyright © 1998 O'Rellly & Associates, Inc. All Rights Reserved.

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/index/idx_z.htm [2/8/2001 4:51:46 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

Search Learning the UNIX Operating System

Learning the UNIX
Operating System

—ull Text Search

Use thisHTML form to search the contents of Learning the UNIX Operating System.

Resultsreport format: Reset search form

Expanded
Sear ch for

Seareh

%‘mas u‘h"l?)

If you are having difficulty searching, or if you have not used this search utility before, please read this.

@ e B8 B &Y

=g Leaming

i W

Library Home TOOLS ini & Nutshell Learmiing vi m E awk the Iturl Shell l.l!mlll LMIX

Copyright © 1998 O'Rellly & Associates. All Rights Reserved.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/search/Isrch.htm [2/8/2001 4:51:49 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/server.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm

Preface

| Learning the KOrn Shell

Preface HEXT

Preface

Contents:
Korn Shell Versions

Summary of Korn Shell Features
Intended Audience

Code Examples

Chapter Summary

Conventions Used in This Handbook
Acknowledgments

Wed Liketo Hear From You

The long, tortuous history of the UNIX operating system has resulted in systems with all kinds of
permutations and combinations of features. This means that whenever you walk up to an unfamiliar
UNIX system, you need to find out certain things about it in order to use it properly. And even on agiven
system, you may have a number of choices you can make about what features you want to use.

The most important such decision - if you get to makeit - iswhat shell to use. "Shell” isUNIX jargon for
the program that allows you to communicate with the computer by entering commands and getting
responses. The shell is completely separate from the UNIX operating system per se; it's just a program
that runs on UNIX. With other systems such as MS-DOS, the Macintosh, and VM/CMS, the command
interpreter or user interfaceisan integral part of the operating system.

Nowadays there are dozens of different shells floating around, ranging from the original standard, the
Bourne shell, to menu-based and graphical interfaces. The most important shells have been the Bourne
shell, the C shell, and now the Korn shell - the subject of this book.

Korn Shell Versions

Specifically, this book describes the 1988 version of the Korn shell, which is distributed with all UNIX
systems based on System V Release 4. There are various other versions, variations, and implementations
on other operating systems; these are described in Appendix A, Related Shells.

To find out which version you have, type the command set -o emacs, then press CTRL-V. Y ou should

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_01.htm (1 of 2) [2/8/2001 4:52:12 PM]

Preface

see adate followed by aversion letter (the letter is unimportant). If you do, you have one of the official
versions, whether it be the 1988 version or an older one. But if you don't, then you have a non-standard
version such as pdksh, the public domain Korn shell discussed in Appendix A.

HOME NEXT &
BOOK INDEX Summary of Korn Shell
Features

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_01.htm (2 of 2) [2/8/2001 4:52:12 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Preface] Summary of Korn Shell Features

| Learning the KOrn Shell

41 PREVIOUS Preface HEXT

Summary of Korn Shell Features

The Korn shell is the most advanced of the shells that are "officially" distributed with UNIX systems. It's
a backward-compatible evolutionary successor to the Bourne shell that includes most of the C shell's
major advantages as well as afew new features of its own.

Features appropriated from the C shell include:

Job control, including the fg and bg commands and the ability to stop jobs with CTRL-Z.
Aliases, which allow you to define shorthand names for commands or command lines.

Functions (included in some C shell versions), which increase programmability and allow you to
store your own shell code in memory instead of files.

Command history, which lets you recall previously entered commands.

The Korn shell's major new features include:

Command-line editing, allowing you to use vi or emacs-style editing commands on your
command lines.

I ntegrated programming featur es: the functionality of several external UNIX commands,
including test, expr, getopt, and echo, has been integrated into the shell itself, enabling common
programming tasks to be done more cleanly and without creating extra processes.

Control structures, especially the select construct, which enables easy menu generation.

Debugging primitives that make it possible to write tools that help programmers debug their shell
code.

Regular expressions, well known to users of UNIX utilities like grep and awk, have been added
to the standard set of filename wildcards and to the shell variable facility.

Advanced I/O features, including the ability to do two-way communication with concurrent
processes (coroutines).

New options and variables that give you more ways to customize your environment.
I ncreased speed of shell code execution.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_02.htm (1 of 2) [2/8/2001 4:52:21 PM]

[Preface] Summary of Korn Shell Features

« Security featuresthat help protect against "Trojan horses' and other types of break-in schemes.

4 PREVIOUS HOME MEXT B
Korn Shell Versions BOOK INDEX Intended Audience

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_02.htm (2 of 2) [2/8/2001 4:52:21 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Preface] Intended Audience

| Learning the KOrn Shell

41 PREVIOUS Preface HEXT

Intended Audience

This book is designed to appeal most closely to casual UNIX users who are just above the "raw
beginner" level. Y ou should be familiar with the process of logging in, entering commands, and doing
simple things with files. Although Chapter 1, Korn Shell Basics, reviews concepts such as the tree-like
file and directory scheme, you may find that it moves too quickly if you're a complete neophyte. In that
case, we recommend the O'Reilly & Associates Nutshell Handbook, Learning the UNIX Operating
System, by Grace Todino and John Strang.

If you're an experienced user, you may wish to skip Chapter 1 atogether. But if your experience iswith
the C shell, you may find that Chapter 1 reveals afew subtle differences between the Korn and C shells.

No matter what your level of experienceis, you will undoubtedly learn many thingsin this book that
make you a more productive Korn shell user - from major features down to details at the
"nook-and-cranny" level that you weren't aware of.

If you are interested in shell programming (writing shell scripts and functions that automate everyday
tasks or serve as system utilities), you should find this book useful too. However, we have deliberately
avoided drawing a strong distinction between interactive shell use (entering commands during alogin
session) and shell programming. We see shell programming as a natural, inevitable outgrowth of
INcreasing experience as a user.

Accordingly, each chapter depends on those previous to it, and although the first three chapters are
oriented toward interactive use only, subsequent chapters describe interactive user-oriented featuresin
addition to programming concepts.

In fact, if thisbook has an overriding message, it is: "The Korn shell is an incredibly powerful and
grossly undervalued UNIX programming environment. Y ou - yes, you - can write useful shell programs,
even if you just learned how to log on last week and have never programmed before.”

Toward that end, we have decided not to spend much time on features of interest exclusively to low-level
systems programmers. Concepts like file descriptors, errno error numbers, specia file types, etc., can
only confuse the casual user, and anyway, we figure that those of you who understand such things are
smart enough to extrapol ate the necessary information from our cursory discussions.

41 PREVIOUS HOME HEXT B

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_03.htm (1 of 2) [2/8/2001 4:52:22 PM]

[Preface] Intended Audience

Summary of Korn Shell BOOK INDEX Code Examples
Features

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_03.htm (2 of 2) [2/8/2001 4:52:22 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Preface] Code Examples

Ie arﬂfﬁ_g fhE' Korn Sheu

41 PREVIOUS Preface HEXT

Code Examples

This book isfull of examples of shell commands and programs that are designed to be useful in your
everyday life asauser, not just to illustrate the feature being explained. In Chapter 4, Basic Shell

Programming and onwards, we include various programming problems, which we call tasks, that

illustrate particular shell programming concepts. Some tasks have solutions that are refined in subsequent
chapters. The later chapters also include programming exercises, many of which build on the tasksin the

chapter.

Y ou should fedl freeto use any code you see in this book and to passit along to friends and colleagues.
We especially encourage you to modify and enhance it yourself.

If you want to try examples but you don't use the Korn shell as your login shell, you must put the
following line at the top of each shell script:

#!/ bi n/ ksh
If your Korn shell isn't installed as the file /bin/ksh, substitute its pathname in the above.

41 PREVIOUS HOME NEXT »
Intended Audience BOOK INDEX Chapter Summary

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_04.htm [2/8/2001 4:52:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Preface] Chapter Summary

Ie arﬂfﬁ_g fhE' Korn Sheu

41 PREVIOUS Preface HEXT

Chapter Summary

If you want to investigate specific topics rather than read the entire book through, hereisa
chapter-by-chapter summary:

Chapter 1
introduces the Korn shell and tells you how to install it as your login shell. Then it givesan

introduction to the basics of interactive shell use, including overviews of the UNIX file and
directory scheme, standard 1/0O, and background jobs.

Chapter 2, Command-line Editing,

discusses the shell's command history mechanism, including the emacs- and vi-editing modes and
the fc history command.

Chapter 3, Customizing Y our Environment,

covers ways to customize your shell environment without programming, by using the .profile and
environment files. Aliases, options, and shell variables are the customization techniques discussed.

Chapter 4

is an introduction to shell programming. It explains the basics of shell scripts and functions, and
discusses severa important "nuts-and-bolts" programming features: string manipulation operators,
regular expressions, command-line arguments (positional parameters), and command substitution.

Chapter 5, Flow Control,

continues the discussion of shell programming by describing command exit status, conditional
expressions, and the shell's flow-control structures: if, for, case, select, while, and until.

Chapter 6, Command-line Options and Typed V ariables,

goes into depth about positional parameters and command-line option processing, then discusses
specia types and properties of variables, such asinteger arithmetic and arrays, and the typeset
command.

Chapter 7, I nput/Output and Command-line Processing,

gives adetailed description of Korn shell I/O, filling in the information omitted in Chapter 1. All
of the shell's I/O redirectors are covered, as are the line-at-a-time |/O commands read and print.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_05.htm (1 of 2) [2/8/2001 4:52:24 PM]

[Preface] Chapter Summary

Then the chapter discusses the shell's command-line processing mechanism and the eval
command.

Chapter 8, Process Handling,

covers process-related issuesin detail. It starts with a discussion of job control, then getsinto
various low-level information about processes, including process IDs, signals, and traps. The
chapter then moves out to a higher level of abstraction to discuss coroutines, two-way pipes, and
subshells.

Chapter 9, Debugging Shell Programs,

discusses various debugging techniques, starting with simple ones like trace and verbose modes
and "fake signal" traps. Then it presents kshdb, a Korn shell debugging tool that you can use to
debug your own code.

Chapter 10, Korn Shell Administration,

givesinformation for system administrators, including techniques for implementing system-wide
shell customization and features related to system security.

Appendix A

compares the 1988 UNIX Korn shell to several similar shells, including the standard Bourne shell,
the IEEE 1003.2 POSIX shell standard, the Windowing Korn shell (wksh), public domain Korn
shell (pdksh), the Free Software Foundation's bash, and the MK 'S Toolkit shell for MS-DOS and
0S/2.

Appendix B, Reference Lists,

contains lists of shell invocation options, built-in commands, built-in variables, conditional test
operators, options, typeset command options, and emacs and vi editing mode commands.

Appendix C, Obtaining Sample Programs,

lists the ways that you can obtain the major scriptsin this book for free, using anonymous FTP or

electronic mail.
4 PREVIOUS HOME NEXT »
Code Examples BOOK INDEX ConventionsUsed in This

Handbook

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_05.htm (2 of 2) [2/8/2001 4:52:24 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Preface] Conventions Used in This Handbook

| Learning the KOrn Shell

41 PREVIOUS Preface HEXT

Conventions Used in This Handbook

We leave it as understood that, when you enter a shell command, you press RETURN at the end.
RETURN islabeled ENTER on some keyboards.

Characters called CTRL-X, where X is any letter, are entered by holding down the CTRL (or CTL, or
CONTROL) key and pressing that letter. Although we give the letter in uppercase, you can press the
letter without the SHIFT key.

Other special characters are LINEFEED (which is the same as CTRL-J), BACKSPACE (same as
CTRL-H), ESC, TAB, and DEL (sometimes labeled DELETE or RUBOUT).

This book uses the following font conventions:

Italic isused for UNIX filenames, commands not built into the shell, (which are files
anyway), and shell functions. Italic is also used for dummy parameters that should
be replaced with an actual value, to distinguish the vi and emacs programs from
their Korn-shell modes, and to highlight special terms the first time they are
defined.

Bold isused for Korn shell built-in commands, aliases, variables, and options, as well as
command lines when they are within regular text. Bold is used for all elements
typed in by the user.

Const ant Isused in examples to show the contents of files or the output from commands.

W dt h

Const ant Bol d isusedinexamplesto show interaction between the user and the shell; any text the
user typesinisshownin Const ant Bol d. For example:

$ pwd

[users/billr/oralkb

$
Const ant isused in displayed command lines for dummy parameters that should be replaced
Italic with an actual value.
Reverse Video isused in Chapter 2 to show the position of the cursor on the command line being

edited. For example:
grep -1 Bob < ~pete/wk/nanes

Standard UNIX utility commands are sometimes mentioned with a number in parentheses (usually 1)
following the command's name. The number refers to the section of the UNIX User's Manual in which

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_06.htm (1 of 2) [2/8/2001 4:52:26 PM]

[Preface] Conventions Used in This Handbook

you'll find reference documentation (a.k.a. "man page") on the utility in question. For example, grep(1)
means you will find the man page for grep in Section 1.

48 PREVIOUS
Chapter Summary

HEXT B
BOOK INDEX

Acknowledgments

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_06.htm (2 of 2) [2/8/2001 4:52:26 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Preface] Acknowledgments

Ie arﬂfﬁ_g fhE' Korn Sheu

41 PREVIOUS Preface HEXT

Acknowledgments

Many people contributed to this book in many ways. I'd like to thank the following people for technical
advice and/or assistance: for system administration help, John van Vlaanderen and Alexis Rosen. For
information on alternative shells, John (again), Sean Wilson (of MKS), Ed Ravin, Mel Rappaport, and
Chet Ramey. For identifying the need for a shell debugger, expertise in SunOS and system security, and,
indeed, a significant portion of my career, Hal Stern. For debugger suggestions, Tan Bronson. For
humanitarian aid, Jessica Lustig. And much thanksto David Korn for al kinds of great "horse's mouth”
information - and, of course, for the Korn shell itself.

Thanks to our technical reviewers; JJm Baumbach, Jm Falk, David Korn, Ed Miner, Eric Pearce, and Ed
Ravin. | especially appreciate the cooperation of Ed and Ed (in that order) during my "Whaddya mean, it
doesn't work??' phase.

Several people at O'Rellly & Associates contributed to this effort: Gigi Estabrook and Clairemarie Fisher
O'Leary proofread multiple drafts of the manuscript, Kismet McDonough and Donna Woonteiler
copyedited the manuscript, Len Muellner implemented the book design macro package, Jennifer Niederst
designed the cover and the format of the book, and Chris Rellley created the figures. Finally, an ocean of
gratitude to Mike Loukides - editor, motivator, facilitator, constructive nit-picker, and constant voice of
reason. He and the other folks at O'Reilly & Associates are some of the most innovative, interesting, and
motivated people I've ever had the privilege to work with.

41 PREVIOUS HOME HEXT B
Conventions Used in This BOOK INDEX We'd Liketo Hear From Y ou
Handbook

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_07.htm [2/8/2001 4:52:27 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Preface] We'd Like to Hear From You

Ie arﬂfﬁ_g fhE' Korn Sheu

41 PREVIOUS Preface HEXT

We'd Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any errors
you find, aswell as your suggestions for future editions, by writing:

O'Rellly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

Y ou can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

41 PREVIOUS HOME NEXT »
Acknowledgments BOOK INDEX 1. Korn Shell Basics

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/prfl_08.htm [2/8/2001 4:52:28 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix A] Related Shells

| Learning the KOrn Shell

4 PREVIOUS Appendix A MEXT

A. Related Shells

Contents:
The Bourne Shell

The |EEE 1003.2 POSIX Shell Standard
wksh

pdksh
bash

Workalikes on PC Platforms
The Future of the Korn Shell

The fragmentation of the UNIX marketplace has had its advantages and disadvantages. The advantages
came mostly in the early days: lack of standardization and proliferation among technically savvy
academics and professional s contributed to a healthy "free market" for UNIX software, in which several
programs of the same type (e.g., shells, text editors, system administration tools) would often compete
for popularity. The best programs would usually become the most widespread, while inferior software
tended to fade away.

But often there was no single "best" program in a given category, so several would prevail. Thisled to
the current situation, where multiplicity of similar software has led to confusion, lack of compatibility,
and-most unfortunate of all-UNIX" inability to capture as big a share of the market as other operating
platforms (MS-DOS, Microsoft Windows, Novell NetWare, etc.).

The"shell" category has probably suffered in this way more than any other type of software. Aswe said
in the Preface and Chapter 1, Korn Shell Basics, of this book, several shells are currently available; the
differences between them are often not all that great. We believe that the Korn shell is the best of the
most widely used shells, but other shells certainly have their staunch adherents, so they aren't likely to
fade into obscurity for awhile.

Therefore we felt it necessary to include information on shells similar to the 1988 UNIX Korn shell. This
Appendix summarizes the differences between the latter and the following:

e Thestandard Version 7 Bourne shell, as akind of "baseline"

o ThelEEE POSIX 1003.2 shell Standard, to which the Korn shell and other shells will adherein the
future

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appa_01.htm (1 of 4) [2/8/2001 4:52:30 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_03.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_04.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_05.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

[Appendix A] Related Shells

« The Windowing Korn shell (wksh), a Korn shell with enhancements for X Window System
programming

« pdksh, awidely-used public domain Korn shell
« The bash shell, which is another enhanced Bourne shell with some C shell and Korn shell features
« Korn shell workalikes on desktop PC platforms, including the MK S Toolkit shell

WE'll conclude this appendix with alook at the Korn shell's future: the next release's expected features,
obsolescent features of the current shell, and other issues.

A.1 The Bourne Shell

The Korn shell isalmost completely backward-compatible with the Bourne shell. The only significant
feature of the latter that the Korn shell doesn't support is” (caret) as a synonym for the pipe (|) character.
[1] Thisisan archaic feature that the Bourne shell includes for its own backward compatibility with
earlier shells. No modern UNIX version has any shell code that uses”™ as a pipe.

[1] There are also afew differences in how the two shells react to certain extremely
pathological input. Usually, the Korn shell processes correctly what causes the Bourne shell
to "choke."

To describe the differences between the Bourne shell and the Korn shell, we'll go through each chapter of
this book and enumerate the features discussed in the chapter that the Bourne shell does not support.
Although some versions of the Bourne shell exist that include afew Korn shell features, [2] we refer to
the standard, Version 7 Bourne shell that has been around for many years.

[2] For example, the Bourne shell distributed with System V supports functions and a few
other Korn shell features.

Chapter 1

The cd old new and cd - forms of the cd command,; tilde (~) expansion; the jobs command.
Chapter 2, Command-line Editing

All. (1.e., the Bourne shell doesn't support any of the history and editing features discussed in
Chapter 2.)

Chapter 3, Customizing Y our Environment

Aliases; set -0 options. The Bourne shell supports the "abbreviations" listed in the "Options' table
in Appendix B, Reference Lists-except -A, -h, -m, -p, and -s. Environment files aren't supported;

neither isthe print command (use echo instead). The following built-in variables aren't supported:

EDITOR OPTIND
ERRNO PPID
ENV PS3
FCEDIT P4

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appa_01.htm (2 of 4) [2/8/2001 4:52:30 PM]

[Appendix A] Related Shells

FPATH PWD
HISTFILE RANDOM
HISTSIZE REPLY
LINENO SECONDS
LINES TMOUT
OLDPWD VISUAL
OPTARG

Some of these variables (e.g., EDITOR and VISUAL) are still used by other programs, like mail
and news readers.

Chapter 4, Basic Shell Programming

Functions; the whence command; pattern-matching variable operators (%, % %, #, ##); advanced
(regular expression) wildcards-use the external command expr instead. Command substitution
syntax is different: use the older - command” instead of $(command).

Chapter 5, Flow Control

Conditional tests use older syntax: [condition] or test condition instead of [[condition]]. These are
actually two forms of the same external command (see the test(1) manual page). The logical
operators & & and || are -a and -0 instead. Supported test operators differ from system to system.
The select construct isn't supported.

Chapter 6, Command-line Options and Typed V ariables

Use the external command getopt instead of getopts, but note that it doesn't really do the same
thing. Integer arithmetic isn't supported: use the external command expr instead of the
$((arithmetic-exp)) syntax. For integer conditionals, use the old condition test syntax and relational
operators -It, -eq, etc., instead of ((arithmetic-expr)). let isn't supported. Array variables and the
typeset command are not supported.

Chapter 7, I nput/Output and Command-line Processing

The following I/O redirectors are not supported:
>|
<>
<&p
>&p
|&
print isn't supported (use echo instead). None of the options to read are supported.
Chapter 8, Process Handling

Job control-specificaly, the jobs, fg, and bg commands. Job number notation with %, i.e., the Kill
and wait commands only accept process IDs. The - option to trap (reset trap to the default for that
signal). trap only accepts signal numbers, not logical names. Coroutines aren't supported.

Chapter 9, Debugging Shell Programs

The ERR and DEBUG fake signals. The EXIT fake signal is supported, as signal 0.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appa_01.htm (3 of 4) [2/8/2001 4:52:30 PM]

[Appendix A] Related Shells

Chapter 10, Korn Shell Administration

The ulimit command and privileged mode aren't supported. The Bourne shell's restrictive
counterpart, rsh, only inhibits assignment to PATH.

41 PREVIOUS HOME MEXT
10.3 System Security Features BOOK INDEX A.2 The |EEE 1003.2 POSI X
Shell Standard

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appa_01.htm (4 of 4) [2/8/2001 4:52:30 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] Korn Shell Basics

| Learning the KOrn Shell

4 PREVIOUS Chapter 1 MEXT

1. Korn Shell Basics

Contents:
What Is a Shell?

Scope of This Book

History of UNIX Shells
Getting the Korn Shell

I nteractive Shell Use

Files

| nput and Output

Background Jobs

Specia Characters and Quoting

Y ou've used your computer for simple tasks, such asinvoking your favorite application programs,
reading your electronic mail, and perhaps examining and printing files. Y ou know that your machine
runs the UNIX operating system, or maybe you know it under some other name, like SunOS, Ultrix,
HP/UX, AlX, A/UX, UTS, or Xenix. But apart from that, you may not have given too much thought to
what goes on inside the machine when you type in acommand and hit RETURN.

It istrue that several layers of events take place whenever you enter a command, but we're going to
consider only the top layer, known as the shell. Generically speaking, a shell is any user interface to the
UNIX operating system, i.e., any program that takes input from the user, trandates it into instructions
that the operating system can understand, and conveys the operating system's output back to the user.

There are various types of user interfaces. The Korn shell belongs to the most common category, known
as character-based user interfaces. These interfaces accept lines of textual commands that the user types
in; they usually produce text-based output. Other types of interfaces include the increasingly common
graphical user interfaces (GUI), which add the ability to display arbitrary graphics (not just typewriter
characters) and to accept input from mice and other pointing devices, touch-screen interfaces (such as
those you see on some bank teller machines), and so on.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_01.htm (1 of 2) [2/8/2001 4:53:09 PM]

[Chapter 1] Korn Shell Basics

1.1 What Is a Shell?

The shell'sjob, then, isto translate the user's command lines into operating system instructions. For
example, consider this command line:

sort -n phonelist > phonelist.sorted

This means, "Sort lines in the file phonelist in numerical order, and put the result in the file
phonelist.sorted." Here's what the shell does with this command:

1. Breaksup thelineinto the pieces sort, -n, phonédlist, >, and phonelist.sorted. These pieces are
called words.

2. Determines the purpose of the words: sort is acommand, -n and phonelist are arguments, and >
and phonelist.sorted, taken together, are 1/O instructions.

3. Setsup the I/O according to > phonelist.sorted (output to the file phonelist.sorted) and some
standard, implicit instructions.

4. Findsthe command sort in afile and runs it with the option -n (numerical order) and the argument
phonelist (input filename).

Of course, each of these stepsreally involves several substeps, each of which includes a particular
instruction to the underlying operating system.

Remember that the shell itself isnot UNIX-just the user interface to it. UNIX is one of the first operating
systems to make the user interface independent of the operating system.

Figure 1.1: The shell is alayer around the UNIX operating system

" Kom Shel ..
- Output h LINIX
User ! Operating
finput ————® System
41 PREVIOUS HOME NEXT »
Wed Liketo Hear From You BOOK INDEX 1.2 Scope of This Book

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_01.htm (2 of 2) [2/8/2001 4:53:09 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] 1.2 Scope of This Book

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS Chapter 1 NEXT B
Korn Shell Basics

1.2 Scope of This Book

In this book, you will learn about the Korn shell, which is the most recent and powerful of the major
UNIX shells. There are two ways to use the Korn shell: as a user interface and as a programming
environment.

This chapter and the next cover interactive use. These two chapters should give you enough background
to use the shell confidently and productively for most of your everyday tasks.

After you have been using the shell for awhile, you will undoubtedly find certain characteristics of your
environment (the shell's "look and feel") that you would like to change and tasks that you would like to
automate. Chapter 3, Customizing Y our Environment shows several ways of doing this.

Chapter 3 also prepares you for shell programming, the bulk of which is covered in Chapter 4, Basic
Shell Programming through Chapter 6, Command-line Options and Typed Variables. Y ou need not have
any programming experience to understand these chapters and learn shell programming. Chapter 7,

| nput/Output and Command-line Processing and Chapter 8, Process Handling give more complete
descriptions of the shell's 1/O and process handling capabilities, while Chapter 9, Debugging Shell
Programs discusses various techniques for debugging shell programs.

You'll learn alot about the Korn shell in this book; you'll aso learn about UNIX utilities and the way the
UNIX operating system works in general. It's possible to become a virtuoso shell programmer without
any previous programming experience. At the same time, we've carefully avoided going down past a
certain level of detail about UNIX internals. We maintain that you shouldn't have to be an internals
expert to use and program the shell effectively, and we won't dwell on the few shell features that are
intended specifically for low-level systems programmers.

41 PREVIOUS HOME HEXT &
1.1 What Isa Shell? BOOK INDEX 1.3 History of UNIX Shells

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_02.htm [2/8/2001 4:53:20 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] 1.3 History of UNIX Shells

| Learning the KOrn Shell

4 PREVIOUS Chapter 1 NEXT B
Korn Shell Basics

1.3 History of UNIX Shells

The independence of the shell from the UNIX operating system per se has led to the development of
dozens of shellsthroughout UNIX history-although only afew have achieved widespread use.

Thefirst mgjor shell was the Bourne shell (named after itsinventor, Steven Bourne); it wasincluded in
the first popular version of UNIX, Version 7, starting in 1979. The Bourne shell is known on the system
as sh. Although UNIX has gone through many, many changes, the Bourne shell is still popular and
essentially unchanged. Several UNIX utilities and administration features depend on it.

The first widely-used aternative shell was the C shell, or csh. Thiswas written by Bill Joy at the
University of Californiaat Berkeley as part of the Berkeley System Distribution (BSD) version of UNIX
that came out a couple of years after Version 7. It'sincluded in most recent UNIX versions.

The C shell gets its name from the resemblance of its commands to statements in the C Programming
Language, which makes the shell easier for programmers on UNIX systemsto learn. It supports a
number of operating system features (e.g., job control; see Chapter 8) that were unique to BSD UNIX but
by now have migrated to most other modern versions. It also has a few important features (e.g., aliases;
see Chapter 3) that make it easier to use in general.

1.3.1 The Korn Shell

The Korn shell, or ksh, was invented by David Korn of AT& T Bell Laboratoriesin the mid-1980s. It is
amost entirely upwardly compatible with the Bourne shell, [1] which means that Bourne shell users can
useit right away, and all system utilities that use the Bourne shell can use the Korn shell instead. In fact,
some systems have the Korn shell installed asif it were the Bourne shell.

[1] With afew extremely minor exceptions. See Appendix A, Related Shells for the only
important one.

The Korn shell began its public lifein 1986 as part of AT& T's "Experimental Toolchest," meaning that
Its source code was available at very low cost to anyone who was willing to use it without technical
support and with the knowledge that it might still have afew bugs. Eventually, AT& T's UNIX System
Laboratories (USL) decided to giveit full support asaUNIX utility. As of USL's version of UNIX called
System V Release 4 (SVRA4 for short, 1989), it was distributed with all USL UNIX systems, all
third-party versions of UNIX derived from SVR4, and many other versions.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_03.htm (1 of 2) [2/8/2001 4:53:21 PM]

[Chapter 1] 1.3 History of UNIX Shells

USL'sdistributed version of the Korn shell, dated November 16, 1988, is what this book describes. Other
versions are summarized briefly in Appendix A.

1.3.2 Features of the Korn Shell

Although the Bourne shell is still known as the "standard" shell, the Korn shell is becoming increasingly
popular and is destined to replace it. In addition to its Bourne shell compatibility, it includes the best
features of the C shell aswell as several advantages of its own. It also runs more efficiently than any
previous shell.

The Korn shell's command-line editing modes are the features that tend to attract peopleto it at first.
With command-line editing, it's much easier to go back and fix mistakes than it iswith the C shell's
history mechanism-and the Bourne shell doesn't let you do this at all.

The other magjor Korn shell feature that is intended mostly for interactive usersisjob control. As Chapter
8 explains, job control gives you the ability to stop, start, and pause any number of commands at the
same time. This feature was borrowed almost verbatim from the C shell.

The rest of the Korn shell's important advantages are mainly meant for shell customizers and
programmers. It has many new options and variables for customization, and its programming features
have been significantly expanded to include function definition, more control structures, built-in regular
expressions and integer arithmetic, advanced /O control, and more.

4 PREVIOUS HOME NEXT »
1.2 Scope of This Book BOOK INDEX 1.4 Getting the Korn Shell

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_03.htm (2 of 2) [2/8/2001 4:53:21 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] 1.4 Getting the Korn Shell

| Learning the KOrn Shell

4 PREVIOUS Chapter 1 NEXT B
Korn Shell Basics

1.4 Getting the Korn Shell

Y ou may or may not be using the Korn shell right now. Y our system administrator probably set your
account up with whatever shell he or she uses as the "standard" on the system. Y ou may not even have
been aware that there is more than one shell available.

Y et it's easy for you to determine which shell you are using. Log in to your system and type echo
$SHELL at the prompt. Y ou will see aresponse containing sh, csh, or ksh; these denote the Bourne, C,
and Korn shells respectively. (There's also a remote chance that you're using a third-party shell such as
bash or tcsh.)

If you aren't using the Korn shell and you want to, then first you need to find out if it exists on your
system. Most major UNIX versions released since roughly 1989 come with it-especially those derived
from AT& T's System V Release 4. Just type ksh. If you get a new dollar-sign prompt ($), then al is
well; type exit or press CTRL-D to go back to your normal shell.

But if you get a"not found" message, your system may not have it. Ask your system administrator or
another knowledgeabl e user; there's a chance that you might have some version of the Korn shell
installed on the system in a place (directory) that is not normally accessible to you. But if not, read
Appendix A to find out how you can obtain a version of the Korn shell.

Once you know you have the Korn shell on your system, you can invoke it from whatever other shell you
use by typing ksh as above. However, it's much better to install it as your login shell, i.e., the shell that
you get automatically whenever you log in. Y ou may be able to do the installation by yourself. Here are
instructions that are designed to work on the widest variety of UNIX systems. If something doesn't work
(e.g., you type in acommand and get a"not found" error message or a blank line as the response), you'll
have to abort the process and see your system administrator.

Y ou need to find out where the Korn shell ison your system, i.e., in which directory it's installed. Y ou
might be able to find the location by typing whereis ksh (especialy if you are using the C shell); if that
doesn't work, try whence ksh, which ksh, or this complex command:

grep ksh /etc/passwd | awk -F. '"{print $7}' | sort -u
Y ou should see aresponse that looks like /bin/ksh or /usr/local/bin/ksh.

To install asyour login shell, type chsh ksh-name, where ksh-name is the response you got to your
wher eis command (or whatever worked). You'll either get an error message saying that the shell is

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_04.htm (1 of 2) [2/8/2001 4:53:23 PM]

[Chapter 1] 1.4 Getting the Korn Shell

invalid, or you'll be prompted for your password. Type in your password, then log out and log back in
again to start using the Korn shell. If you got an error message, you'll just have to see your system
administrator. (For system security reasons, only certain shells are allowed to be installed as login shells.)

41 PREVIOUS HOME NEXT »
1.3 History of UNIX Shells BOOK INDEX 1.5 Interactive Shell Use

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_04.htm (2 of 2) [2/8/2001 4:53:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] 1.5 Interactive Shell Use

| Learning the KOrn Shell

4 PREVIOUS Chapter 1 NEXT B
Korn Shell Basics

1.5 Interactive Shell Use

When you use the shell interactively, you engage in alogin session that begins when you log in and ends
when you exit or press [CTRL-D]. [2] During alogin session, you type command linesin to the shell;
these are lines of text ending in RETURN that you type in to your terminal or workstation. By defaullt,
the shell prompts you for each command with a dollar sign, though as you will seein Chapter 3 the

prompt can be changed.

[2] You can set up your shell so that it doesn't accept [CTRL-D], i.e., it requires you to type
exit to end your session. We recommend this, because [CTRL-D] istoo easy to type by
accident; see the section on options in Chapter 3.

1.5.1 Commands, Arguments, and Options

Shell command lines consist of one or more words, which are separated on a command line by blanks or
TABs. Thefirst word on the line is the command. Therest (if any) are arguments (also called
parameter s) to the command, which are names of things on which the command will act.

For example, the command line Ip myfile consists of the command Ip (print afile) and the single
argument myfile. Ip treats myfile as the name of afile to print. Arguments are often names of files, but
not necessarily: in the command line mail billr, the mail program treats billr as the name of the user to
which a message will be sent.

An option isaspecia type of argument that gives the command specific information on what it is
supposed to do. Options usually consist of a dash followed by aletter; we say "usually" because thisisa
convention rather than a hard-and-fast rule. The command Ip -h myfile contains the option -h, which
tells Ip not to print the "banner page" before it printsthefile.

Sometimes options take their own arguments. For example, Ip -d hp3si -h myfile has two options and
one argument. The first option is-d hp3si, which means " Send the output to the printer (destination)
called hp3s". The second option and argument are as above.

4 PREVIOUS HOME NEXT »
1.4 Getting the Korn Shell BOOK INDEX 1.6 Files

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_05.htm (1 of 2) [2/8/2001 4:53:24 PM]

[Chapter 1] 1.5 Interactive Shell Use

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_05.htm (2 of 2) [2/8/2001 4:53:24 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] 1.6 Files

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS Chapter 1 NEXT B
Korn Shell Basics

1.6 Files

Although arguments to commands aren't awaysfiles, files are the most important types of "things" on
any UNIX system. A file can contain any kind of information, and indeed there are different types of
files. Three types are by far the most important:

Regular files
Also called text files; these contain readable characters. For example, this book was created from

severa regular filesthat contain the text of the book plus human-readable formatting instructions
to the troff word processor.

Executablefiles

Also called programs; these are invoked as commands. Some can't be read by humans; others-the
shell scripts that we'll examine in this book-are just special text files. The shell itself isa
(non-human-readable) executable file called ksh.

Directories
Like folders that contain other files-possibly other directories (called subdirectories).
1.6.1 Directories

Let's review the most important concepts about directories. The fact that directories can contain other
directories leads to a hierarchical structure, more popularly known as atree, for all fileson a UNIX
system. Figure 1.2 shows part of atypical directory tree; ovals are regular files and rectangles are

directories.

Figure 1.2: A tree of directories and files

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_06.htm (1 of 7) [2/8/2001 4:53:29 PM]

[Chapter 1] 1.6 Files

 diactory
- file
root directory
usr ete USers
li billr pele barry fred

[W myfile | | memo | hok

users/billr/bob/statnpr "'l I stalrpt] dave

The top of thetreeisadirectory called "root" that has no name on the system. [3] All files can be named
by expressing their location on the system relative to root; such names are built by listing all of the
directory names (in order from root), separated by slashes (/), followed by the file's name. Thisway of
naming filesis called afull (or absolute) pathname.

[3] Most introductory UNIX tutorials say that root has the name /. We stand by this
alternative explanation because it is more logically consistent.

For example, say thereisafile called memo that isin the directory fred, which isin the directory users,
which isin the root directory. Thisfile's full pathname is /userg/fred/memo.

1.6.1.1 The working directory

Of coursg, it's annoying to have to use full pathnames whenever you need to specify afile. So thereis
also the concept of the working directory (sometimes called the current directory), which is the directory
you are"in" at any given time. If you give a pathname with no leading slash, then the location of thefile
isworked out relative to the working directory. Such pathnames are called relative pathnames; you'll use
them much more often than full pathnames.

When you log in to the system, your working directory isinitially set to a special directory called your
home (or login) directory. System administrators often set up the system so that everyone's home
directory name is the same as their login name, and all home directories are contained in acommon
directory under root.

For example, /userg/hillr isatypical home directory. If thisis your working directory and you give the
command |p memo, then the system looks for the file memo in /user</hillr. If you have adirectory called
bob in your home directory, and it contains the file statreport, then you can print it with the command Ip

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_06.htm (2 of 7) [2/8/2001 4:53:29 PM]

[Chapter 1] 1.6 Files

bob/statreport.
1.6.1.2 Tilde notation

Asyou can well imagine, home directories occur often in pathnames. Although many systems are
organized so that al home directories have a common parent (such as/home or /users), you should not
have to rely on that being the case, nor should you even have to know what the absol ute pathname of
someone's home directory is.

Therefore, the Korn shell has away of abbreviating home directories: just precede the name of the user
with atilde (~). For example, you could refer to the file memo in user fred's home directory as
~fred/memo. Thisis an absolute pathname, so it doesn't matter what your working directory is when you
useit. If fred's home directory has a subdirectory called bob and the fileisin there instead, you can use
~fred/bob/memo as its name.

Even more convenient, atilde by itself refers to your own home directory. Y ou can refer to afile called
notes in your home directory as ~/notes (note the difference between that and ~notes, which the shell
would try to interpret as user notes home directory). If notesisin your bob subdirectory, then you can
call it ~/bob/notes. This notation is handiest when your working directory is not in your home directory
tree, e.g., when it's some "system" directory like /tmp.

1.6.1.3 Changing working directories

If you want to change your working directory, use the command cd. If you don't remember your working
directory, the command pwd tells the shell to print it.

cd takes as argument the name of the directory you want to become your working directory. It can be
relative to your current directory, it can contain atilde, or it can be absolute (starting with aslash). If you
omit the argument, cd changes to your home directory (i.e,, it'sthe sameascd ~).

Table 1.1 gives some sample cd commands. Each command assumes that your working directory is
/userg/hillr just before the command is executed, and that your directory structure looks like Figure 1.2.

Table 1.1: Sample cd Commands
Command New Working Directory
cd bob /user</billr/bob
cd bob/dave /userdhillr/bob/dave
cd ~/bob/dave /userghillr/bob/dave
cd /usr/lib Jusr/lib
cd .. /users
cd ../pete /users/pete
cd ~pete /user s/pete
cd billr pete /users/pete
cdillrarry /userdbarry

Thefirst four are straightforward. The next two use a special directory called . . (two dots), which
means "parent of this directory.” Every directory has one of these; it's a universal way to get to the

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_06.htm (3 of 7) [2/8/2001 4:53:29 PM]

[Chapter 1] 1.6 Files

directory above the current one in the hierarchy-which is called the parent directory. [4]

[4] Each directory also has the specia directory . (single dot), which just means "this
directory." Thus, cd . effectively does nothing. Both. and . . are actually special hidden
filesin each directory that point to the directory itself and to its parent directory,
respectively. Root isits own parent.

The last two examplesin the table use a new form of the cd command, which is not included in most
Bourne shells. The formis cd old new. It takes the full pathname of the current working directory and
triesto find the string old init. If it finds the string, it substitutes new and changes to the resulting
directory.

In the first of the two examples, the shell substitutes pete for billr in the current directory name and
makes the result the new current directory. The last example shows that the substitution need not be a
complete filename: substituting arry for illr in /userg/billr yields /users/barry. (If the old string can't be
found in the current directory name, the shell prints an error message.)

Another new feature of the Korn shell's cd command is the form cd -, which changes to whatever
directory you were in before the current one. For example, if you start out in /usr/lib, type cd without an
argument to go to your home directory, and then type cd -, you will be back in /usr/lib.

1.6.2 Filenames and Wildcards

Sometimes you need to run a command on more than one file at atime. The most common example of
such acommand is s, which lists information about files. In its simplest form, without options or
arguments, it lists the names of al filesin the working directory except special hidden files, whose
names begin with adot (.).

If you give Isfilename arguments, it will list those files-which is sort of silly: if your current directory
has the files bob and fred in it and you type Isbob fred, the system will simply parrot the filenames back
at you.

Actually, Isis more often used with options that tell it to list information about the files, like the -I (long)
option, which tellsIsto list the file's owner, size, time of last modification, and other information, or -a
(al), which aso lists the hidden files described above. But sometimes you want to verify the existence of
acertain group of files without having to know all of their names; for example, if you use the
WordPerfect word processor, you might want to see which filesin your current directory have names that
end in .wp.

Filenames are so important in UNIX that the shell provides a built-in way to specify the pattern of a set
of filenames without having to know all of the names themselves. Y ou can use special characters, called
wildcards, in filenames to turn them into patterns. We'll show the three basic types of wildcards that all
major UNIX shells support, and we'll save the Korn shell's set of advanced wildcard operators for
Chapter 4. Table 1.2 lists the basic wildcards.

Table 1.2: Basic Wildcards

Wildcard Matches
? Any single character

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_06.htm (4 of 7) [2/8/2001 4:53:29 PM]

[Chapter 1] 1.6 Files

* Any string of characters
[set] Any character in set
[!set] Any character not in set

The ? wildcard matches any single character, so that if your directory contains the files program.c,
program.log, and program.o, then the expression program.? matches program.c and program.o but not
program.log.

The asterisk (*) is more powerful and far more widely-used; it matches any string of characters. The
expression program.* will match all three filesin the previous paragraph; \WordPerfect users can use the
expression *.wp to match their input files. [5]

[5] MS-DOS and VAX/VMS users should note that there is nothing special about the dot (.)
in UNIX filenames (aside from the leading dot, which "hides" thefile); it's just another
character. For example, Is* listsall filesin the current directory; you don't need *.* asyou
do on other systems.

Table 1.3 should give you a better idea of how the asterisk works. Assume that you have the files bob,
darlene, dave, ed, frank, and fred in your working directory.

Noticethat * can stand for nothing: both * ed and * e match ed. Also notice that the last example shows
what the shell doesiif it can't match anything: it just leaves the string with the wildcard untouched.

Table 1.3: Using the* Wildcard
Expression Yields

fr* frank fred

* ed ed fred

b* bob

* gx darlenedave ed fred

* ¥ darlenefrank fred

* bob darlene dave ed frank fred
d*e darlene dave

g* g*

The remaining wildcard isthe set construct. A setisalist of characters (e.g., abc), an inclusive range
(e.g., &z), or some combination of the two. If you want the dash character to be part of alist, just list it
first or last. Table 1.4 should explain things more clearly.

Table 1.4: Using the Set Construct Wildcards
Expresson Matches

[abc] a b,orc

[.] Period, comma, or semicolon
[-] Dash and underscore

[a-C] a b,orc

[a-Z] All lowercase letters

[10-9] All non-digits

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_06.htm (5 of 7) [2/8/2001 4:53:29 PM]

[Chapter 1] 1.6 Files

[0-91] All digits and exclamation point
[a-zA-Z] All lower- and uppercase letters
[a-zA-Z0-9 -] All letters, all digits, underscore, and dash

In the original wildcard example, program.[co] and program.[a-z] both match program.c and
program.o, but not program.log.

An exclamation point after the left bracket lets you "negate" a set. For example, [!. ;] matches any
character except period and semicolon; [!a-zA-Z] matches any character that isn't aletter.

The range notation is handy, but you shouldn't make too many assumptions about what characters are
included in arange. It's safe to use arange for uppercase letters, lowercase |etters, digits, or any
subranges thereof (e.g., [f-q], [2-6]). Don't use ranges on punctuation characters or mixed-case |etters:
e.g., [a-Z] and [A-Zz] should not be trusted to include al of the letters and nothing more. The problem is
that such ranges are not entirely portable between different types of computers. [6]

[6] Specifically, ranges depend on the character encoding scheme your computer uses. The
vast majority use ASCII, but IBM mainframes use EBCDIC.

The process of matching expressions containing wildcards to filenames is called wildcard expansion.
Thisisjust one of several steps the shell takes when reading and processing a command line; another that
we have already seen istilde expansion, where tildes are replaced with home directories where
applicable. We'll see othersin later chapters, and the full details of the process are enumerated in Chapter

/.

However, it'simportant to be aware that the commands that you run only see the results of wildcard
expansion. That is, they just see alist of arguments, and they have no knowledge of how those arguments
came into being. For example, if you typeIsfr* and your files are as on the previous page, then the shell
expands the command lineto Isfred frank and invokes the command Is with arguments fred and frank.
If you type Is g*, then (because there is no match) Iswill be given the literal string g* and will complain
with the error message, g* not found. [7]

[7] Thisisdifferent from the C shell's wildcard mechanism, which prints an error message
and doesn't execute the command at all.

Here is another example that should help you understand why thisis important. Suppose you areaC
programmer. This just means that you deal with files whose names end in .c (programs, a.k.a. source
files), .h (header files for programs), and .o (object code files that aren't human-readable) as well as other
files.

Let's say you want to list al source, object, and header filesin your working directory. The command Is
* [cho] doesthetrick. The shell expands * .[cho] to all files whose names end in a period followed by a
c, h, or 0 and passes the resulting list to Is as arguments.

In other words, Iswill seethe filenames just as if they were all typed in individually-but notice that we
assumed no knowledge of the actual filenames whatsoever! We let the wildcards do the work.

Asyou gain experience with the shell, reflect on what life would be like without wildcards. Pretty
miserable, we would say.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_06.htm (6 of 7) [2/8/2001 4:53:29 PM]

[Chapter 1] 1.6 Files

4 PREVIOUS HOME NEXT »
1.5 Interactive Shell Use BOOK INDEX 1.7 Input and Output

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_06.htm (7 of 7) [2/8/2001 4:53:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] 1.7 Input and Output

| Learning the KOrn Shell

4 PREVIOUS Chapter 1 NEXT B
Korn Shell Basics

1.7 Input and Output

The software field-really, any scientific field-tends to advance most quickly and impressively on those
few occasions when someone (i.e., not acommittee) comes up with an ideathat is small in concept yet
enormous in itsimplications. The standard input and output scheme of UNIX has to be on the short list of
such ideas, along with such classic innovations as the L1SP language, the relational data model, and
object-oriented programming.

The UNIX 1/0 scheme is based on two dazzlingly simpleideas. First, UNIX file 1/O takes the form of
arbitrarily long sequences of characters (bytes). In contrast, file systems of older vintage have more
complicated 1/O schemes (e.g., "block," "record," "card image," etc.). Second, everything on the system
that produces or accepts datais treated as afile; thisincludes hardware devices like disk drives and
terminals. Older systems treated every device differently. Both of these ideas have made systems
programmers' lives much more pleasant.

1.7.1 Standard I/O

By convention, each UNIX program has a single way of accepting input called standard input, asingle
way of producing output called standard output, and a single way of producing error messages called
standard error output, usually shortened to standard error. Of course, a program can have other input
and output sources as well, aswe will seein Chapter 7.

Standard 1/0O was the first scheme of its kind that was designed specifically for interactive users at
terminals, rather than the older batch style of use that usually involves decks of punch-cards. Since the
UNIX shell provides the user interface, it should come as no surprise that standard 1/0 was designed to
fit in very neatly with the shell.

All shells handle standard 1/O in basically the same way. Each program that you invoke has all three
standard 1/O channels set to your terminal or workstation, so that standard input is your keyboard, and
standard output and error are your screen or window. For example, the mail utility prints messages to you
on the standard output, and when you use it to send messages to other users, it accepts your input on the
standard input. This means that you view messages on your screen and type new ones in on your
keyboard.

When necessary, you can redirect input and output to come from or go to afile instead. If you want to
send the contents of a pre-existing file to someone as mail, you redirect mail's standard input so that it

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_07.htm (1 of 4) [2/8/2001 4:53:31 PM]

[Chapter 1] 1.7 Input and Output

reads from that file instead of your keyboard.

Y ou can also hook up programs into a pipeline, in which the standard output of one program feeds
directly into the standard input of another; for example, you could feed mail output directly to the lp
program so that messages are printed instead of shown on the screen.

This makes it possible to use UNIX utilities as building blocks for bigger programs. Many UNIX utility
programs are meant to be used in this way: they each perform a specific type of filtering operation on
input text. Although thisisn't atextbook on UNIX utilities, they are essential to productive shell use. The
more popular filtering utilities are listed in Table 1.5.

Table 1.5: Popular UNIX Data Filtering Utilities
Utility Purpose
cat Copy input to output
grep Search for stringsin the input
sort Sort linesin the input
cut Extract columns from input
sed Perform editing operations on input
tr Trandate characters in the input to other characters

Y ou may have used some of these before and noticed that they take names of input files as arguments
and produce output on standard output. Y ou may not know, however, that all of them (and most other
UNIX utilities) accept input from standard input if you omit the argument. [8]

[8] If aparticular UNIX utility doesn't accept standard input when you leave out the
filename argument, try using - as the argument.

For example, the most basic utility is cat, which simply copiesitsinput to its output. If you type cat with
afilename argument, it will print out the contents of that file on your screen. But if you invoke it with no
arguments, it will expect standard input and copy it to standard output. Try it: cat will wait for you to
type aline of text; when you type RETURN, cat will parrot the text back at you. To stop the process, hit
[CTRL-D] at the beginning of aline (see below for what this character means). Y ou will see*D when
you type [CTRL-D]. Here's what this should look like:

$ cat

Here is a |line of text.

Here is a |line of text.

This is another |ine of text.
This is another |ine of text.
D

$

1.7.2 1/O Redirection

cat is actually short for "catenate,” i.e., link together. It accepts multiple filename arguments and copies
them to the standard output. But let's pretend, for the moment, that cat and other utilities don't accept
filename arguments and accept only standard input. As we said above, the shell lets you redirect standard
Input so that it comes from afile. The notation command < filename does this; it sets things up so that

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_07.htm (2 of 4) [2/8/2001 4:53:31 PM]

[Chapter 1] 1.7 Input and Output
command takes standard input from afile instead of from aterminal.

For example, if you have afile called fred that contains some text, then cat < fred will print fred's
contents out onto your terminal. sort < fred will sort the linesin the fred file and print the result on your
terminal (remember: we're pretending that utilities don't take filename arguments).

Similarly, command > filename causes the command's standard output to be redirected to the named file.
The classic "canonica™ example of thisis date > now: the date command prints the current date and time
on the standard output; the above command savesit in afile called now.

Input and output redirectors can be combined. For example: the cp command is normally used to copy
files; if for some reason it didn't exist or was broken, you could use cat in this way:

$cat < filel > file2

Thiswould be similar to cp filel file2.

1.7.3 Pipelines

It is also possible to redirect the output of acommand into the standard input of another command
instead of afile. The construct that does thisis called the pipe, notated as |. A command line that includes
two or more commands connected with pipesis called a pipeline.

Pipes are very often used with the more command, which works just like cat except that it printsits
output screen by screen, pausing for the user to type SPACE (next screen), RETURN (next line), or other
commands. If you're in adirectory with alarge number of files and you want to see details about them, Is
-I | more will give you adetailed listing a screen at atime.

Pipelines can get very complex (see, for example, the Isd function in Chapter 4 or the pipeline version of
the C compiler driver in Chapter 7); they can also be combined with other I/O directors. To see a sorted

listing of thefilefred ascreen at atime, type sort < fred | more. To print it instead of viewing it on your
terminal, type sort <fred | Ip.

Here's amore complicated example. The file /etc/passwd stores information about users accounts on a
UNIX system. Each line in the file contains a user's login name, user ID number, encrypted password,
home directory, login shell, and other info. The first field of each line is the login name; fields are
separated by colons (:). A sample line might look like this:

billr:5Ac40BGER/ t ePk: 284: 93: Bil |l Rosenbl att:/home/billr:/bin/ksh

To get asorted listing of all users on the system, type:
$ cut -d: -f1 < /etc/passwd | sort

(Actualy, you can omit the <, since cut accepts input filename arguments.) The cut command extracts
thefirst field (-f1), where fields are separated by colons (-d:), from the input. The entire pipeline will
print alist that lookslike this:

al
billr
bob
chris

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_07.htm (3 of 4) [2/8/2001 4:53:31 PM]

[Chapter 1] 1.7 Input and Output

dave
ed
frank

If you want to send the list directly to the printer (instead of your screen), you can extend the pipeline
like this:

$ cut -d: -fl1 < /etc/passwd | sort | Ip

Now you should see how I/O directors and pipelines support the UNIX building block philosophy. The
notation is extremely terse and powerful. Just as important, the pipe concept eliminates the need for
messy temporary files to store output of commands beforeit is fed into other commands.

For example, to do the same sort of thing as the above command line on other operating systems
(assuming that equivalent utilities were available...), you would need three commands. On DEC's
VAX/NMS system, they might look like this:

$ cut [etc]passwd /d=":" /f=1 /out=tenpl
$ sort tenpl /out=tenp2
$ print temp2

After sufficient practice, you will find yourself routinely typing in powerful command pipelines that do
in one line what it would take several commands (and temporary files) in other operating systemsto
accomplish.

41 PREVIOUS HOME HEXT &
1.6 Files BOOK INDEX 1.8 Background Jobs

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_07.htm (4 of 4) [2/8/2001 4:53:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] 1.8 Background Jobs

| Learning the KOrn Shell

4 PREVIOUS Chapter 1 NEXT B
Korn Shell Basics

1.8 Background Jobs

Pipes are actually a special case of amore general feature: doing more than onething at atime. Thisisa
capability that many other commercial operating systems don't have, because of the rigid limits that they
tend to impose upon users. UNIX, on the other hand, was developed in a research lab and meant for
internal use, so it does relatively little to impose limits on the resources available to users on a
computer-as usual, leaning towards uncluttered simplicity rather than overcomplexity.

"Doing more than one thing at atime" means running more than one program at the same time. Y ou do
this when you invoke a pipeline; you can also do it by logging on to a UNIX system as many times
simultaneously as you wish. (If you try that on an IBM VM/CMS system, for example, you will get an
obnoxious "aready logged in" message.)

The shell also lets you run more than one command at atime during asingle login session. Normally,
when you type acommand and hit RETURN, the shell will let the command have control of your
terminal until it is done; you can't type in further commands until the first one is done. But if you want to
run a command that does not require user input and you want to do other things while the command is
running, put an ampersand (&) after the command.

Thisis called running the command in the background, and a command that runsin thisway is called a
background job; for contrast, ajob run the normal way is called aforeground job. When you start a
background job, you get your shell prompt back immediately, enabling you to enter other commands.

The most obvious use for background jobs is programs that take a long time to run, such as sort or
uncompress on large files. For example, assume you just got an enormous compressed file loaded into
your directory from magnetic tape. Compressed files are created by the compress utility, which packs
filesinto smaller amounts of space; they have names of the form filename.Z, where filename is the name
of the original uncompressed file. Let's say the fileis gcc.tar.Z, which is a compressed archive file that
contains well over 10 MB of source code files.

Type uncompress gcc.tar & (you can omit the .Z), and the system will start ajob in the background that
uncompresses the data "in place" and ends up with the file gcc.tar. Right after you type the command,
you will seealinelikethis:

[1] 4692

followed by your shell prompt, meaning that you can enter other commands. Those numbers give you
ways of referring to your background job; Chapter 8 explains them in detalil.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_08.htm (1 of 3) [2/8/2001 4:53:33 PM]

[Chapter 1] 1.8 Background Jobs

Y ou can check on background jobs with the command jobs. For each background job, jobs printsaline
similar to the above but with an indication of the job's status:

[1] + Running unconpress gcc.tar

When the job finishes, you will see a message like this right before your shell prompt:
[1] + Done unconpress gcc.tar

The message changes if your background job terminated with an error; again, see Chapter 8 for details.

1.8.1 Background 1/O

Jobs you put in the background should not do I/0 to your terminal. Just think about it for a moment and
you'll understand why.

By definition, a background job doesn't have control over your terminal. Among other things, this means
that only the foreground process (or, if none, the shell itself) is"listening" for input from your keyboard.
If a background job needs keyboard input, it will often just sit there doing nothing until you do
something about it (as described in Chapter 8).

If a background job produces screen output, the output will just appear on your screen. If you are running
ajob in the foreground that produces output too, then the output from the two jobs will be randomly (and
often annoyingly) interspersed.

If you want to run ajob in the background that expects standard input or produces standard output, the
obvious solution isto redirect it so that it comes from or goesto afile. The only exception isthat some
programs produce small, one-line messages (warnings, "done" messages, etc.); you may not mind if these
are interspersed with whatever other output you are seeing at a given time.

For example, the diff utility examines two files, whose names are given as arguments, and prints a
summary of their differences on the standard output. If the files are exactly the same, diff is silent.
Usually, you invoke diff expecting to see afew linesthat are different.

diff, like sort and compress, can take along time to run if the input files are very large. Suppose you have
two large files that are called warandpeace.wp and warandpeace.wp.old. The command diff

war andpeace.wp war andpeace.wp.old [9] reveals that the author decided to change the name "lvan" to
"Aleksandr” throughout the entire file-i.e., hundreds of differences, resulting in large amounts of outpui.

[9] You could use diff warandpeace* as a shorthand to save typing-as long as there are no
other files with names of that form. Remember that diff doesn't see the arguments until after
the shell has expanded the wildcards. Many people overlook this use of wildcards.

If you type diff warandpeace.wp war andpeace.wp.old &, then the system will spew lots and |ots of
output at you, which it will be very difficult to stop-even with the techniques explained in Chapter 7.

However, if you type:
$ di ff warandpeace. wp warandpeace.wp.old > wpdi ff &

then the differences will be saved in the file wpdiff for you to examine | ater.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_08.htm (2 of 3) [2/8/2001 4:53:33 PM]

[Chapter 1] 1.8 Background Jobs

1.8.2 Background Jobs and Priorities

Background jobs can save you alot of thumb-twiddling time (or can help you diet by eliminating excuses
to run to the candy machine). Just remember that such jobs eat up lots of system resources like memory
and the processor (CPU). Just because you're running several jobs at once doesn't mean that they will run
faster than they would if run sequentially-in fact, it's usually worse.

Every job on the system is assigned a priority, a number that tells the operating system how much
priority to give the job when it doles out resources (the higher the number, the lower the priority).
Foreground commands that you enter from the shell usually have the same, standard priority. But
background jobs, by default, have lower priority. [10]

[10] This feature was borrowed from the C shell; it is not present in most Bourne shells.

You'll find out in Chapter 3 how you can override this priority assignment so that background jobs run at
the same priority as foreground jobs. However, if you're on amultiuser system, then running lots of
background jobs may eat up more than your fair share of resources, and you should consider whether
having your job run as fast as possible is really more important than being a good citizen.

1.8.2.1 nice

Speaking of good citizenship, there is also a shell command that lets you lower the priority of any job:
the aptly-named nice. If you type nice command, where command can be a complex shell command line
with pipes, redirectors, etc., then the command will run at alower priority. Y ou can control just how
much lower by giving nice a numerical argument; consult the man page for details. [11]

[11] If you are a system administrator logged in asroot, then you can a'so use niceto raise a

job's priority.
41 PREVIOUS HOME NEXT »
1.7 Input and Output BOOK INDEX 1.9 Special Characters and

Quoting

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_08.htm (3 of 3) [2/8/2001 4:53:33 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 1] 1.9 Special Characters and Quoting

Learning the Korn Shell

4 PREVIOUS Chapter 1 HEXT B
Korn Shell Basics

1.9 Special Characters and Quoting

The characters <, >, |, and & are four examples of special charactersthat have particular meanings to the shell. The
wildcards we saw earlier in this chapter (*, ?, and [...]) are also special characters.

Table 1.6 givesindications of the meanings of all special characters within shell command lines only. Other characters
have special meanings in specific situations, such as the regular expressions and string-handling operators we'll seein
Chapter 3 and Chapter 4.

Table 1.6: Special Characters
Character Meaning See Chapter
~ Home directory 1
Isquo; Command substitution (archaic) 4
Comment 4
Variable expression
Background job
String wildcard
Start subshell
End subshell
Quote next character
Pipe
Start character-set wildcard
End character-set wildcard
Start code block
End code block
Shell command separator
Strong quote
" Weak quote
Input redirect
Output redirect
Pathname directory separator
Single-character wildcard

- A e — N N % Qog;:ﬁ:

RPRRPRRPRRPRRPROWONNRPRRPRRPROORREW

N TSV A

1.9.1 Quoting

Sometimes you will want to use special charactersliterally, i.e., without their special meanings. Thisis called quoting.
If you surround a string of characters with single quotes, you strip all characters within the quotes of any special
meaning they might have.

The most obvious situation where you might need to quote a string is with the print command, which just takes its

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_09.htm (1 of 5) [2/8/2001 4:53:36 PM]

[Chapter 1] 1.9 Special Characters and Quoting
arguments and prints them to the standard output. What is the point of this? Asyou will seein later chapters, the shell
does quite a bit of processing on command lines - most of which involves some of the specia characterslisted in Table
1.6. print isaway of making the result of that processing available on the standard output.

But what if we wanted to print the string, 2 * 3> 5isavalid inequality? Suppose you typed this:
$ print 2 * 3 >51is avalid inequality.

Y ou would get your shell prompt back, asif nothing happened! But then there would be a new file, with the name 5,
containing 2", the names of all filesin your current directory, and then the string 3 isa valid inequality. Make sure
you understand why. [12]

[12] This should also teach you something about the flexibility of placing I/O redirectors anywhere on the
command line-even in places where they don't seem to make sense.

However, if you type:
$ print '2* 3 >5is a
valid inequality."'

the result isthe string, taken literally. Y ou needn't quote the entire line, just the portion containing specia characters (or
characters you think might be special, if you just want to be sure):

$ print '2* 3>5 is avalidinequality.
This has exactly the same resullt.

Notice that Table 1.6 lists double quotes (") as weak quotes. A string in double quotes is subjected to some of the steps
the shell takes to process command lines, but not all. (In other words, it treats only some special characters as special.)
You'll seein later chapters why double quotes are sometimes preferable; Chapter 7 contains the most comprehensive
explanation of the shell's rules for quoting and other aspects of command-line processing. For now, though, you should
stick to single quotes.

1.9.2 Backslash-escaping

Another way to change the meaning of a character isto precede it with abackslash (\). Thisis called backslash-escaping
the character. In most cases, when you backslash-escape a character, you quote it. For example:

$ print 2* 3\>5is avalid inequality.

will produce the same results asif you surrounded the string with single quotes. To use aliteral backslash, just surround
it with quotes (" \ ') or, even better, backslash-escape it (\\).

Hereisamore practical example of quoting specia characters. A few UNIX commands take arguments that often
include wildcard characters, which need to be escaped so the shell doesn't process them first. The most common such
command is find, which searches for files throughout entire directory trees.

To usefind, you supply the root of the tree you want to search and arguments that describe the characteristics of the
file(s) you want to find. For example, the command find . -name string searches the directory tree whose root is your
current directory for files whose names match the string. (Other arguments allow you to search by the file's size, owner,
permissions, date of last access, etc.)

Y ou can use wildcards in the string, but you must quote them, so that the find command itself can match them against
names of filesin each directory it searches. The command find . -name'*.c' will match all fileswhose namesend in .c
anywhere in your current directory, subdirectories, sub-subdirectories, etc.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_09.htm (2 of 5) [2/8/2001 4:53:36 PM]

[Chapter 1] 1.9 Special Characters and Quoting

1.9.3 Quoting Quotation Marks

Y ou can also use a backslash to include double quotes within a quoted string. For example:
$ print \"2 * 3 \>5\" is avalid inequality.

produces the following output:
"2 * 3>5"1is avalid inequality.

However, thiswon't work with single quotes inside quoted expressions. For example, print '‘Bob\'s hair is brown" will
not give you Bob's hair isbrown. Y ou can get around this limitation in various ways. First, try eliminating the quotes:

$ print Bob\'s hair is brown

If no other characters are special (as is the case here), this works. Otherwise, you can use the following command:
$ print '"Bob'\''s hair is brown'

Thatis," \"' " (i.e., single quote, backslash, single quote, single quote) acts like a single quote within a quoted string.
Why? Thefirst' in'\'"' endsthe quoted string we started with (' Bob), the\' insertsaliteral single quote, and the
next' startsanother quoted string that ends with the word "brown™. If you understand, then you will have no trouble
resolving the other bewildering issues that arise from the shell's often cryptic syntax.

1.9.4 Continuing Lines

A related issue is how to continue the text of acommand beyond a single line on your terminal or workstation window.
The answer is conceptually simple: just quote the RETURN key. After all, RETURN isredlly just another character.

Y ou can do thisin two ways: by ending aline with a backslash, or by not closing a quote mark (i.e., by including
RETURN in aquoted string). If you use the backslash, there must be nothing between it and the end of the line-not even
spaces or TABs.

Whether you use a backslash or a single quote, you are telling the shell to ignore the special meaning of the RETURN
character. After you press RETURN, the shell understands that you haven't finished your command line (i.e., since you
haven't typed a"real" RETURN), so it responds with a secondary prompt, which is > by default, and waits for you to
finish the line. Y ou can continue a line as many times as you wish.

For example, if you want the shell to print the first sentence of Thomas Hardy's The Return of the Native, you can type
this:

$ print A Saturday afternoon in Novenber was approaching the \

> time of twlight, and the vast tract of unenclosed wild known \

> as Egdon Heath enbrowned itself nonent by nonent.

Or you can do it thisway:

$ print ' A Saturday afternoon in Novenber was approaching the
> time of twlight, and the vast tract of unenclosed wild known
> as Egdon Heat h enbrowned itself nonment by nonent.'’

1.9.5 Control Keys

Control keys-those that you type by holding down the CONTROL (or CTRL) key and hitting another key-are another
type of special character. These normally don't print anything on your screen, but the operating system interprets afew
of them as special commands. Y ou already know one of them: RETURN is actually the sasme as[CTRL-M] (try it and
see). Y ou have probably also used the BACKSPACE or DEL key to erase typos on your command line.

Actually, many control keys have functions that don't really concern you-yet you should know about them for future
reference and in case you type them by accident.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_09.htm (3 of 5) [2/8/2001 4:53:36 PM]

[Chapter 1] 1.9 Special Characters and Quoting

Perhaps the most difficult thing about control keysisthat they can differ from system to system. The usual arrangement
isshown in Table 1.7 which lists the control keys that al major modern versions of UNIX support. Note that [CTRL-\]

and [CTRL-|] (control-backslash and control-pipe) are the same character notated two different ways; the sameistrue
of DEL and [CTRL-?].

Y ou can use the stty command to find out what your settings are and change them if you wish; see Chapter 8 for details.

If the version of UNIX on your system is one of those that derive from BSD (such as SunOS and Ultrix), type stty all to
see your control-key settings; you will see something like this:

erase Kkill werase rprnt flush |next susp intr qui t stop eof
n? U AW "R O "V NZINY AC A ASIMQ D
Table 1.7: Control Keys

Control Key stty Name Function Description

CTRL-C intr Stop current command

CTRL-D eof End of input

[CTRL-\] or [CTRL-|] quit Stop current command, if [CTRL-C] doesn't work

CTRL-S stop Halt output to screen

CTRL-Q Restart output to screen

DEL or [CTRL-?| erase Erase last character

CTRL-U Kill Erase entire command line

CTRL-Z susp Suspend current command (see Chapter 8)

The ~X notation stands for CTRL-X. If your UNIX version derives from System |11 or System V (thisincludes Al X,
HP/UX, SCO, and Xenix), type stty -a; the resulting output will include this information:
intr Ac; quit = ”7|; erase = DEL; kill = "~u; eof = "d; eol =""; swch ="
susp Nz; dsusp <undef >;

The control key you will probably use most often is [CTRL-C], sometimes called the interrupt key. This stops-or tries
to stop-the command that is currently running. Y ou will want to use this when you enter acommand and find that it's
taking too long, you gave it the wrong arguments by mistake, you change your mind about wanting to run it, or
whatever.

Sometimes [CTRL-C] doesn't work; in that case, if you really want to stop ajob, try [CTRL-\]. But don't just type
CTRL-\; dwaystry [CTRL-C] first! Chapter 8 explains why in detail. For now, sufficeit to say that [CTRL-C] gives
the running job more of a chance to clean up before exiting, so that files and other resources are not left in funny states.

We've already seen an example of [CTRL-D]. When you are running a command that accepts standard input from your
keyboard, [CTRL-D] tells the process that your input is finished-as if the process were reading afile and it reached the
end of the file. mail isauutility in which this happens often. When you are typing in a message, you end by typing
[CTRL-D]. Thistells mail that your message is complete and ready to be sent. Most utilities that accept standard input
understand [CTRL-D] as the end-of-input character, though many such programs accept commands like g, quit, exit,
etc. The shell itself understands [CTRL-D] as the end-of-input character: as we saw earlier in this chapter, you can
normally end alogin session by typing [CTRL-D] at the shell prompt. Y ou are just telling the shell that its command
input is finished.

CTRL-S and [CTRL-Q] are called flow-control characters. They represent an antiquated way of stopping and restarting
the flow of output from one device to another (e.g., from the computer to your terminal) that was useful when the speed
of such output was low. They are rather obsolete in these days of high-speed local networks and dialup lines. In fact,
under the latter conditions, CTRL-S and [CTRL-Q] are basically a nuisance. The only thing you really need to know
about them is that if your screen output becomes "stuck,” then you may have hit [CTRL-S] by accident. Type
[CTRL-Q] to restart the output; any keys you may have hit in between will then take effect.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_09.htm (4 of 5) [2/8/2001 4:53:36 PM]

[Chapter 1] 1.9 Special Characters and Quoting

The final group of control characters gives you rudimentary ways to edit your command line. DEL acts as a backspace
key (in fact, some systems use the actual BACKSPACE or [CTRL-H] key as "erase" instead of DEL); [CTRL-U] erases
the entire line and lets you start over. Again, these are outmoded. [13] Instead of using these, go to the next chapter and
read about Korn shell's editing modes, which are among its most exciting features.

[13] Why are so many outmoded control keys still in use? They have nothing to do with the shell per se;
instead, they are recognized by the tty driver, an old and hoary part of the operating system's lower depths
that controls input and output to/from your terminal.

4 PREVIOUS HOME NEXT
1.8 Background Jobs BOOK INDEX 2. Command-line Editing

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMIMNG VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch01_09.htm (5 of 5) [2/8/2001 4:53:36 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 2] Command-line Editing

| Learning the KOrn Shell

4 PREVIOUS Chapter 2 MEXT

2. Command-line Editing

Contents:
Enabling Command-line Editing

The History File
Emacs Editing Mode
Vi Editing Mode
The fc Command
Finger Habits

It's always possible to make mistakes when you type at a computer keyboard, but perhaps even more so
when you are using a UNIX shell. UNIX shell syntax is powerful, yet terse, full of odd characters, and
not particularly mnemonic, making it possible to construct command lines that are as cryptic asthey are
complex. The Bourne and C shells exacerbate this situation by giving you extremely limited ways of
editing your command lines.

In particular, thereis no way to recall a previous command line so that you can fix a mistake. For
example, in Chapter 7, Input/Output and Command-line Processing we'll see complex command lines

like:

$ eval cat $srcnanme | ccom| as | optinize > $objnane

If you are an experienced Bourne shell user, undoubtedly you know the frustration of having to retype
lines like this. Y ou can use the backspace key to edit, but once you hit RETURN, it's gone forever!

The C shell provided a small improvement viaits history mechanism, which provides afew very
awkward ways of editing previous commands. But there are more than a few people who have wondered,
"Why can't | edit my UNIX command linesin the same way | can edit text with an editor?’

Thisis exactly what the Korn shell allows you to do. It has editing modes that allow you to edit
command lines with editing commands similar to those of the two most popular UNIX editors, vi and
emacs. [1] It aso provides a much-extended analog to the C shell history mechanism called fc (for fix
command) that, among other things, allows you to use your favorite editor directly for editing your
command lines.

[1] For some unknown reason, the documentation on emacs-mode has been removed from
ksh(1) manual pages on some UNIX systems. This does not mean, however, that the mode

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_01.htm (1 of 3) [2/8/2001 4:53:43 PM]

[Chapter 2] Command-line Editing
doesn't exist or doesn't work properly.

In this chapter, we will discuss features common to all of the Korn shell's command-history facilities;
then we will deal with each such facility in detail. If you use vi or emacs, you may wish to read only the
section on the emulation mode for the one you use. [2] If you use neither vi or emacs, but are interested
in learning one of the editing modes anyway, we suggest emacs-mode, because it is more of a natural
extension of the minimal editing capability you get with the bare shell.

[2] You will get the most out of these sectionsif you are already familiar with the editor(s)
In question. Good sources for more complete information on the editors are the O'Reilly &
Associates Nutshell Handbooks Learning the vi Editor, by Linda Lamb, and Learning GNU
Emacs, by Debra Cameron and Bill Rosenbl att.

We should mention up front that both emacs- and vi-modes introduce the potential for clashes with
control keys set up by the UNIX terminal interface. Recall the control keys shown in Chapter 1, Korn

Shell Basicsin Table 1.7 and the sample stty command output. The control keys shown there override
their functions in the editing modes.

During the rest of this chapter, we'll warn you when an editing command clashes with the default setting
of aterminal-interface control key. But if you (or your system administrator) choose to customize your
terminal interface, as we'll show in Chapter 8, Process Handling you're on your own as far as the editing

modes are concerned.

2.1 Enabling Command-line Editing

There are two ways of entering either editing mode. First, you can set your editing mode by using the
environment variable VISUAL. The Korn shell checksto seeif this variable ends with vi or macs. [3] An
excellent way to set VISUAL isto put aline like the following in your .profile or environment file:

[3] GNU Emacsis often installed as gmacs or gnumacs.
VI SUAL=$(whence emnacs)

or
VI SUAL=$(whence vi)

Asyou will find out in Chapter 3, Customizing Y our Environment and Chapter 4, Basic Shell
Programming the whence built-in command takes the name of another command as its argument and
writes the command's full pathname on the standard output; the form $(command) returns the standard
output generated by command as a string value. Thus, the line above finds out the full pathname of your
favorite editor and storesiit in the environment variable VISUAL. The advantage of thiscodeisthat itis
portable to other systems, which may have the executables for editors stored in different directories.

The second way of selecting an editing mode isto set the option explicitly with the set -0 command:
$ set -0 enacs

or
$ set -0 vi

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_01.htm (2 of 3) [2/8/2001 4:53:43 PM]

[Chapter 2] Command-line Editing

Y ou will find that the vi- and emacs-editing modes are good at emulating the basic commands of these
editors but not their advanced features; their main purpose isto let you transfer "finger habits" from your
favorite editor to the shell. fc is quite a powerful facility; it is mainly meant to supplant C shell history
and as an "escape hatch" for users of editors other than vi or emacs. Therefore the section on fc ismainly
recommended to C shell users and those who don't use either standard editor.

41 PREVIOUS HOME NEXT &
1.9 Specia Characters and BOOK INDEX 2.2 The History File
Quoting

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_01.htm (3 of 3) [2/8/2001 4:53:43 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 2] 2.2 The History File

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS Chapter 2 NEXT B
Command-line Editing

2.2 The History File

All of the Korn shell's command history facilities depend on afile that contains commands as you type
themin. Thisfileisnormally .sh_history in your home directory, but you can call it whatever you like by
setting the environment variable HISTFILE (see Chapter 3). When you run one of the Korn shell's

editing modes, you are actually running a mini-editor on your history file.

If you run more than one login session at atime (e.g., more than one xterm on an X Windows
workstation), you may find it advantageous to maintain a separate history file for each login session. Put
the following line in your .profile:

HI STFI LE=~/. hi st $$

This creates a history file whose name begins with .hist and ends with a number that is essentially
guaranteed to be unique; see Chapter 8 for an explanation of why .hist$$ generates a unique name.
Unfortunately, if you do this, you will end up with lots of stray history files hanging around. One way to
clean up the unneeded history filesisto clean up after yourself at logout time, as explained in Chapter 4.
Another way isto put an entry in your personal crontab file (see the man page crontab(1)) [4] that
removes all history files every day at some benign time like 2 A.M. The following line will do it:

[4] Some versions of UNIX do not support personal crontab files, though all versions
derived from AT& T System V should. If yours does not, you have two options: either use at
with a script that reschedules itself at the end, or ask your system administrator to put an
appropriate command in the system's crontab file.

0O2* * * rm~/.hist*
Another environment variable, HISTSIZE, can be used to determine the maximum number of commands

kept in the history file. The default is 128 (i.e., the 128 most recent commands), which should be more
than adequate.

41 PREVIOUS HOME NEXT %
2.1 Enabling Command-line BOOK INDEX 2.3 Emacs Editing Mode
Editing

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_02.htm [2/8/2001 4:53:54 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 2] 2.3 Emacs Editing Mode

| Learning the KOrn Shell

4 PREVIOUS Chapter 2 NEXT B
Command-line Editing

2.3 Emacs Editing Mode

If you are an emacs user, you will find it most useful to think of emacs editing mode as asimplified,
non-customizable [5] emacs with a single, one-line window. All of the basic commands are available for
cursor motion, cut and paste, and search.

[5] The public domain Korn shell and bash have emacs-modes that are customizable. See
Appendix A, Related Shells.

2.3.1 Basic Commands

Emacs-mode uses control keys for the most basic editing functions. If you aren't familiar with emacs, you
can think of these as extensions of the rudimentary "erase" character (usually backspace or DEL) that
UNIX provides through itsinterface to users terminals. In fact, emacs-mode figures out what your erase
character is and uses that as its delete-backward key. For the sake of consistency, we'll assume your erase
character is DEL from now on; if it is[CTRL-H] or something else, you will need to make a mental
substitution. The most basic control-key commands are shown in Table 2.1.

NOTE: (Important: remember that typing [CTRL-D] when your command line is empty
may log you off!)

The basic finger habits of emacs-mode are easy to learn, but they do require that you assimilate a couple
of concepts that are peculiar to the emacs editor.

Thefirst of theseisthe use of [CTRL-B] and [CTRL-F] for backward and forward cursor motion. These
keys have the advantage of being obvious mnemonics, but many people would rather use the arrow keys
that are on just about every keyboard nowadays.

Table 2.1: Basic emacs-mode Commands

Command Description

[CTRL-B] Move backward one character (without deleting)
[CTRL-F] Move forward one character

DEL Delete one character backward

[CTRL-D] Delete one character forward

[CTRL-Y] Retrieve ("yank") last item deleted

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_03.htm (1 of 8) [2/8/2001 4:53:59 PM]

[Chapter 2] 2.3 Emacs Editing Mode

Unfortunately, emacs-mode doesn't use the arrow keys, because the codes that they transmit to the
computer aren't completely standardized; emacs-mode was designed to work on the widest variety of
terminals possible without needing to do the kind of heavy-duty customization that the full emacs does.
Just about the only hardware requirement of emacs-mode is that the SPACE character overwrite the
character on top of which it istyped.

In emacs-mode, the point (sometimes also called dot) isan imaginary place just to the left of the
character the cursor is on. In the command descriptionsin Table 2.1, some say "forward" while others

say "backward." Think of forward as "to the right of point" and backward as "to the left of point.”

For example, let's say you type in aline and, instead of typing RETURN, you type [CTRL-B] and hold it
down so that it repeats. The cursor will move to the left until it is over the first character on theline, like
this:

$ fgrep -1 Bob < ~pete/wk/ nanes

Now the cursor ison the f, and point is at the beginning of theline, just before thef. If you type DEL,
nothing will happen because there are no characters to the left of point. However, if you press [CTRL-D]
(the "delete character forward" command) you will delete the first letter:

$ grep -1 Bob < ~pete/wk/ nanes

Point is still at the beginning of the line. If this were the desired command, you could hit RETURN now
and run it; you don't need to move the cursor back to the end of the line. However, if you wanted to, you
could type [CTRL-F] repeatedly to get there:

$ grep -1 Bob < ~pete/wk/ nanes

At this point, typing [CTRL-D] wouldn't do anything, but hitting DEL would erase the fina s. If you type
DEL and decide you want the s back again, just press [CTRL-Y] to yank it back. If you think this
exampleissilly, you'reright in this particular case, but bear in mind that [CTRL-Y] undoes the last
delete command of any kind, including the delete-word and delete-line commands that we will see
shortly. [6]

[6] emacs users should note that this usage of [CTRL-Y] is different from the full editor,
which doesn't save character deletes.

2.3.2 Word Commands

The basic commands are really al you need to get around a command line, but a set of more advanced
commands lets you do it with fewer keystrokes. These commands operate on words rather than single
characters, emacs-mode defines aword to be a sequence of one or more a phanumeric characters.

The word commands are shown in Table 2.2. Whereas the basic commands are all single characters,

these consist of two keystrokes, ESC followed by aletter. Y ou will notice that the command ESC X,
where X is any letter, often does for aword what [CTRL-] X does for a single character. The multiplicity
of choices for delete-word-backward arises from the fact that your erase character could be either
[CTRL-H] or DEL.

Table 2.2: Emacs-mode Word Commands

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_03.htm (2 of 8) [2/8/2001 4:53:59 PM]

[Chapter 2] 2.3 Emacs Editing Mode

Command Description

ESChb Move one word backward
ESC f Move one word forward
ESC DEL Delete one word backward
ESC h Delete one word backward
ESC [CTRL-H] Delete one word backward
ESCd Delete one word forward

To return to our example: if we type ESC b, point will move back aword. Since/ is not an aphanumeric
character, emacs-mode will stop there:

$ grep -1 Bob < ~pete/wk/ nanes

The cursor ison the n in names, and point is between the / and the n. Now let's say we want to change
the -1 option of this command from Bob to Dave. We need to move back on the command line, so we
type ESC b two more times. This gets us here:

$ grep -1 Bob < ~pete/wk/ nanes

If we type ESC b again, we end up at the beginning of Bob:
$ grep -I Bob < ~pete/wk/ nanes

Why? Remember that aword is defined as a sequence of aphanumeric characters only; therefore < is not
aword, and the next word in the backward direction is Bob. We are now in the right position to delete
Bob, so we type ESC d and get:

$ grep -1 _< ~petel/wk/nanes

Now we can type in the desired argument:
$ grep -1 Dave < ~pete/wk/ nanes

The [CTRL-Y] "undelete" command will retrieve an entire word, instead of a character, if the word was
the last thing deleted.

2.3.3 Line Commands

There are still more efficient ways of moving around a command line in emacs-mode. A few commands
deal with the entire line; they are shown in Table 2.3.

Table 2.3: Emacs-mode Line Commands
Command Description
[CTRL-A] Moveto beginning of line
[CTRL-E] Moveto end of line
[CTRL-K] Delete ("kill") forward to end of line
[CTRL-C] Capitalize character after point

[CTRL-C] is often the "interrupt" key that UNIX provides through itsinterface to your terminal. If thisis
the case, [CTRL-C] in emacs-mode will erase the entire ling, asif [CTRL-A] and [CTRL-K] were
pressed. On systems where the interrupt key is set to something else (often DEL), [CTRL-C] capitalizes

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_03.htm (3 of 8) [2/8/2001 4:53:59 PM]

[Chapter 2] 2.3 Emacs Editing Mode

the current character.

Using [CTRL-A], [CTRL-E], and [CTRL-K] should be straightforward. Remember that [CTRL-Y] will
aways undelete the last thing deleted; if you use [CTRL-K], that could be quite afew characters.

2.3.4 Moving Around in the History File

Now we know how to get around the command line efficiently and make changes. But that doesn't
address the original issue of recalling previous commands by accessing the history file. Emacs-mode has
several commands for doing this, summarized in Table 2.4.

Table 2.4: Emacs-mode Commands for
Moving Through the History File

Command Description
[CTRL-P] Moveto previousline
[CTRL-N] Moveto next line
[CTRL-R] Search backward
ESC < Moveto first line of history file
ESC > Moveto last line of history file

[CTRL-P] ishy far the one you will use most often-it'sthe "'l made a mistake, let me go back and fix it"
key. You can use it as many times as you wish to scroll back through the history file. If you want to get
back to the last command you entered, you can hold down [CTRL-N] until the Korn shell beeps at you,
or just type ESC >. Asan example, you hit RETURN to run the command above, but you get an error
message telling you that your option letter was incorrect. Y ou want to change it without retyping the
whole thing. First, you would type [CTRL-P] to recall the bad command. Y ou get it back with point at
the end:

$ grep -1 Dave < ~pete/wk/ nanes

After [CTRL-A], ESCT, two [CTRL-F]s, and [CTRL-D], you have:
$ grep -_Dave < ~pet e/ wk/ names

Y ou decide to try -sinstead of -1, so you type sand hit RETURN. Y ou get the same error message, so
you give up and look it up in the manual. Y ou find out that the command you want is fgrep-not
grep-after al. You sigh heavily and go back and find the fgrep command you typed in an hour ago. To
do this, you type [CTRL-R]; whatever was on the line will disappear and be replaced by *R. Then type
fgrep, and you will seethis:

$ "Rfgrep

Hit RETURN, and the shell will search backwards through the history file for aline containing "fgrep".
If it doesn't find one, it will beep. But if it finds one, it will display it, and your "current line" will be that
line (i.e., you will be somewhere in the middle of the history file, not at the end as usual):

$ fgrep -1 Bob < ~pete/wk/ nanes

Typing [CTRL-R] without an argument (i.e., just [CTRL-R] followed by RETURN) causes the shell to
repeat your last backward search. If you try the fgrep command by hitting RETURN again, two things

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_03.htm (4 of 8) [2/8/2001 4:53:59 PM]

[Chapter 2] 2.3 Emacs Editing Mode

will happen. First, of course, the command will run. Second, thisline will be entered into the history file
at the end, and your "current line" will be at the end as well. Y ou will no longer be in the middle of the
history file. [CTRL-R] may not work properly on some versions of UNIX, because it is also the default
setting for the "reprint" function of the terminal interface. (It works correctly on all the versions we've
tried.) If you press [CTRL-R] and see the command line reprinted, you may want to consider changing
the terminal interface's "reprint” key. See the section on stty in Chapter 8.

[CTRL-P] and [CTRL-R] are clearly the most important emacs-mode commands that deal with the
history file; you might use [CTRL-N] occasionally. The others are less useful, and we suspect that they
were mainly included for compatibility with the full emacs editor.

emacs users should also note that the full editor's "deluxe" search capabilities, such asincremental and
regular expression search, are not available in the Korn shell's emacs-mode - with one minor exception:
iIf you use [CTRL-R] and precede your search string with a”* (caret character), it will match only
commands that have the search string at the beginning of the line.

2.3.5 Filename Completion and Expansion

One of the most powerful (and typically underused) features of emacs-mode isits filename completion
facility, inspired by similar features in the full emacs editor, the C shell, and (originally) the old DEC
TOPS-20 operating system.

The premise behind filename completion is that when you need to type afilename, you should not have
to type more than is necessary to identify the file unambiguously. Thisis an excellent feature; thereis an
analogous one in vi-mode. We recommend that you get it under your fingers, since it will save you quite
abit of typing.

There are three commands in emacs-mode that relate to filename completion. The most important is ESC
ESC. [7] When you type in aword of text followed by ESC ESC, the Korn shell will attempt to complete
the name of afilein the current directory. Then one of four things can happen:

[7] emacs users can think of this as analogous to minibuffer completion with the TAB key.

1. If thereis no file whose name begins with the word, the shell will beep and nothing further will
happen.

2. If thereis exactly one way to complete the filename and the fileis aregular file, the shell will type
the rest of the filename and follow it with a space so you can type in more command arguments.

3. If thereis exactly one way to complete the filename and the file is a directory, the shell will
complete the filename and follow it with a slash.

4. |If there is more than one way to complete the filename, the shell will complete out to the longest
common prefix among the available choices.

For example, assume you have a directory with the files program.c and problem.c. Y ou want to compile
the first of these by typing cc program.c. You type cc pr followed by ESC ESC. Thisisnot an
unambiguous prefix, since the prefix "pro” is common to both filenames, so the shell only completes out
to cc pro. You need to type more letters to disambiguate, so you type g and hit ESC ESC again. Then the

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_03.htm (5 of 8) [2/8/2001 4:53:59 PM]

[Chapter 2] 2.3 Emacs Editing Mode
shell completes out to "cc program.c”, leaving the extra space for you to type in other filenames or
options.

A related command is ESC * , which expands the prefix to all possible choices. ESC * actslike the
standard * shell wildcard character except that it expands the choices for you to see and does not execute
the command. In the above example, if you type ESC * instead of ESC ESC, the shell will expand to "cc
problem.c program.c". If you type ESC = instead of ESC * , you will see a numbered list of expansions
printed to standard error.

2.3.6 Miscellaneous Commands

Several miscellaneous commands complete emacs editing mode; they are shown in Table 2.5.

Table 2.5: Emacs-mode Miscellaneous Commands

Command Description

[CTRL-J] Same as RETURN

[CTRL-L] Redisplay the line

[CTRL-M] Same as RETURN

[CTRL-O] Same as RETURN, then display next linein history file

[CTRL-T] Transpose two characters to the right of point and move point forward by one[8]
[CTRL-U] Repeat the following command four times

[CTRL-V] Print the version of the Korn shell

[CTRL-W] Delete ("wipe") all characters between point and "mark". "Mark" is discussed

later in this section.
[CTRL-X] [CTRL-X] Exchange point and mark

[CTRL-][Same as ESC (most keyboards)

[CTRL-]] x Search forward on current line for X, where x is any character
ESC Change word after point to all capital letters

ESC | Change word after point to all lowercase letters

ESCp Save all characters between point and mark asif they were deleted
ESC. Insert last word in previous command line after point

ESC Same as above

ESC CTRL-]x Search backward for x, where x is any character

ESC SPACE Set mark at point

ESC# Insert linein history file for future editing

[8] [CTRL-T] behaves dlightly differently if you put set -0 gmacs (instead of emacs) in your
Jprofile. In this case, it will transpose the two characters to the left of point, leaving point
unmoved. Thisisthe only difference between emacs and gmacs modes; the latter conforms
to the James Gosling version of the emacs editor (a.k.a. Unipress emacs). Note: neither of
these behaves like [CTRL-T] in GNU emacs, which transposes the characters on either side
of point.

Several of these commands may clash with terminal interface control keys on your system. [CTRL-U] is
the default key for "kill line" on most versions of UNIX. BSD-derived systems use [CTRL-V] and

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_03.htm (6 of 8) [2/8/2001 4:53:59 PM]

[Chapter 2] 2.3 Emacs Editing Mode

[CTRL-W)] as default settings for the "quote next character" and "word erase” terminal interface
functions respectively. [CTRL-V] is particularly confusing, sinceit is meant to override other terminal
interface control keys but has no effect on emacs-mode commands.

A few miscellaneous commands are worth discussing, even though they may not be among the most
useful emacs-mode commands.

[CTRL-O] isuseful for repeating a sequence of commands you have already entered. Just go back to the
first command in the sequence and press [CTRL-O] instead of RETURN. Thiswill execute the command
and bring up the next command in the history file. Press [CTRL-O] again to enter this command and
bring up the next one. Repeat this until you see the last command in the sequence; then just hit
RETURN.

[CTRL-U], if it doesn't perform the line-delete function of your system's terminal interface, repeats the
next command four times. If you type [CTRL-U] twice, the repeat factor becomes 16; for 3 [CTRL-U]s
it's 64; and so on. [CTRL-U] is possibly most useful when navigating through your history file. If you
want to recall acommand that you entered a while ago, you could type [CTRL-U] [CTRL-P] to go back
through the history file four lines at atime; you could think of this as a"fast rewind" through your
command history.

Another possible use of [CTRL-U] iswhen you want to go from one end of along pathname to the other.
Unlike vi-mode, emacs-mode does not have a concept of "word" that is flexible enough to distinguish
between pathnames and filename components. The emacs-mode word motion commands (ESC b and
ESC f) will move through a pathname only one component at a time, because emacs-mode treats the
slash as aword separator. Y ou can use [CTRL-U] to help get around this limitation. If you have aline
that looks like this:

$1s -1 [alvery/long/pathnane/fil ename

and you need to go back and change "very" to "really" you can type [CTRL-U] ESC b and your cursor
will end up here:

$ 1Is -1 /alvery/long/pathnane/fil enane

Then you can make the change:
$1s -1 /[alreally/long/pathnane/fil ename

Judicious use of [CTRL-U] can save you afew keystrokes, but considering the small amount of
information you manipulate when you edit command lines, it's probably not an incredibly vital feature.
Often, holding down a key to repeat it isjust as effective as [CTRL-U]. Because you'll probably have to
redefine the terminal driver's line erase key before you can use [CTRL-U], it's probably better to do
without [CTRL-U].

The mark mentioned in the explanation of [CTRL-W] should be familiar to emacs editor users, but its
function in emacs-mode is a subset of that in the full editor. Emacs-mode keeps track of the place at
which the last delete was performed (whether a delete character, word, line, or whatever); this placeis
called the mark. If nothing has been deleted on the current line, mark defaults to the beginning of the
line. Y ou can also set the mark to where your cursor is by typing ESC SPACE. [CTRL-X] [CTRL-X]
([CTRL-X] hit twice) causes the Korn shell to swap point and mark, i.e., to move your cursor to where
the mark is and reset mark to where your cursor was before you typed [CTRL-X] [CTRL-X].

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_03.htm (7 of 8) [2/8/2001 4:53:59 PM]

[Chapter 2] 2.3 Emacs Editing Mode

The mark concept is not extremely useful because of the small amount of "distance” to travel in
command lines. But if you ever have to make a series of changes in the same placein aline, [CTRL-X]
[CTRL-X] will take you back there. In the previous example, if you wanted to change "really"” to
“monumentally", one way would be to type [CTRL-X] [CTRL-X] to return to the beginning of "really":

$1s -1 /alreally/long/pathnane/fil enane

Then you could type ESC d to delete "really" and make the change. Of course, you could do this faster
by typing ESC DEL instead of [CTRL-X] [CTRL-X] and ESC d.

Of the case-changing commands, ESC | is useful when you hit the CAPS LOCK key by accident and
don't notice it immediately. Since all-caps words aren't used too often in the UNIX world, you may not
use ESC c very often.

If it seems like there are too many synonyms for RETURN, bear in mind that [CTRL-M] is actually the
same (ASCII) character as RETURN, and that [CTRL-J] is actually the same as LINEFEED, which
UNIX usualy acceptsin lieu of RETURN anyway.

ESC. and ESC _ are useful if you want to run several commands on a given file. The usual UNIX
convention is that afilename is the last argument to a command. Therefore you can save typing by just
entering each command followed by SPACE and then typing ESC . or ESC . For example, say you
want to examine afile using more, so you type:

$ nore nyfil ew thaveryl ongnane

Then you decide you want to print it, so you type the print command Ip. Y ou can avoid typing the very
long name by typing Ip followed by a space and then ESC . or ESC _; the Korn shell will insert
myfilewithaverylongname for you.

2.3.7 Keyboard Shortcuts with Aliases

Finally, emacs-mode has an interesting way of defining keyboard shortcuts for commonly used
commands by interacting with the Korn shell's alias facility, as described in the next chapter. Here's how
it works: if you define an alias called _x, where x is aletter, then emacs-mode will expand the alias when
you hit ESC x. The expansion will appear on your screen, but the Korn shell will not run the command,
leaving you free to type more or just hit RETURN to run it. We don't find this particularly useful, since
you can just define an alias in the normal way instead.

41 PREVIOUS HOME NEXT »
2.2 The History File BOOK INDEX 2.4 Vi Editing Mode

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_03.htm (8 of 8) [2/8/2001 4:53:59 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 2] 2.4 Vi Editing Mode

| Learning the KOrn Shell

4 PREVIOUS Chapter 2 NEXT B
Command-line Editing

2.4 Vi Editing Mode

Like emacs-mode, vi-mode essentially creates a one-line editing window into the history file. Vi-mode is
popular because vi is the most standard UNIX editor. But the function for which vi was designed, writing
C programs, has different editing requirements from those of command interpreters. As aresult, although
it is possible to do complex thingsin vi with relatively few keystrokes, the relatively ssmple things you
need to do in the Korn shell sometimes take too many keystrokes.

Like vi, vi-mode has two modes of its own: input and control mode. The former isfor typing commands
(asin normal Korn shell use); the latter isfor moving around the command line and the history file.
When you are in input mode, you can type commands in and hit RETURN to run them. In addition, you
have minimal editing capabilities via control characters, which are summarized in Table 2.6.

Table 2.6: Editing Commandsin vi Input Mode

Command Description

DEL Delete previous character

[CTRL-W] Erase previous word (i.e., erase until blank)
[CTRL-V] "Quote" the next character

ESC Enter control mode (see below)

Note that at least some of these-depending on which version of UNIX you have-are the same as the
editing commands provided by UNIX through itsterminal interface. [9] Vi-mode will use your "erase"
character as the "delete previous character” key; usually it is set to DEL or [CTRL-H] (BACKSPACE).
[CTRL-V] will cause the next character you type to appear in the command lineasis; i.e, if itisan
editing command (or an otherwise special character like [CTRL-D]), it will be stripped of its special
meaning.

[9] In particular, versions of UNIX derived from 4.x BSD have all of these commands built

in.
Under normal circumstances, you just stay in input mode. But if you want to go back and make changes

to your command line, or if you want to recall previous commands, you need to go into control mode. To
do this, hit ESC.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (1 of 9) [2/8/2001 4:54:04 PM]

[Chapter 2] 2.4 Vi Editing Mode

2.4.1 Simple Control Mode Commands

A full range of vi editing commands are available to you in control mode. The simplest of these move
you around the command line and are summarized in Table 2.7. Vi-mode contains two "word" concepts.
The simplest is any sequence of non-blank characters; we'll call this a non-blank word. The other is any
sequence of only aphanumeric characters (letters and digits) or any sequence of only non-alphanumeric
characters; welll just call thisaword. [10]

[10] Neither of these definitionsis the same as the definition of aword in emacs-mode.

Table 2.7: Basic vi Control Mode Commands

Command Description

Move |eft one character

Move right one character

Move right one word

Move left one word

Move to beginning of next non-blank word
Move to beginning of preceding non-blank word
Move to end of current word

Move to end of current non-blank word
Move to beginning of line

Moveto first non-blank character in line
Moveto end of line

>omo wso s T

All of these commands except the last three can be preceded by a number that acts as arepeat count. The
last two will be familiar to users of UNIX utilities (such as grep) that use regular expressions, as well as
to vi users.

Time for afew examples. Let's say you typein thisline and, before you hit RETURN, decide you want
to changeit:

$ fgrep -1 Bob < ~pete/wk/ nanes
As shown, your cursor is beyond the last character of the line. First, type ESC to enter control mode;

your cursor will move back one space so that it ison the s. Then if you type h, your cursor will move
back to the e. If you type 3h from the e, you will end up at the n.

Now we will see the difference between the two "word" concepts. Go back to the end of the line by
typing $. If you type b, the word in question is "names", and the cursor will end up on the n:

$ fgrep -1 Bob < ~pete/wk/nanes
If you type b again, the next word is the slash (it's a"sequence" of non-aphanumeric characters), so the
cursor ends up over it:

$ fgrep -1 Bob < ~pete/wk/ nanes

However, if you typed B instead of b, the non-blank word would be the entire pathname, and the cursor
would end up at the beginning of it-that is, over the tilde:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (2 of 9) [2/8/2001 4:54:04 PM]

[Chapter 2] 2.4 Vi Editing Mode

$ fgrep -1 Bob < ~pete/wk/nanes

Y ou would have had to type b four times-or just 4b-to get the same effect, since there are four "words" in
the part of the pathname to the left of /names: wk, slash, pete, and the leading tilde.

At this point, w and W do the opposite: typing w gets you over the p, since the tildeis a"word", while
typing W brings you to the end of the line. But whereas w and W take you to the beginning of the next
word, e and E take you to the end of the current word. Thus, if you type w with the cursor on thetilde,
you get to:

$ fgrep -1 Bob < ~pete/wk/ nanes

Then typing e gets you to
$ fgrep -1 Bob < ~pete/wk/ nanes

And typing an additional w gets you to:
$ fgrep -1 Bob < ~pete/wk/nanes

On the other hand, E gets you to the end of the current non-blank word-in this case, the end of the line.
(If you find these commands non-mnemonic, you're right. The only way to assimilate them is through
lots of practice.)

2.4.2 Entering and Changing Text

Now that you know how to enter control mode and move around on the command line, you need to know
how to get back into input mode so you can make changes and type in additional commands. A humber
of commands take you from control mode into input mode; they are listed in Table 2.8 All of them enter

input mode a bit differently.

Table 2.8: Commands for Entering vi Input Mode

Command Description

' Text inserted before current character (insert)
Text inserted after current character (append)
Text inserted at beginning of line

Text inserted at end of line

Text overwrites existing text

o> - 9 =

Most likely, you will use either i or a consistently, and you may use R occasionally. | and A are
abbreviations for Oi and $a respectively. To illustrate the difference between i, a, and R, say we start out
with our example line:

$ fgrep -1 Bob < ~pete/wk/nanes

If you typei followed by end, you will get:
$ fgrep -1 Bob < ~pete/wkend/ nanes

That is, the cursor will always appear to be under the / before names. But if you type a instead of i, you
will notice the cursor move one space to the right. Then if you type nick, you will get:

$ fgrep -1 Bob < ~pete/wk/ni cknanes

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (3 of 9) [2/8/2001 4:54:04 PM]

[Chapter 2] 2.4 Vi Editing Mode

That is, the cursor will always be just after the last character you typed, until you type ESC to end your
input. Finally, if you go back to the n in names, type R instead, and then type task, you will see:

$ fgrep -1 Bob < ~pete/wk/tasks
In other words, you will be replacing (hence R) instead of inserting text.

Why capital R instead of lowercase r ? The latter is a dlightly different command, which replaces only
one character and does not enter input mode. With r, the next single character overwrites the character
under the cursor. So if we start with the original command line and type r followed by a semicolon, we
get:

$ fgrep -1 Bob < ~pete/wk;nanes
If you precede r with anumber N, it will allow you to replace the next N existing characters on the

line-but still not enter input mode. Lowercaser is effective for fixing erroneous option letters, 1/0
redirection characters, punctuation, etc.

2.4.3 Deletion Commands

Now that you know how to enter commands and move around the line, you need to know how to delete.
The basic deletion command in vi-mode is d followed by one other letter. This letter determines what the
unit and direction of deletion is, and it corresponds to a motion command, as listed previously in Table

2.7. Table 2.9 shows some commonly-used examples.

Table 2.9: Some vi-mode Del etion Commands
Command Description

dh Delete one character backwards

dl Delete one character forwards

db Delete one word backwards

dw Delete one word forwards

dB Delete one non-blank word backwards
dw Delete one non-blank word forwards
d$ Deleteto end of line

do Delete to beginning of line

These commands have a few variations and abbreviations. If you use a c instead of d, you will enter
input mode after it does the deletion. Y ou can supply a numeric repeat count either before or after the d
(or c). Table 2.10 lists the available abbreviations.

Most people tend to use D to delete to end of line, dd to delete an entire line, and x (as "backspace") to
delete single characters. If you aren't ahardcore vi user, you may find it difficult to get some of the more
esoteric deletion commands under your fingers.

Table 2.10:; Abbreviations for vi-mode Delete Commands

Command Description
D Equivalent to d$ (delete to end of line)
dd Equivaent to 0d$ (delete entire line)

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (4 of 9) [2/8/2001 4:54:04 PM]

[Chapter 2] 2.4 Vi Editing Mode

C Equivalent to c$ (delete to end of line, enter input mode)
cc Equivalent to Oc$ (delete entire line, enter input mode)
X Equivalent to dh (delete character backwards)

X Equivalent to dl (delete character forwards)

Every good editor provides "un-delete" commands as well as delete commands, and vi-mode is no
exception. Vi-mode maintains a delete buffer that stores all of the modifications to text on the current line
only (note that thisis different from the full vi editor). The command u undoes the last text modification
command only, while U undoes all such commands on the current line. So if you make one change but
want to undo it, type u; but if you make lots of changes and find that the original is closer to what you
want, you can undo everything by typing U. A related command is. (dot), which redoes the last text
modification command.

Thereisalso away to save text in the delete buffer without having deleted it in the first place: just typein
a delete command but usey ("yank") instead of d. This does not modify anything, but it allows you to
retrieve the yanked text as many times as you like later on. The command to retrieve yanked text is p,
which inserts the text on the current line to the left of the cursor. They and p commands are powerful but
far better suited to "real vi" tasks like making global changes to documents or programs than to shell
commands, so we doubt you'll use them very often.

2.4.4 Moving Around in the History File

The next group of vi control mode commands we will cover allows you to move around in and search
your history file. Thisisthe al-important functionality that lets you go back and fix an erroneous
command without retyping the entire line. These commands are summarized in Table 2.11.

Table 2.11: Vi Control Mode Commands for Searching the

History File
Command Description
k or - Move backward one line
j or+ Move forward one line
G Move to line given by repeat count

?string Search backward for string

/string Search forward for string

n Repeat search in same direction as previous

N Repeat search in opposite direction of previous

Thefirst three can be preceded by repeat counts (e.g., 3k or 3- moves back three linesin the history file).

If you aren't familiar with vi and its cultural history, you may be wondering at the wisdom of choosing
such seemingly poor mnemonicsash, j, k, and | for backward character, forward line, backward line,
and forward character, respectively. Well, there actually is arationale for the choices-other than that they
are all together on the standard keyboard.

Bill Joy originally developed vi to run on Lear-Siegler ADM-3aterminals, which were the first popular
models with addressable cursors (meaning that a program could send an ADM-3a a command to move

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (5 of 9) [2/8/2001 4:54:04 PM]

[Chapter 2] 2.4 Vi Editing Mode

the cursor to a specified location on the screen). The ADM-3dsh, j, k, and | keys had little arrows on
them, so Joy decided to use those keys for appropriate commands in vi.

Another (partial) rationale for the command choices isthat [CTRL-H] isthe traditional backspace key,
and [CTRL-J] denotes linefeed.

Perhaps + and - are better mnemonics than | and k, but the latter have the advantage of being more easily
accessible to touch typists. In either case, these commands are the most basic ones for moving around the
history file. To see how they work, let's take the same examples we used when discussing emacs-mode
above.

Y ou enter the example command (RETURN works in both input and control modes, as does LINEFEED
or [CTRL-J]):

$ fgrep -1 Bob < ~pete/wk/ nanes

but you get an error message saying that your option letter was wrong. Y ou want to changeiit to -s
without having to retype the entire command. Assuming you are in control mode (you may have to type
ESC to put yourself in control mode), you type k or - to get the command back. Y our cursor will be at
the beginning of theline:

$ fgrep -1 Bob < ~pete/wk/ nanes

Typew to get to the - , then | to get to the l. Now you can replace it by typing rs; pressRETURN to run
the command.

Now let's say you get another error message, and you finally decide to look at the manual page for the
fgrep command. Y ou remember having done this awhile ago today, so rather than typing in the entire
man(1) command, you search for the last one you used. To do this, type ESC to enter control mode (if
you are aready in control mode, thiswill have no effect), then type/ followed by man or ma. To be on
the safe side, you can also type *ma; the ® means match only lines that begin with ma. [11]

[11] Fans of vi and search utilities like grep should note that caret (*) for beginning-of-line
is the only context operator vi-mode provides for search strings.

But typing /*ma doesn't give you what you want: instead, the shell gives you:
$ make myprogram

To search for "man" again, you can type n, which does another backward search using the last search
string. Typing/ again without an argument and hitting RETURN will accomplish the same thing.

The G command retrieves the command whose number is the same as the numeric prefix argument you
supply. G depends on the command numbering scheme described in Chapter 3 in the section "Prompting

Variables." Without a prefix argument, it goes to command number 1. This may be useful to former C
shell users who still want to use command numbers.

2.4.5 Character-finding Commands

There are some additional motion commands in vi-mode, although they are less useful than the ones we
saw earlier in the chapter. These commands allow you to move to the position of a particular character in

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (6 of 9) [2/8/2001 4:54:04 PM]

[Chapter 2] 2.4 Vi Editing Mode
the line. They are summarized in Table 2.12, in which x denotes any character.

All of these commands can be preceded by arepeat count.

Table 2.12: Vi-mode Character-finding Commands
Command Description

fx Move right to next occurrence of x

Fx Move left to previous occurrence of X

tx Move right to next occurrence of X, then back one space

TX Move left to previous occurrence of X, then forward one space

; Redo last character-finding command
: Redo last character-finding command in opposite direction

Starting with the previous example: let's say you want to change Bob to Rob. Make sure that you're at the
end of the line (or, in any case, to the left of the B in Bob); then, if you type FB, your cursor will moveto
the B:

$ fgrep -1 Bob < ~pete/wk/ nanes

At this point, you could type r to replace the B with R. But let's say you wanted to change Bob to Blaob.

Y ou would need to move one space to the right of the B. Of course, you could just typel. But, given that
you're somewhere to the right of Bab, the fastest way to move to the o would be to type TB instead of FB
followed by I.

As an example of how the repeat count can be used with character-finding commands, let's say you want
to change the filename from names to namfile. In this case, assuming your cursor is still on the B, you
need to get to the third e to the right, so you can type 3te, followed by | to put the cursor back ontheein
names.

The character-finding commands also have associated delete commands. Read the command definitions
in the previous table and mentally substitute "delete” for move. You'll get what happens when you
precede the given character-finding command with ad. The deletion includes the character given as
argument. For example, assume that your cursor is under the n in names:

$ fgrep -1 Bob < ~pete/wk/ nanes

If you want to change names to aides, one possibility isto type dfm. This means "delete right to next
occurrence of m," i.e., delete "nam.” Then you can typei (to enter input mode) and then "aid" to
complete the change.

Onefina command rounds out the vi control mode commands for getting around on the current line: you
can use the pipe character (]) for moving to a specific column, whose number is given by a numeric
prefix argument. Column counts start at 1; count only your input, not the space taken up by the prompt
string. The default repeat count is 1, of course, which means that typing | by itself is equivalent to O (see
Table 2.7).

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (7 of 9) [2/8/2001 4:54:04 PM]

[Chapter 2] 2.4 Vi Editing Mode

2.4.6 Filename Completion

Although the character-finding commands and | are not particularly useful, vi-mode provides one
additional feature that we think you will use quite often: filename completion. This feature is not part of
the real vi editor, and it was undoubtedly inspired by similar featuresin emacs and, originaly, in the
TOPS-20 operating system for DEC mainframes.

The rationale behind filename completion is simple: you should have to type only as much of afilename
asis necessary to distinguish it from other filenames in the same directory. Backslash (\) is the command
that tells the Korn shell to do filename completion in vi-mode. If you type in aword, type ESC to enter
control mode, and then type\, one of four things will happen; they are the same as for ESC ESC in
emacs-mode:

1. If thereisno file whose name begins with the word, the shell will beep and nothing further will
happen.

2. If thereis exactly one way to complete the filename and the fileisaregular file, the shell will type
the rest of the filename, followed by a space in case you want to type in more command
arguments.

3. If thereis exactly one way to complete the filename and the file is a directory, the shell will
complete the filename, followed by a slash.

4. If there is more than one way to complete the filename, the shell will complete out to the longest
common prefix among the available choices.

A related command is*, which isthe same as ESC * in emacs-mode as described earlier in this chapter.
[12] It behaves similarly to ESC \, but if there is more than one completion possibility (number four in
the list above), it lists all of them and allows you to type further. Thus, it resemblesthe * shell wildcard
character.

[12] If you count the ESC needed to get out of input mode, the vi-mode command is
identical to emacs-mode.

Less useful isthe command =, which does the same kind of filename expansion asthe * shell wildcard,
but in adifferent way. Instead of expanding the filenames onto the command line, it printsthemin a
numbered list with one filename on each line. Then it gives you your shell prompt back and retypes
whatever was on your command line before you typed =. For example, if the filesin your directory
include program.c and problem.c, and you type pro followed by ESC and then =, you will seethis:

$ cc pro
1) problemc
2) programc

2.4.7 Miscellaneous Commands

Several miscellaneous commands round out vi-mode; some of them are quite esoteric. They arelisted in
Table2.13.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (8 of 9) [2/8/2001 4:54:04 PM]

[Chapter 2] 2.4 Vi Editing Mode
Table 2.13: Miscellaneous vi-mode Commands

Command Description

~ Invert ("twiddle") case of current character(s).

_ Append last word of previous command, enter input mode.

% Run the fc command on the current line (actually, run the command fc -e
HVISUAL:-${EDITOR:-vi}}); usualy this means run the full vi on the current line.

CTRL-L Start anew line and redraw the current line on it; good for when your screen becomes

garbled.

Prepend # (comment character) to the line and send it to the history file;[13] useful for
saving a command to be executed later without having to retypeit.

@x Insert expansion of alias X (see below).

[13] Thelineisaso "executed" by the shell. However, # is the shell's comment character, so
the shell ignoresiit.

Thefirst of these can be preceded by arepeat count. A repeat count of n preceding the ~ changes the case
of the next n characters. [14] The cursor will advance accordingly.

[14] This, in our opinion, isadesign flaw in the vi editor that the Korn shell authors might
have corrected. L etting the user append a motion command to ~ and having it behave
analogously to d or y would have been much more useful; that way, a word could be
case-twiddled with only two keystrokes.

A repeat count preceding _ causes the n-th word in the previous command to be inserted in the current
line; without the count, the last word is used. Omitting the repeat count is useful because afilenameis
usually the last thing on a UNIX command line, and because users often run several commandsin arow
on the same file. With this feature, you can type al of the commands (except the first) followed by ESC
_, and the shell will insert the filename.

Finally, the command @ allows you to create keyboard shortcuts by interacting with the shell's alias
facility (see Chapter 3). If you create an alias called _x, where x is aletter, then the shell will expand the

alias on the current line (but not run it) if you type @ followed by x. Aswith the similar facility in
emacs-mode, we don't find this particularly useful.

41 PREVIOUS HOME NEXT »
2.3 Emacs Editing Mode BOOK INDEX 2.5 The fc Command

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_04.htm (9 of 9) [2/8/2001 4:54:04 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 2] 2.5 The fc Command

| Learning the KOrn Shell

4 PREVIOUS Chapter 2 NEXT B
Command-line Editing

2.5 The fc Command

fcisashel built-in command that provides a superset of the C shell history mechanism. Y ou can use it
to examine the most recent commands you entered, to edit one or more commands with your favorite
"real" editor, and to run old commands with changes without having to type the entire command in again.

WeEel'll ook at each of these uses.

The -I option to fc lists previous commands. It takes arguments that refer to commands in the history file.
Arguments can be numbers or alphanumeric strings, numbers refer to the commands in the history file,
while strings refer to the most recent command beginning with the string. fc treats arguments in a rather

complex way:
« If you give two arguments, they serve asthe first and last commands to be shown.
« If you specify one number argument, only the command with that number is shown.

« Withasingle string argument, it searches for the most recent command starting with that string
and shows you everything from that command to the most recent command.

« If you specify no arguments, you will see the last 16 commands you entered. Thus, fc -l by itself is
equivalent to the C shell history command, and indeed the Korn shell defines a built-in alias

history as:
alias history=fc -1

Asyou will find out in Chapter 3, this means that you can type history and the Korn shell will run
the command fc -I.

A few examples should make these options clearer. Let's say you logged in and entered these commands:

s -1

nore nyfile

vi nyfile

we -1 nyfile

pr nyfile | Ip -h
If you type fc -l (or history) with no arguments, you will see the above list with command numbers, as
in:

1 | s -1

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_05.htm (1 of 3) [2/8/2001 4:54:06 PM]

[Chapter 2] 2.5 The fc Command

2 nore nyfile

3 vi nyfile

4 we -1 nyfile

5 pr nyfile | Ip -h

The option -n suppresses the line numbers. If you want to see only commands 2 through 4, typefc -l 2 4.
If you want to see only the vi command, type fc -I 3. To see everything from the vi command up to the
present, type fc -1 v. Finally, if you want to see commands between more and wc, you can typefc -l m w,
fc-l m 4, fc-l 24, etc.

The -l option to fc is not particularly useful, except as a quick way of remembering what commands you
typed recently. Use the history alias if you are an experienced C shell user.

The other important option to fc is-e for "edit." Thisis useful as an "escape hatch” from vi- and
emacs-modes if you aren't used to either of those editors. Y ou can specify the pathname of your favorite
editor and edit commands from your history file; then when you have made the changes, the shell will
actually execute the new lines.

Let'ssay your favorite editor is alittle home-brew gem called zed. Y ou could edit your commands by
typing:
$ fc -e /usr/local/bin/zed

Thisseems like alot of work just to fix atypo in your previous command; fortunately, there is a better
way. Y ou can set the environment variable FCEDIT to the pathname of the editor you want fc to use. If
you put alinein your .profile or environment file saying:

FCEDI T=/ usr /1 ocal / bi n/ zed

you will get zed when you invoke fc. FCEDIT defaultsto the old line editor ed, so that the overall default
isalso ed.

fcisusually used to fix arecent command. Therefore it handles arguments a bit differently than it does
for the fc -l variation above:

« With no arguments, fc loads the editor with the most recent command.
« With anumeric argument, fc loads the editor with the command with that number.
« With astring argument, fc loads the most recent command starting with that string.

« With two argumentsto fc, the arguments specify the beginning and end of a range of commands,
as above.

Remember that fc actually runs the command(s) after you edit them. Therefore the last-named choice can
be dangerous. The Korn shell will attempt to execute all commands in the range you specify when you
exit your editor. If you have typed in any multiline constructs (like those we will cover in Chapter 5,
Flow Control) the results could be even more dangerous. Although these might seem like valid ways of
generating "instant shell programs,” afar better strategy would be to direct the output of fc -1 with the
same argumentsto afile; then edit that file and execute the commands when you're satisfied with them:

$ fc -1 cp > | astconmands

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_05.htm (2 of 3) [2/8/2001 4:54:06 PM]

[Chapter 2] 2.5 The fc Command

$ vi | astcommands
$. | ast commands

In this case, the shell will not try to execute the file when you |leave the editor!

Thereisonefinal usefor fc. If you specify the editor - (i.e., type fc -e -), the Korn shell will skip the
editing part and just run the command(s) specified by the argument(s). Why is this useful ? For one thing,
just typing fc -e - causes the previous command to repeat, just like the C shell ! command. The Korn
shell providesthe built-in aliasr for this, so that if you typer and hit RETURN, you will repeat the last
command.

Thisform of fc alows yet another type of argument, of the form old=new, meaning "change occurrences
of old in the specified previous command to new and then run it." For example, if you wanted to run a
complex command like the following on two sets of files:

$ tbl ch2.tbl | nroff -nS -Tepson > ch2. out
you can enter the command and then type fc -e - 2=3. (You could also use the alias, r 2=3.) This
command would then run:

tbl ch3.tbl | nroff -nS -Tepson > ch3. out

41 PREVIOUS HOME NEXT »
2.4 Vi Editing Mode BOOK INDEX 2.6 Finger Habits

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_05.htm (3 of 3) [2/8/2001 4:54:06 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 2] 2.6 Finger Habits

| Learning the KOrn Shell

4 PREVIOUS Chapter 2 NEXT B
Command-line Editing

2.6 Finger Habits

To paraphrase the old adage, old finger habits die hard. In fact, that is the primary reason for the choices
of vi and emacs for the Korn shell's editing modes. If you are an experienced user of one of these editors,
by al means use the corresponding Korn shell editing mode. If you are avi wizard, you probably know
how to navigate between any two points on aline in three keystrokes or less.

But if you're not, you should seriously consider adopting emacs-mode finger habits. Because it is based
on control keys, just like the minimal editing support you may have already used with the Bourne or C
shell, you will find emacs-mode easier to assimilate. Although the full emacs is an extremely powerful
editor, its command structure lends itself very well to small subsetting: there are several "mini-emacs"
style editors floating around for UNIX, MS-DOS, and other systems,

The same cannot be said for vi, because its command structure is really meant for use in a full-screen
editor. vi is quite powerful too, initsway, but its power becomes evident only when it is used for
purposes similar to that for which it was designed: editing source code in C and LISP. A vi user has the
power to move mountains in few keystrokes-but at the cost of doing anything meaningful in very few
keystrokes. Unfortunately, the latter is most desired in a command interpreter, especially nowadays when
users are spending more time within applications and |less time working with the shell.

Both Korn shell editing modes have quite afew commands; you will undoubtedly develop finger habits
that include just afew of them. If you use emacs-mode and you aren't familiar with the full emacs, hereis
a subset that is easy to learn yet enables you to do just about anything:

« For cursor motion around a command line, stick to [CTRL-A] and [CTRL-E] for beginning and
end of line, and [CTRL-F] and [CTRL-B] for moving around.

« Delete using DEL (or whatever your "erase" key is) and [CTRL-D]; aswith [CTRL-F] and
[CTRL-B], hold down to repest if necessary. Use [CTRL-C] to erase the entire line.

o Use[CTRL-P] to retrieve the last command when you make a mistake.
o Use[CTRL-R] to search for acommand you need to run again.
o Definitely use ESC ESC for filename completion.

After afew hours spent learning these finger habits, you will wonder how you ever got along without
command-line editing.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_06.htm (1 of 2) [2/8/2001 4:54:07 PM]

[Chapter 2] 2.6 Finger Habits

4 PREVIOUS HOME NEXT
2.5 The fc Command BOOK INDEX 3. Customizing Y our
Environment

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch02_06.htm (2 of 2) [2/8/2001 4:54:07 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 7] Input/Output and Command-line Processing

Learning the Korn Shell

4 PREVIOUS Chapter 7 NEXT »

7. Input/Output and Command-line
Processing

Contents:
|/O Redirectors

String 1/0
Command-line Processing

The past few chapters have gone into detail about various shell programming techniques, mostly focused on the flow
of dataand control through shell programs. In this chapter, we'll switch the focus to two related topics. Thefirstis
the shell's mechanisms for doing file-oriented input and output. We'll present information that expands on what you
already know about the shell's basic I/O redirectors.

Second, we'll "zoom in" and talk about /O at the line and word level. Thisisafundamentally different topic, since it
involves moving information between the domains of files/terminals and shell variables. print and command
substitution are two ways of doing this that we've seen so far.

Our discussion of line and word 1/0O will lead into a more detailed explanation of how the shell processes command
lines. Thisinformation is necessary so that you can understand exactly how the shell deals with quotation, and so
that you can appreciate the power of an advanced command called eval, which we will cover at the end of the
chapter.

7.1 1/0 Redirectors

In Chapter 1, Korn Shell Basics you learned about the shell's basic /O redirectors, >, <, and |. Although these are

enough to get you through 95% of your UNIX life, you should know that the Korn shell supports atotal of 16 I/0O
redirectors. Table 7.1 lists them, including the three we've already seen. Although some of the rest are useful, others

are mainly for systems programmers. We will wait until the next chapter to discuss the last three, which, along with
>|, are not present in most Bourne shell versions.

Table 7.1: 1/0O Redirectors

Redirector Function

> file Direct standard output to file

<file Take standard input from file

cmdl | cmd2 Pipe; take standard output of cmdl as standard input to cmd2
>> file Direct standard output to file; append to fileif it aready exists
>|file Force standard output to file even if noclobber set

<>file Use file as both standard input and standard output

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_01.htm (1 of 5) [2/8/2001 4:54:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm

[Chapter 7] Input/Output and Command-line Processing

<< |abel Here-document; see text

n>file Direct file descriptor n tofile

n< file Set file as file descriptor n

>&n Duplicate standard output to file descriptor n

<&n Duplicate standard input from file descriptor n

<&- Close the standard input

>& - Close the standard output

|& Background process with 1/0 from parent shell

>&p Direct background process' standard output to the parent shell's standard output
<&p Direct parent shell's standard input to background process' standard input

Notice that some of the redirectorsin Table 7.1 contain adigit n, and that their descriptions contain the term file
descriptor; we'll cover that in alittle while.

The first two new redirectors, >> and >|, are smple variations on the standard output redirector >. The >> appends to
the output file (instead of overwriting it) if it already exists; otherwise it acts exactly like >. A common use of >> is
for adding alineto an initialization file (such as .profile or .mailrc) when you don't want to bother with atext editor.
For example:

cat >> .milrc

alias fred frederi ck@ ongnmachi nenane. | ongconpanynamne. com

"D

Aswe saw in Chapter 1, cat without an argument uses standard input as itsinput. This allows you to type the input
and end it with [CTRL-D] onitsown line. The alias line will be appended to the file .mailrc if it already exists; if it
doesn't, the file is created with that oneline.

Recall from Chapter 3, Customizing Y our Environment that you can prevent the shell from overwriting afile with >
file by typing set -0 noclobber. >| overrides noclobber - it'sthe "Do it anyway, dammit!" redirector.

The redirector <> is mainly meant for use with device files (in the /dev directory), i.e., files that correspond to
hardware devices such as terminals and communication lines. Low-level systems programmers can useiit to test
device drivers; otherwise, it's not very useful. But if you use awindowing system like X, you can try the following to
see how it works:

1. Create two termina windows (e.g., xterms).

2. Inone of them, type who am i to find out the name of the window's " pseudo-device." Thiswill be the second
word in the output.

3. Inthe other, type cat <> /dev/pty, where pty is the name you found in the last step.
4. Back in the first window, type some characters. Y ou will see them appear in alternate windows.

5. Type[CTRL-C] in both windows to end the process.

7.1.1 Here-documents

The << |abel redirector essentially forces the input to a command to be the shell's standard input, which is read until
thereisaline that contains only label. The input in between is called a here-document. Here-documents aren't very
interesting when used from the command prompt. In fact, it's the same as the normal use of standard input except for
the label. We could have used a here-document in the previous example of >>, like this (EOF, for "end of file," isan
often-used label):

cat > .mailrc << EOF

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_01.htm (2 of 5) [2/8/2001 4:54:10 PM]

[Chapter 7] Input/Output and Command-line Processing

alias fred frederi ck@ ongnmachi nenane. | ongconpanynane. com
EOF

Here-documents are meant to be used from within shell scripts; they let you specify "batch” input to programs. A
common use of here-documents is with simple text editors like ed(1). Here is a programming task that uses a
here-document in this way:

Task 7.1

The sfile command in mail(1) saves the current message in file. If the message came over a network
(such asthe Internet), then it has several header lines prepended that give information about network
routing. Write a shell script that deletes the header lines from the file.

We can use ed to delete the header lines. To do this, we need to know something about the syntax of mail messages;
specifically, that there is always a blank line between the header lines and the message text. The ed command
1,/M[]* $/d does the trick: it means, "Delete from line 1 until the first blank line." We also need the ed commands w
(write the changed file) and g (quit). Here is the code that solves the task:

ed $1 << EOF

1, /7 1*%/d

w

q
ECF

The shell does parameter (variable) substitution and command substitution on text in a here-document, meaning that
you can use shell variables and commands to customize the text. Here is a simple task for system administrators that
shows how this works:

Task 7.2

Write a script that sends a mail message to a set of users saying that a new version of a certain program
has been installed in a certain directory.

You can get alist of all users on the system in various ways, perhaps the easiest isto use cut to extract the first field
of /etc/passwd, the file that contains all user account information. Fieldsin thisfile are separated by colons (:). [1]

[1] There are afew possible problems with this; for example, /etc/passwd usually contains information
on "accounts' that aren't associated with people, like uucp, Ip, and daemon. We'll ignore such problems
for the purpose of this example.

Given such alist of users, the following code does the trick:

pgmane=$1

for user in $(cut -f1 -d: /etc/passwd); do
mai | $user << EOF

Dear $user,

A new version of $pgmane has been installed in $(whence pgmane).

Regar ds,

Your friendly nei ghborhood sysadmi n.
EOF

done

The shell will substitute the appropriate values for the name of the program and its directory.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_01.htm (3 of 5) [2/8/2001 4:54:10 PM]

[Chapter 7] Input/Output and Command-line Processing

The redirector << has two variations. First, you can prevent the shell from doing parameter and command
substitution by surrounding the label in single or double quotes. In the above example, if you used the line mail
$user <<' EOF' , then $pgmname and $(whence pgmname) would remain untouched.

The second variation is <<-, which deletes leading TABs (but not blanks) from the here-document and the label line.
This allows you to indent the here-document's text, making the shell script more readable:

pgmane=$1
for user in $(cut -f1l -d: /etc/passwd); do
mai | $user <<- EOF
Dear user,

A new version of $pgmane has been installed in $(whence pgmane).
Regar ds,

Your friendly nei ghborhood sysadm n.
ECF
done

Of course, you need to choose your label so that it doesn't appear as an actual input line.

7.1.2 File Descriptors

The next few redirectorsin Table 7.1 depend on the notion of afile descriptor. Like the device files used with <>,

thisisalow-level UNIX 1/O concept that is of interest only to systems programmers - and then only occasionally.
File descriptors are historical relics that really should be banished from the realm of shell use. [2] Y ou can get by
with afew basic facts about them; for the whole bloody story, ook at the entries for read(), write(), fentl(), and
othersin Section 2 of the UNIX manual.

[2] The C shell's set of redirectors contains no mention of file descriptors whatsoever.

File descriptors are integers starting at O that index an array of file information within a process. When a process
starts, it usually has three file descriptors open. These correspond to the three standards: standard input (file
descriptor 0), standard output (1), and standard error (2). If a process opens UNIX filesfor input or output, they are
assigned to the next available file descriptors, starting with 3.

By far the most common use of file descriptors with the Korn shell isin saving standard error in afile. For example,
if you want to save the error messages from along job in afile so that they don't scroll off the screen, append 2> file
to your command. If you also want to save standard output, append > filel 2> file2.

This leads to another programming task.
Task 7.3

Y ou want to start along job in the background (so that your terminal is freed up) and save both standard
output and standard error in asinglelog file. Write a script that does this.

WeEe'l call this script start. The codeis very terse:
"$@ > logfile 2>&1 &

This line executes whatever command and parameters follow start. (The command cannot contain pipes or output
redirectors.) It sends the command's standard output to logfile.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_01.htm (4 of 5) [2/8/2001 4:54:10 PM]

[Chapter 7] Input/Output and Command-line Processing
Then, the redirector 2>& 1 says, "send standard error (file descriptor 2) to the same place as standard output (file
descriptor 1)." 2>& 1 is actually a combination of two redirectorsin Table 7.1: n> file and >& n. Since standard

output is redirected to logfile, standard error will go there too. The final & puts the job in the background so that you
get your shell prompt back.

Asasmall variation on this theme, we can send both standard output and standard error into a pipe instead of afile:
command 2>& 1 | ... doesthis. (Make sure you understand why.) Here is a script that sends both standard output and
standard error to the logfile (as above) and to the terminal:

"$@ 2>&1 | tee logfile &
The command tee(1) takes its standard input and copies it to standard output and the file given as argument.

These scripts have one shortcoming: you must remain logged in until the job completes. Although you can always
type jobs (see Chapter 1) to check on progress, you can't leave your office for the day unless you want to risk a

breach of security or waste electricity. We'll see how to solve this problem in the next chapter.

The other file-descriptor-oriented redirectors (e.g., <& n) are usually used for reading input from (or writing output
to) more than one file at the same time. WEe'll see an example later in this chapter. Otherwise, they're mainly meant
for systems programmers, as are <& - (force standard input to close) and >& - (force standard output to close).

Before we leave this topic, we should just note that 1> is the same as >, and 0< is the same as <. If you understand
this, then you probably know all you need to know about file descriptors.

41 PREVIOUS HOME NEXT »
6.3 Arrays BOOK INDEX 7.2 String 1/0

UBRARY HOME | UMIX POWER TOOLS | UNIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_01.htm (5 of 5) [2/8/2001 4:54:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 3] Customizing Your Environment

| Learning the KOrn Shell

4 PREVIOUS Chapter 3 MEXT

3. Customizing Your Environment

Contents:
The .profile File

Aliases

Options

Shell Variables

Customi zation and Subprocesses
Customization Hints

A common synonym for a UNIX shell, or for the interface any computer program presents, is an
environment. An environment istypically a collection of concepts that expresses the things a computer
doesin terms designed to be understandable and coherent, and alook and fedl that is comfortable.

For example, your desk at work is an environment. Concepts involved in desk work usually include
memos, phone calls, letters, forms, etc. Thetools on or in your desk that you use to deal with these things
include paper, staples, envelopes, pens, atelephone, a calculator, etc. Every one of these has a set of
characteristics that express how you use it; such characteristics range from location on your desk or in a
drawer (for simple tools) to more sophisticated things like which numbers the memory buttons on your
phone are set to. Taken together, these characteristics make up your desk's look and feel.

Y ou customi ze the look and feel of your desk environment by putting pens where you can most easily
reach them, programming your phone buttons, etc. In general, the more customization you have done, the
more tailored to your personal needs-and therefore the more productive-your environment is.

Similarly, UNIX shells present you with such concepts as files, directories, and standard input and
output, while UNIX itself gives you tools to work with these, such as file manipulation commands, text
editors, and print queues. Y our UNIX environment's look and fedl is determined by your keyboard and
display, of course, but also by how you set up your directories, where you put each kind of file, and what
names you give to files, directories, and commands. There are also more sophisticated ways of
customizing your shell environment.

The most basic means of customization that the Korn shell provides are these:
Aliases

Synonyms for commands or command strings that you can define for convenience.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_01.htm (1 of 3) [2/8/2001 4:54:20 PM]

[Chapter 3] Customizing Your Environment

Options

Controls for various aspects of your environment, which you can turn on and off.
Variables

Place-holders for information that tell the shell and other programs how to behave under various
circumstances.

There are also more complex ways to customize your environment, mainly the ability to program the
shell, which we will seein later chapters. In this chapter, we will cover the techniques listed above.

While most of the customizations obtai nable with the above techniques are straightforward and apply to
everyday UNIX use, others are rather arcane and require in-depth technical knowledge to understand.
Most of this chapter will concentrate on the former. Because we want to explain things from the
perspective of tasks you may want to perform, rather than that of the specific features of the Korn shell, a
few little details may fall through the cracks (such as miscellaneous options to certain commands). We
suggest you look in Appendix B, Reference Lists for this type of information.

3.1 The .profile File

If you want to customize your environment, it is most important to know about afile called .profilein
your home (login) directory. Thisisafile of shell commands, also called a shell script, that the Korn
shell reads and runs whenever you log in to your system.

If you use alarge machine in an office or department, the odds are good that your system administrator
has already set up a.profilefile for you that contains afew standard things. Thisis one of the "hidden"
files mentioned in Chapter 1, Korn Shell Basics; other common hidden files include .X11Sartup (for the

X Window System), .emacs (for the GNU Emacs editor), and .mailrc (for the UNIX mail program).

Y our .profile, together with the environment file that we will see towards the end of this chapter, will be
the source of practically all of the customizations we will discuss here aswell as in subsequent chapters.
Thereforeit is very important for you to become comfortable with atext editor like vi or emacs so that
you can try whatever customization techniques strike your fancy.

Bear in mind, however, that if you add commands to your .profile, they will not take effect until you log
out and log back in again, or type the command login. [1] Of course, you need not immediately add
customization commands to your .profile-you can always just test them by typing them in yourself.

[1] This has the same effect as logging out and logging in again, athough it actually
replaces your login session with a new one without explicitly terminating the old session.

If you already have a .profile, it's likely to contain lines similar to some of these:

PATH=/ sbi n: /usr/sbin:/usr/bin:/etc:/usr/ucb:/Ilocal/Dbin:
stty stop S intr ~"C erase "?

EDI TOR=/ usr/ | ocal / bi n/ emacs

SHELL=/ bi n/ ksh

export EDI TOR

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_01.htm (2 of 3) [2/8/2001 4:54:20 PM]

[Chapter 3] Customizing Your Environment

These commands set up a basic environment for you, so you probably shouldn't change them until you
learn about what they do-which you will by the end of this chapter. When you edit your .profile, just put
your additional linesin afterwards.

41 PREVIOUS HOME NEXT »
2.6 Finger Habits BOOK INDEX 3.2 Aliases

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_01.htm (3 of 3) [2/8/2001 4:54:20 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 3] 3.2 Aliases

| Learning the KOrn Shell

4 PREVIOUS ~ Chapter 3 NEXT B
Customizing Your Environment

3.2 Aliases

Perhaps the easiest and most popular type of customization is the alias, which isa synonym for a
command or command string. Thisis one of several Korn shell features that were appropriated from the
C shell. [2] Y ou define an alias by entering (or adding to your .profile) aline with the following form:

[2] C shell users should note that the Korn shell's alias feature does not support arguments in
alias expansions, as C shell aliases do.
al i as new=ori gi nal

(Notice that there are no spaces on either side of the equal sign (=); thisisrequired syntax.) The alias

command defines new to be an aias for original, so that whenever you type new, the Korn shell
substitutes original internally.

There are afew basic ways to use an dlias. Thefirst, and ssimplest, is as a more mnemonic name for an
existing command. Many commonly-used UNIX commands have names that are poor mnemonics and
therefore are excellent candidates for aliasing, but the classic exampleis:

al i as search=grep
grep, the UNIX file-searching utility, was named as an acronym for something like " Generalized Regular
Expression Parser." [3] This acronym may mean something to a computer scientist, but not to the office

administrator who hasto find Fred in alist of phone numbers. If you have to find Fred and you have the
word search defined as an alias for grep, you can type:

[3] Another theory has it that grep stands for the command "g/re/p”, in the old ed text editor,
which does essentially the same thing as grep.

$ search Fred phoneli st

Another popular alias eschews exit in favor of a more widely-used command for ending alogin session:
al i as | ogout =exi t

If you are a C shell user, you may be used to having a.logout file of commands that the shell executes
just before you log out. The Korn shell doesn't have this feature as such, but you can mimic it quite easily
using an dias:

alias logout=". ~/.ksh_|ogout; exit’

This reads commands in from the file .ksh_logout in your home directory and then logs you out. The

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_02.htm (1 of 4) [2/8/2001 4:54:29 PM]

[Chapter 3] 3.2 Aliases

semicolon acts as a statement separator, allowing you to have more than one command on the same line.

Y ou might want the file .logout to "clean up" your history files, as we discussed in the last chapter.
Recall that we created history files with the filename .hist$$, which guarantees a unique name for every
shell. To remove these files when the shells exit, just put thislinein your .logout file:

rm ~/ . hi st $$

Some people who aren't particularly good typists like to use aliases for typographical errors they make
often. For example:

al i as encas=enacs
alias mali=mail
al i as gerp=grep

This can be handy, but we feel you're probably better off suffering with the error message and getting the
correct spelling under your fingers. Another common way to use an diasis as a shorthand for alonger
command string. For example, you may have a directory to which you need to go often. It's buried deeply
in your directory hierarchy, so you want to set up an aiasthat will allow you to cd there without typing
(or even remembering) the entire pathname:

alias cdcne' cd work/ proj ects/devt ool s/w ndows/ conf nan’

Notice the quotes around the full cd command; these are necessary if the string being aliased consists of
more than one word. [4]

[4] This contrasts with C shell aliases, in which the quotes aren't required.

As another example, a useful option to the Iscommand is -F: it puts a slash (/) after directory files and an
asterisk (*) after executable files. Since typing a dash followed by a capital |etter isinconvenient, many
people like to define an aiaslike this:

alias If="Is -F
A few things about aliases are important to remember. First, the Korn shell makes atextual substitution
of the alias for that which it isaliasing; it may help to imagine ksh passing your command through a text

editor or word processor and issuing a"change" or "substitute” command before interpreting and
executing it.

This, inturn, means that any specia characters (such aswildcardslike* and ?) that result when the alias
Is expanded are interpreted properly by the shell. [5] For example, to make it easier to print all of the files
in your directory, you could define the dlias;

[5] An important corollary: wildcards and other special characters cannot be used in the
names of aliases, i.e., on the left side of the equal sign.
alias printall="pr * | Ipr'

Second, keep in mind that aliases are recursive, which meansthat it is possible to aliasan alias. A

|egitimate objection to the previous example is that the alias, while mnemonic, is too long and doesn't
save enough typing. If we want to keep this alias but add a shorter abbreviation, we could define:

alias pa=printall

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_02.htm (2 of 4) [2/8/2001 4:54:29 PM]

[Chapter 3] 3.2 Aliases

Recursive aliasing makes it possible to set up an "infinite loop" of definitions, wherein an alias ends up
(perhaps after several lookups) being defined as itself. For example, the command:

alias Is="1ls -|"

sets up apossible infinite loop. Luckily, the shell has a mechanism to guard against such dangers. The
above command will work as expected (typing |s produces along list with permissions, sizes, owners,
etc.), while in more pathological situations such as:

alias listfile=ls
alias Is=listfile

the dlias listfileisignored.

Aliases can only be used for the beginning of acommand string-albeit with certain exceptions. In the cd
example above, you might want to define an alias for the directory name aone, not for the entire
command. But if you define:

al i as cnm=wor k/ proj ect s/ devt ool s/ w ndows/ conf man
and then type cd cm, the Korn shell will probably print a message like ksh: cm: not found.

An obscure, rather ugly feature of the Korn shell's alias facility-one not present in the analogous C shell
feature-provides a way around this problem. If the value of an alias (the right side of the equal sign) ends
in a blank, then the Korn shell tries to do alias substitution on the next word on the command line. To
make the value of an alias end in ablank, you need to surround it with quotes.

Here is how you would use this capability to allow aliases for directory names, at least for use with the
cd command. Just define:

alias cd='cd

This causes the Korn shell to search for an alias for the directory name argument to cd, which in the
previous example would enable it to expand the alias cm correctly.

3.2.1 Tracked Aliases

Another rather obscure feature of the alias facility is the tracked alias, which can shorten the time it takes
the shell to invoke commands. If you specify this option (as shown under "Options' below), then for all
subsequent alias definitions, the shell will internally substitute the full pathname of each command for
which an aiasis defined. You can also define individual tracked aliases with the option -t to the alias
command, and you can list all tracked aliases by typing alias -t by itself.

Asyou will seelater in this chapter, a tracked alias cuts down the number of steps the shell has to take to
find the command when you want to run it. More important, however, are itsimplications for system
security; see Chapter 10, Korn Shell Administration.

For example, assume that you have defined the alias em for the emacs editor, which is kept in the
executable file /usr/local/bin/emacs. If you specify that you want aliases tracked, then the first time you
type em myfile, the shell will substitute the full pathname, i.e., asif you had defined the alias as.

alias em=/usr/ | ocal/bin/enmcs

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_02.htm (3 of 4) [2/8/2001 4:54:29 PM]

[Chapter 3] 3.2 Aliases

Y ou'll see how this can save time when you read about the PATH environment variable later on.

Finally, there are afew useful adjuncts to the basic alias command. If you type alias name without an
egual sign (=) and value, the shell will print the alias value or alias name not found if it is undefined. If
you type alias without any arguments, you get alist of all the aliases you have defined as well as several
that are built-in. The command unalias name removes any alias definition for its argument.

Aliases are very handy for creating a comfortable environment, but they arereally just kid stuff
compared to more advanced customization techniques like scripts and functions, which we will seein the
next chapter. These give you everything aliases do plus much more, so if you become proficient at them,
you may find that you don't need aliases anymore. However, aliases are ideal for novices who find UNIX
to be arather forbidding place, full of terseness and devoid of good mnemonics.

41 PREVIOUS HOME HEXT o
3.1 The .profile File BOOK INDEX 3.3 Options

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMIMG VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_02.htm (4 of 4) [2/8/2001 4:54:29 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 3] 3.3 Options

| Learning the KOrn Shell

4 PREVIOUS ~ Chapter 3 NEXT B
Customizing Your Environment

3.3 Options

While aliases |et you create convenient names for commands, they don't really let you change the shell's
behavior. Options are one way of doing this. A shell option is a setting that is either "on" or "off." While
severa optionsrelate to arcane shell features that are of interest only to programmers, those that we will

cover here are of interest to all users.

The basic commands that relate to options are set -0 optionnames and set +0 optionnames, where
optionnamesis alist of option names separated by blanks. The use of plus (+) and minus (-) signsis
counterintuitive: the - turns the named option on, while the + turns it off. The reason for this incongruity
Isthat the dash (-) isthe conventional UNIX way of specifying options to a command, while the use of +
Is an afterthought.

Most options also have one-letter abbreviations that can be used in lieu of the set -0 command; for
example, set -0 noglob can be abbreviated set -f. These abbreviations are carry-overs from the Bourne
shell. Like severa other "extra' Korn shell features, they exist to ensure upward compatibility; otherwise,
their use is not encouraged.

Table 3.1 lists the options that are useful to general UNIX users. All of them are off by default except as
noted.

Table 3.1: Basic Shell Options
Option Description
bgnice Run background jobs at lower priority (on by default)
emacs Enter emacs editing mode
ignoreeof Don't allow use of [CTRL-D] to log off; require the exit command
mar kdirs When expanding filename wildcards, append a slash (/) to directories
noclobber Don't alow output redirection (>) to clobber an existing file
noglob Don't expand filename wildcardslike * and ? (wildcard expansion is sometimes called
globbing)
nounset Indicate an error when trying to use a variable that is undefined
trackall Turn on alias tracking[6]
Vi Enter vi editing mode

[6] Future releases will have alias tracking enabled at all times and won't support this option.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_03.htm (1 of 2) [2/8/2001 4:54:30 PM]

[Chapter 3] 3.3 Options

There are several other options (22 in all; Appendix B lists them). To check the status of an option, just

type set -0. The Korn shell will print alist of all options along with their settings. There is no direct way
to test asingle option, but here is asimple shell function to do it:

function testopt {
if [[-o $1]] ; then
print Option $1 is on.
el se
print Option $1 is off.
fi
}

Shell functions will be covered in the next chapter. For now, though, if you want to use the testopt
function, just typeit into your .profile or environment file (see the section entitled " The Environment
File"), then type either login or . .profile. Then you can type testopt optionname to check the status of an
option.

41 PREVIOUS HOME HEXT »
3.2 Aliases BOOK INDEX 3.4 Shell Variables

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMIMG VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_03.htm (2 of 2) [2/8/2001 4:54:30 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 3] 3.4 Shell Variables

| Learning the KOrn Shell

4 PREVIOUS ~ Chapter 3 NEXT B
Customizing Your Environment

3.4 Shell Variables

There are severa characteristics of your environment that you may want to customize but that cannot be
expressed as an on/off choice. Characteristics of thistype are specified in shell variables. Shell variables
can specify everything from your prompt string to how often the shell checks for new mail.

Like an dlias, ashell variable is a name that has a value associated with it. The Korn shell keeps track of
severa built-in shell variables; shell programmers can add their own. By convention, built-in variables
have namesin all capital letters. The syntax for defining variables is somewhat similar to the syntax for
aliases:

var nane=val ue

There must be no space on either side of the equal sign, and if the value is more than one word, it must
be surrounded by quotes. To use the value of a variable in a command, precede its name by adollar sign

$.

Y ou can delete a variable with the command unset varname. Normally thisisn't useful, since all
variables that don't exist are assumed to be null, i.e., equal to the empty string *". But if you use the
option nounset (see Table 3.1), which causes the shell to indicate an error when it encounters an

undefined variable, then you may be interested in unset.

The easiest way to check avariable's value isto use the print built-in command. [7] All print doesis
print its arguments, but not until the shell has evaluated them. This includes-among other things that will
be discussed later-taking the values of variables and expanding filename wildcards. So, if the variable
fred has the value bob, typing:

[7] The Korn shell supports the old command echo, which does much the same thing, for
backward compatibility reasons. However, we strongly recommend print because its
options are the same on al UNIX systems, whereas echo's options differ between
BSD-derived and System V-derived UNIX versions.

$ print "$fred"

will cause the shell to ssimply print bob. If the variable is undefined, the shell will print ablank line. A
more verbose way to do thisis:

$ print "The value of \$varnane is \"$varnane\"."

Thefirst dollar sign and the inner double quotes are backslash-escaped (i.e., preceded with \ so the shell

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (1 of 9) [2/8/2001 4:54:35 PM]

[Chapter 3] 3.4 Shell Variables

doesn't try to interpret them; see Chapter 1) so that they appear literally in the output, which for the above
example would be:

The value of $fred is "bob".

3.4.1 Variables and Quoting

Notice that we used double quotes around variables (and strings containing them) in these print
examples. In Chapter 1 we said that some special characters inside double quotes are still interpreted

(while none are interepreted inside single quotes). We've seen one of these special characters aready: the
tilde (~), which is expanded to your (or another user's) home directory.

Another special character that "survives' double quotesisthe dollar sign - meaning that variables are
evaluated. It's possible to do without the double quotes in some cases; for example, we could have
written the above print command this way:

$ print The val ue of \$varnanme is \"$varnane\".
But double quotes are more generally correct.

Here's why. Suppose we did this:
$ fred=>' Four spaces between these wor ds. '

Then if we entered the command print $fred, the result would be:

Four spaces between these words.
What happened to the extra spaces? Without the double quotes, the shell split the string into words after
substituting the variable's value, as it normally does when it processes command lines. The double quotes
circumvent this part of the process (by making the shell think that the whole quoted string isa single
word).
Therefore the command print " $fred” printsthis:

Four spaces between these wor ds.

This becomes particularly important when we start dealing with variables that contain user or file input
later on.

Double quotes also alow other special charactersto work, aswe'll seein Chapters 4, 6, and 7. But for
now, we'll revise the "When in doubt, use single quotes’ rule in Chapter 1 by adding, "...unless a string

contains avariable, in which case you should use double quotes.”

3.4.2 Built-in Variables

As with options, some built-in shell variables are meaningful to general UNIX users, while others are
arcanafor hackers. We'll look at the more generally useful ones here, and we'll save some of the more
obscure ones for later chapters. Again, Appendix B contains a complete list.

3.4.2.1 Editing mode variables

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (2 of 9) [2/8/2001 4:54:35 PM]

[Chapter 3] 3.4 Shell Variables

Several shell variables relate to the command-line editing modes that we saw in the previous chapter.
These arelisted in Table 3.2.

Thefirst two of these are sometimes used by text editors and other screen-oriented programs, which rely
on the variables being set correctly. Although the Korn shell and most windowing systems should know
how to set them correctly, you should look at the values of COLUMNS and LINES if you are having
display trouble with a screen-oriented program.

Table 3.2: Editing Mode Variables

Variable Meaning

COLUMNSWidth, in character columns, of your terminal. The standard value is 80 (sometimes 132),
though if you are using a windowing system like X, you could give aterminal window any
Size you wish.

LINES Length of your terminal in text lines. The standard value for terminalsis 24, but for IBM
PC-compatible monitors it's 25; once again, if you are using a windowing system, you can
usually resize to any amount.

HISTFILE Name of history file, on which the editing modes operate.

EDITOR Pathname of your favorite text editor; the suffix (macs or vi) determines which editing
mode to use.

VISUAL Similar to EDITOR; used if EDITOR is not set or vice versa.
FCEDIT Pathname of editor to use with the fc command.

3.4.2.2 Mail Variables

Since the mail program is not running all the time, there is no way for it to inform you when you get new
mail; therefore the shell does thisinstead. [8] The shell can't actually check for incoming mail, but it can

look at your mail file periodically and determine whether the file has been modified since the last check.

The variableslisted in Table 3.3 let you control how this works.

[8] BSD UNIX users should note that the biff command on those systems does a better job
of this; while the Korn shell only prints "you have mail" messages right before it prints
command prompts, biff can do so at any time.

Table 3.3: Mail Variables
Variable Meaning
MAIL Name of file to check for incoming mail (i.e., your mail file)
MAILCHECK How often, in seconds, to check for new mail (default 600 seconds, or 10 minutes)
MAILPATH List of filenames, separated by colons (:), to check for incoming mail

Under the simplest scenario, you use the standard UNIX mail program, and your mail fileis
/usr/mail/yourname or something similar. In this case, you would just set the variable MAIL to this
filename if you want your mail checked:

MAI L=/ usr/ mai | / your nane
If your system administrator hasn't aready done it for you, put aline like thisin your .profile.

However, some people use nonstandard mailers that use multiple mail files; MAILPATH was designed

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (3 of 9) [2/8/2001 4:54:35 PM]

[Chapter 3] 3.4 Shell Variables

to accommodate this. The Korn shell will use the value of MAIL asthe name of the file to check, unless
MAILPATH isset, in which case the shell will check each filein the MAILPATH list for new mail.

Y ou can use this mechanism to have the shell print a different message for each mail file: for each mail
filenamein MAILPATH, append a question mark followed by the message you want printed.

For example, let's say you have a mail system that automatically sorts your mail into files according to
the username of the sender. Y ou have mail files called /usr/mail/you/fritchie, /usr/mail/you/droberts,
/usr/mail/you/jphelps, etc. You define your MAILPATH asfollows:

MAI LPATH=/ usr/ mai | /you/fritchie:/usr/ mail/you/droberts:\
[usr/ mai |l /you/| phel ps

If you get mail from Jennifer Phelps, then the file /usr/mail/you/jphelps will change. The Korn shell will
notice the change within 10 minutes and print the message:

you have mail in /usr/mail/you/jphel ps.

If you are in the middle of running a command, the shell will wait until the command finishes (or is
suspended) to print the message. To customize this further, you could define MAIL PATH to be:

MAI LPATH=\

/usr/mail/you/fritchie?You have mail from Fiona.:\
/usr/ mail/you/droberts?Mail from Dave has arrived. :\
[usr/ mai |l /you/|phel ps?There is new nmail from Jennifer.

The backslashes at the end of each line allow you to continue your command on the next line. But be
careful: you can't indent subsequent lines. Now, if you get mail from Jennifer, the shell will print:

There is new nail from Jennifer.
3.4.2.3 Prompting Variables

If you have seen enough experienced UNIX users at work, you may already have realized that the shell's
prompt is not engraved in stone. It seems as though one of the favorite pastimes of UNIX hackersis
thinking of cute or innovative prompt strings. We'll give you some of the information you need to do
your own here; the rest will come in the next chapter.

Actually, the Korn shell uses four prompt strings. They are stored in the variables PS1, PS2, PS3, and
PS4. Thefirst of theseis called the primary prompt string; it isyour usual shell prompt, and its default
valueis"$" (adollar sign followed by a space). Many people like to set their primary prompt string to
something containing their login name. Here is one way to do this:

PS1="($LOGNAME) - > "

L OGNAME is another built-in shell variable, which is set to your login name when you log in. So, PS1
becomes a left parenthesis, followed by your login name, followed by ")->". If your login name s fred,
your prompt string will be" (fred)->" . If you are a C shell user and, like many such people, are used to
having a command number in your prompt string, the Korn shell can do this similarly to the C shell: if
there is an exclamation point in the prompt string, it will substitute the command number. Thus, if you
define your prompt string to be:

PS1="($LOGNAME !) - >"

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (4 of 9) [2/8/2001 4:54:35 PM]

[Chapter 3] 3.4 Shell Variables

then your prompts will be like (fred 1)->, (fred 2)->, and so on.

But perhaps the most useful way to set up your prompt string is so that it always contains your current
directory. Thisway, you needn't type pwd to remember where you are. Putting your directory in the
prompt is more complicated than the above examples, because your current directory changes during
your login session, whereas your login name and the name of your machine don't. But we can
accommodate this by taking advantage of some of the shell's arcane quoting rules. Here's how:

PS1=' ($PWD) - >

The difference is the single quotes, instead of double quotes, surrounding the string on the right side of
the assignment. Notice that this string is evaluated twice: once when the assignment to PS1 isdone (in
your .profile or environment file) and then again after every command you enter. Here's what each of
these evaluations does:

1. Thefirst evaluation just observes the single quotes and returns what is inside them without further
processing. As aresult, PS1 contains the string ($PWD)-> .

2. After every command, the shell evaluates ($PWD)->. PWD isabuilt-in variable that is always
equal to the current directory, so the result is a primary prompt that always contains the current
directory.

WEe'll add to this example in Chapter 7, Input/Output and Command-line Processing. PS2 is called the

secondary prompt string; its default valueis>. It is used when you type an incomplete line and hit
RETURN, as an indication that you must finish your command. For example, assume that you start a
quoted string but don't close the quote. Then if you hit RETURN, the shell will print > and wait for you
to finish the string:

$ print "This is a long line, # PS1 for the command
> which is term nated down here" # PS2 for the continuation
$ # PS1 for the next command

PS3 and PS4 relate to shell programming and debugging, respectively; they will be explained in Chapter
5, Flow Control and Chapter 9, Debugging Shell Programs.

3.4.2.4 Terminal Types

The shell variable TERM isvitally important for any program that uses your entire screen or window,
like atext editor. Such programs include all screen editors (such as vi and emacs), more, and countless
third-party applications.

Because users are spending more and more time within programs, and less and less using the shell itself,
it isextremely important that your TERM is set correctly. It's really your system administrator's job to
help you do this (or to do it for you), but in case you need to do it yourself, here are afew guidelines.

The value of TERM must be a short character string with lowercase letters that appears as afilename in
the terminfo database. [9] This database is atwo-tiered directory of files under the root directory
/usr/lib/terminfo. This directory contains subdirectories with single-character names; these in turn contain
files of terminal information for all terminals whose names begin with that character. Each file describes
how to tell the terminal in question to do certain common things like position the cursor on the screen, go

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (5 of 9) [2/8/2001 4:54:35 PM]

[Chapter 3] 3.4 Shell Variables

into reverse video, scroll, insert text, and so on. The descriptions are in binary form (i.e., not readable by
humans).

[9] Versions of UNIX not derived from System V use termcap, an older-style database of
terminal capabilities that uses the single file /etc/termcap for all terminal descriptions.

Names of terminal description files are the same as that of the terminal being described; sometimes an
abbreviation is used. For example, the DEC VT100 has a description in the file /usr/lib/terminfo/v/ivt100;
amonitor for a 386-based PC/AT has a description in the file /usr/lib/terminfo/AJAT-386M. An xterm
terminal window under the X Window System has a description in /usr/lib/ter minfo/x/xterm.

Sometimes your UNIX software will set up TERM correctly; this usually happensfor X terminals and
PC-based UNIX systems. Therefore, you should check the value of TERM by typing print $TERM
before going any further. If you find that your UNIX system isn't setting the right value for you
(especially likely if your terminal is of adifferent make than your computer), you need to find the
appropriate value of TERM yourself.

The best way to find the TERM value-if you can't find alocal guru to do it for you-is to guess the
terminfo name and search for afile of that name under /usr/lib/terminfo by using Is. For example, if your
terminal isaBlivitz BL-35A, you could try:

$ cd /usr/lib/term nfo
$1s b/bl*

If you are successful, you will see something like this:
bl 35a blivitz35a

In this case, the two names are likely to be synonyms for (links to) the same terminal description, so you
could use either one asavalue of TERM. In other words, you could put either of these two linesin your
Jprofile:

TERMEDI 35a
TERMEDI i vit z35a

If you aren't successful, Iswon't print anything, and you will have to make another guess and try again. If
you find that terminfo contains nothing that resembles your terminal, all is not lost. Consult your
terminal's manual to seeif the terminal can emulate a more popular model; nowadays the odds of this are
excellent.

Conversely, terminfo may have several entries that relate to your terminal, for submodels, special modes,
etc. If you have a choice of which entry to use as your value of TERM, we suggest you test each one out
with your text editor or any other screen-oriented programs you use and see which one works best.

The process is much simpler if you are using a windowing system, in which your "terminals" are logical
portions of the screen rather than physical devices. In this case, operating system-dependent software was
written to control your terminal window(s), so the odds are very good that if it knows how to handle
window resizing and complex cursor motion, then it is capable of dealing with simple thingslike TERM.
The X Window System, for example, automatically sets "xterm" asitsvaue for TERM in an xterm
terminal window.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (6 of 9) [2/8/2001 4:54:35 PM]

[Chapter 3] 3.4 Shell Variables

3.4.2.5 Command Search Path

Another important variableis PATH, which helps the shell find the commands you enter.

Asyou probably know, every command you useis actually afile that contains code for your machine to
run. [10] These files are called executable files or just executables for short. They are stored in various
different directories. Some directories, like /bin or /usr/bin, are standard on all UNIX systems, some
depend on the particular version of UNIX you are using; some are unigue to your machine; if you are a
programmer, some may even be your own. In any case, there is no reason why you should have to know
where a command's executable fileisin order to runiit.

[10] Unlessit's a built-in command (one of those shown in boldface, like cd and print), in
which case the code is simply part of the executable file for the entire shell.

That iswhere PATH comesin. Itsvaueisalist of directories that the shell searches every time you
enter acommand; [11] the directory names are separated by colons (:), just like thefilesin
MAILPATH. For example, if you type print $PATH, you will see something like this:

[11] Unless the command name contains a slash (/), in which case the search does not take
place.

[sbin:/usr/sbin:/usr/bin:/etc:/usr/ucb:/local/bin

Why should you care about your path? There are two main reasons. First, once you have read the later
chapters of this book and you try writing your own shell programs, you will want to test them and
eventually set aside adirectory for them. Second, your system may be set up so that certain "restricted"
commands executable files are kept in directories that are not listed in PATH. For example, there may
be a directory /usr/games in which there are executables that are verboten during regular working hours.

Therefore you may want to add directories to your PATH. Let's say you have created a bin directory
under your login directory, which is/home/you, for your own shell scripts and programs. To add this
directory to your PATH so that it isthere every time you log in, put thislinein your .profile:

PATH=$PATH': / hone/ you/ bi n"
This sets PATH to whatever it was before, followed immediately by a colon and /home/you/bin.

Thisisthe "safe" way of doing it. When you enter acommand, the shell searches directoriesin the order
they appear in PATH until it finds an executable file. Therefore, if you have a shell script or program
whose name is the same as an existing command, the shell will use the existing command-unless you
type in the command's full pathname to disambiguate. For example, if you have created your own version
of the more command in the above directory and your PATH is set up asin the last example, you will
need to type /home/you/bin/mor e (or just ~/bin/more) to get your version.

The more reckless way of resetting your path isto tell the shell to look in your directory first by putting it
before the other directoriesin your PATH:

PATH="/ hone/ you/ bi n: " $PATH

Thisisless safe because you are trusting that your own version of the more command works properly.
But it isalso risky for amore important reason: system security. If your PATH isset up in thisway, you
leave open a"hol€" that iswell known to computer crackers and mischief makers. they can install

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (7 of 9) [2/8/2001 4:54:35 PM]

[Chapter 3] 3.4 Shell Variables

"Trojan horses' and do other things to steal files or do damage. (See Chapter 10 for more details.)

Therefore, unless you have complete control of (and confidence in) everyone who uses your system, use
the first of the two methods of adding your own command directory.

If you need to know which directory a command comes from, you need not look at directories in your
PATH until you find it. The shell built-in command whence prints the full pathname of the command
you give it as argument, or just the command's name if it's a built-in command itself (like cd), an dlias, or
afunction (aswe'll seein Chapter 4, Basic Shell Programming).

3.4.2.6 PATH and Tracked Aliases

It isworth noting that a search through the directoriesin your PATH can take time. Y ou won't exactly
dieif you hold your breath for the length of time it takes for most computers to search your PATH, but
the large number of disk I/O operations involved in some PATH searches can take longer than the
command you invoked takes to run!

The Korn shell provides away to circumvent PATH searches: the tracked alias mechanism we saw
earlier in this chapter. First, notice that if you specify a command by giving its full pathname, the shell
won't even use your PATH-instead, it will just go directly to the executablefile.

Tracked aliases do this for you automatically. If you have alias tracking turned on, then the first time you
invoke an alias, the shell looks for the executable in the normal way (through PATH). Then it stores the
full pathname asiif it were the alias, so that the next time you invoke the command, the shell will use the
full pathname and not bother with PATH at al. If you ever change your PATH, the shell marks tracked
aliases as "undefined,” so that it will search for the full pathnames again when you invoke the
corresponding commands.

In fact, you can add tracked aliases for the sole purpose of avoiding PATH lookup of commands that you
use particularly often. Just put a“trivial alias' of the form alias -t command =command in your .profile
or environment file; the shell will substitute the full pathname itself. [12]

[12] Actually, the shell predefines tracked aliases for most widely-used UNIX utilities.

3.4.3 Directory Search Path

CDPATH isavariable whose value, like that of PATH, isalist of directories separated by colons. Its
purpose is to augment the functionality of the cd built-in command.

By default, CDPATH isn't set (meaning that it is null), and when you type cd dirname, the shell will
look in the current directory for a subdirectory called dirname. [13] If you set CDPATH, you give the
shell alist of placesto look for dirname; the list may or may not include the current directory.

[13] Aswith PATH, this search is disabled when dirname starts with a slash.

Hereis an example. Consider the alias for the long cd command from earlier in this chapter:
alias cdcne"cd work/ proj ects/devt ool s/w ndows/ conf nan”

Now suppose there were afew directories under this directory to which you need to go often; they are
called src, bin, and doc. Y ou define your CDPATH like this:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (8 of 9) [2/8/2001 4:54:35 PM]

[Chapter 3] 3.4 Shell Variables
CDPATH=: ~/ wor k/ pr oj ect s/ devt ool s/ wi ndows/ conf man

In other words, you define your CDPATH to be the empty string (meaning the current directory,
wherever you happen to be) followed by ~/work/projects/devtool s/'wi ndows/confman.

With this setup, if you type cd doc, then the shell will look in the current directory for a (sub)directory
called doc. Assuming that it doesn't find one, it looks in the directory

~/wor k/projects/devtool s‘windows/confman. The shell finds the dirname directory there, so you go
directly there.

This feature gives you yet another way to save typing when you need to cd often to directories that are
buried deep in your file hierarchy. Y ou may find yourself going to a specific group of directories often as
you work on a particular project, and then changing to another set of directories when you switch to
another project. Thisimpliesthat the CDPATH featureisonly useful if you update it whenever your
work habits change; if you don't, you may occasionally find yourself where you don't want to be.

3.4.3.1 Miscellaneous Variables

We have covered the shell variables that are important from the standpoint of customization. There are
also several that serve as status indicators and for various other miscellaneous purposes. Their meanings
are relatively straightforward; the more basic ones are summarized in Table 3.4.

The shell sets the values of these variables (the first three at login time, the last two whenever you change
directories). Although you can also set their values, just like any other variables, it is difficult to imagine
any situation where you would want to.

Table 3.4: Status Variables
Variable Meaning
HOME Name of your home (login) directory
SECONDS Number of seconds since the shell wasinvoked
SHELL Pathname of the shell you are running
PWD Current directory
OLDPWD Previousdirectory before the last cd command

41 PREVIOUS HOME NEXT &
3.3 Options BOOK INDEX 3.5 Customi zation and
Subprocesses

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_04.htm (9 of 9) [2/8/2001 4:54:35 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 3] 3.5 Customization and Subprocesses

| Learning the KOrn Shell

4 PREVIOUS ~ Chapter 3 NEXT B
Customizing Your Environment

3.5 Customization and Subprocesses

Some of the variables discussed above are used by commands you may run-as opposed to the shell
itself-so that they can determine certain aspects of your environment. The majority, however, are not
even known outside the shell.

This dichotomy begs an important question: which shell "things' are known outside the shell, and which
are only internal? This question is at the heart of many misunderstandings about the shell and shell
programming. Before we answer, we'll ask it again in amore precise way: which shell "things' are
known to subprocesses? Remember that whenever you enter acommand, you are telling the shell to run
that command in a subprocess; furthermore, some complex programs may start their own subprocesses.

Now for the answer, which (like many UNIX concepts) is unfortunately not as simple as you might like.
A few things are known to subprocesses, but the reverse is not true: subprocesses can never make these
things known to the processes that created them.

Which things are known depends on whether the subprocess in question is a Korn shell program (see
Chapter 4) or interactive shell. If the subprocessis a Korn shell program, then it's possible to propagate

every type of thing we've seen in this chapter-aliases, options, and variables-plus afew we'll see later.

3.5.1 Environment Variables

By default, only one kind of thing is known to all kinds of subprocesses. a special class of shell variables
called environment variables. Some of the built-in variables we have seen are actually environment
variables: HISTFILE, HOME, LOGNAME, MAIL, MAILPATH, PATH, PWD, SHELL, and
TERM.

It should be clear why these and other variables need to be known by subprocesses. We have aready
seen the most obvious example: text editors like vi and emacs need to know what kind of terminal you
areusing; TERM istheir way of determining this. As another example, most UNIX mail programs allow
you to edit a message with your favorite text editor. How does mail know which editor to use? The value
of EDITOR (or sometimes VISUAL).

Any variable can become an environment variable. First it must be defined as usual; then it must be
exported with the command:

export varnanes

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_05.htm (1 of 3) [2/8/2001 4:54:38 PM]

[Chapter 3] 3.5 Customization and Subprocesses

(varnames can be alist of variable names separated by blanks.)

Y ou can also define variables to be in the environment of a particular subprocess (command) only, by
preceding the command with the variable assignment, like this:

var nane=val ue conmmand

Y ou can put as many assignments before the command as you want. [14] For example, assume that
you're using the emacs editor. Y ou are having problems getting it to work with your terminal, so you're
experimenting with different values of TERM . Y ou can do this most easily by entering commands that
look like:

[14] Thereis an obscure option, keyword, that (if turned on) lets you put this type of
environment variable definition anywhere on the command line, not just at the beginning.
Future releases, however, won't support this option.

TERM=t ryt hi sone enmacs fil enane

emacs will have trythisone defined asits value of TERM, yet the environment variable in your shell will
keep whatever value (if any) it had before. This syntax is not very widely used, so we won't seeit very
often throughout the remainder of this book.

Nevertheless, environment variables are important. Most .profile files include definitions of environment
variables; the sample built-in .profile earlier in this chapter contained two such definitions:

EDI TOR=/ usr/ 1 ocal / bi n/ enacs
SHELL=/ bi n/ ksh
export EDI TOR

For some reason, the Korn shell doesn't make EDITOR an environment variable by default. This means,
among other things, that mail will not know which editor to use when you want to edit a message. [15]
Therefore you would have to export it yourself by using the above export command in your .profile.

[15] Actually, it will default to the line editor ed. Y ou don't want that, now do you?

The second line in the above code is meant for systems that do not have the Korn shell installed as the
default shell, i.e., as/bin/sh. Some programs run shells as subprocesses within themselves (e.g., many
mail programs and the emacs editor's shell mode); by convention they use the SHEL L variableto
determine which shell to use.

Y ou can find out which variables are environment variables and what their values are by typing export
without arguments.

3.5.2 The Environment File

Although environment variables will always be known to subprocesses, the shell must be explicitly told
which other variables, options, aliases, etc., are to be communicated to subprocesses. The way to do this
isto put all such definitionsin a special file called the environment file instead of your .profile.

Y ou can call the environment file anything you like, aslong as you set the environment variable ENV to
the file'sname. The usual way to do thisis asfollows:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_05.htm (2 of 3) [2/8/2001 4:54:38 PM]

[Chapter 3] 3.5 Customization and Subprocesses

1. Decide which definitionsin your .profile you want to propagate to subprocesses. Remove them
from .profile and put them in afile you will designate as your environment file.

2. Put alineinyour .profile that tells the shell where your environment fileis:
ENV=envfi | enanme

3. For the changes to take effect, type either . .profile or login. [16] In either case, your environment
file will be run when the shell encounters the ENV = statement.

[16] The latter assumes that the Korn shell is defined as your login shell. If it isn't,
you must do the former - or better yet, have your system administrator install it as
your login shell!

Theidea of the environment file comes from the C shell's .cshrc file; thus, many Korn shell users who
came from the C shell world call their environment files .kshrc. (The rc suffix for initialization filesis
practically universal throughout the UNIX world. According to the folklore, it stands for "run
commands' and has originsin old DEC operating systems.)

Asageneral rule, you should put as few definitions as possible in .profile and as many as possible in
your environment file. Because definitions add to rather than take away from an environment, thereis
little chance that they will cause something in a subprocess not to work properly. (An exception might be
name clashes if you go overboard with aliases.)

The only things that really need to bein .profile are commands that aren't definitions but actually run or
produce output when you log in. Option and alias definitions should go into the environment file. In fact,
there are many Korn shell users who have tiny .profilefiles, e.g.:

stty stop *S intr ~"C erase "?
dat e

from

export ENV=~/.kshrc

(The from command, in some versions of UNIX, checksif you have any mail and prints alist of message
headers if you do.) Although thisisasmall .profile, this user's environment file could be huge.

41 PREVIOUS HOME HEXT B
3.4 Shell Variables BOOK INDEX 3.6 Customization Hints

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_05.htm (3 of 3) [2/8/2001 4:54:38 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 3] 3.6 Customization Hints

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS ~ Chapter 3 NEXT B
Customizing Your Environment

3.6 Customization Hints

Y ou should feel freeto try any of the techniques presented in this chapter. The best strategy isto test
something out by typing it into the shell during your login session; then if you decide you want to make it
a permanent part of your environment, add it to your .profile.

A nice, painless way to add to your .profile without going into atext editor makes use of the print
command and one of the Korn shell's editing modes. If you type a customization command in and later
decideto add it to your .profile, you can recal it via[CTRL-P] or [CTRL-R] (in emacs-mode) or |, -, or
? (vi-mode). Let'ssay thelineis:

PS1="($LOGNAME !) - >"

After you recall it, edit it so that it is preceded by a print command, surrounded by single quotes, and
followed by an 1/0 redirector that (as you will see in Chapter 7) appends the output to ~/.profile:

$ print ' PS1="($LOGNAME !)->"' >> ~/ .profile

Remember that the single quotes are important because they prevent the shell from trying to interpret
things like dollar signs, double quotes, and exclamation points.

Y ou should also feel free to snoop around other peoples .profiles for customization ideas. A quick way
to examine everyone's .profileis as follows: let's assume that all login directories are under /home. Then
yOu can type:

$ cat /hone/*/.profile > ~/other_profiles

and examine other people's .profiles with atext editor at your leisure (assuming you have read
permission on them). If other users have environment files, the file you just created will show what they
are, and you can examine them as well.

41 PREVIOUS HOME NEXT »
3.5 Customization and BOOK INDEX 4. Basic Shell Programming
Subprocesses

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch03_06.htm [2/8/2001 4:54:39 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 4] Basic Shell Programming

| Learning the KOrn Shell

4 PREVIOUS Chapter 4 MEXT

4. Basic Shell Programming

Contents:
Shell Scripts and Functions

Shell Variables

String Operators

Command Substitution

Advanced Examples: pushd and popd

If you have become familiar with the customization techniques we presented in the previous chapter, you
have probably run into various modifications to your environment that you want to make but can't-yet.
Shell programming makes these possible.

The Korn shell has some of the most advanced programming capabilities of any command interpreter of
its type. Although its syntax is nowhere near as elegant or consistent as that of most conventional
programming languages, its power and flexibility are comparable. In fact, the Korn shell can be used asa
complete environment for writing software prototypes.

Some aspects of Korn shell programming are really extensions of the customization techniques we have
aready seen, while others resemble traditional programming language features. We have structured this
chapter so that if you aren't a programmer, you can read this chapter and do quite a bit more than you
could with the information in the previous chapter. Experience with a conventional programming
language like Pascal or C is helpful (though not strictly necessary) for subsequent chapters. Throughout
the rest of the book, we will encounter occasional programming problems, called tasks, whose solutions
make use of the concepts we cover.

4.1 Shell Scripts and Functions

A script, or file that contains shell commands, is ashell program. Y our .profile and environment files,
discussed in Chapter 7, Input/Output and Command-line Processing are shell scripts.

Y ou can create a script using the text editor of your choice. Once you have created one, there are two
waysto run it. One, which we have already covered, isto type . scripthname (i.e., the command is a dot).
This causes the commands in the script to be read and run asif you typed them in.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_01.htm (1 of 6) [2/8/2001 4:54:48 PM]

[Chapter 4] Basic Shell Programming

The second way to run a script issimply to type its name and hit RETURN, just asif you were invoking
abuilt-in command. This, of course, is the more convenient way. This method makes the script ook just
like any other UNIX command, and in fact several "regular" commands are implemented as shell scripts
(i.e., not as programs originally written in C or some other language), including spell, man on some
systems, and various commands for system administrators. The resulting lack of distinction between
"user command files" and "built-in commands' is one factor in UNIX's extensibility and, hence, its
favored status among programmers.

Y ou can run a script by typing itsname only if . (the current directory) is part of your command search
path, i.e., isincluded in your PATH variable (as discussed in Chapter 3, Customizing Y our

Environment). If . isn't on your path, you must type . / scriptname, which isreally the same thing as
typing the script's absolute pathname (see Chapter 1, Korn Shell Basics).

Before you can invoke the shell script by name, you must also give it "execute" permission. If you are
familiar with the UNIX filesystem, you know that files have three types of permissions (read, write, and
execute) and that those permissions apply to three categories of user (the file's owner, a group of users,
and everyone else). Normally, when you create a file with atext editor, the file is set up with read and
write permission for you and read-only permission for everyone else.

Therefore you must give your script execute permission explicitly, by using the chmod(1) command. The
simplest way to do thisisto type:

$ chnod +x scri ptnanme

Y our text editor will preserve this permission if you make subsequent changes to your script. If you don't
add execute permission to the script and you try to invoke it, the shell will print the message:

SCI’ipt nane: cannot execute.

But there is amore important difference between the two ways of running shell scripts. While the "dot"
method causes the commands in the script to be run as if they were part of your login session, the "just
the name" method causes the shell to do a series of things. First, it runs another copy of the shell asa
subprocess; thisis caled a subshell. The subshell then takes commands from the script, runs them, and
terminates, handing control back to the parent shell.

Figure 4.1 shows how the shell executes scripts. Assume you have a simple shell script called fred that
contains the commands bob and dave. In Figure 4.1.a, typing .fred causes the two commandsto runin
the same shell, just asif you had typed them in by hand. Figure 4.1.b shows what happens when you type
just fred: the commands run in the subshell while the parent shell waits for the subshell to finish.

Y ou may find it interesting to compare this with the situation in Figure 4-1.c, which shows what happens
when you typefred & . Asyou will recall from Chapter 1 the & makes the command run in the

background, which isreally just another term for "subprocess.” It turns out that the only significant
difference between Figure 4.1.c and Figure 4-1.b is that you have control of your terminal or workstation

while the command runsmdash;you need not wait until it finishes before you can enter further
commands.

Figure 4.1: Ways to run a shell script

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_01.htm (2 of 6) [2/8/2001 4:54:48 PM]

[Chapter 4] Basic Shell Programming

2]
0
Sheil:

fred " —
c

Shal | fred & ', - -

There are many ramifications to using subshells. An important one is that the exported environment
variables that we saw in the last chapter (e.g., TERM, LOGNAME, PWD) are known in subshells,
whereas other shell variables (such as any that you define in your .profile without an export statement)
are not.

Other issues involving subshells are too complex to go into now; see Chapter 7, and Chapter 8, Process
Handling, for more details about subshell 1/0O and process characteristics, respectively. For now, just bear
in mind that a script normally runsin a subshell.

4.1.1 Functions

The Korn shell's function feature is an expanded version of asimilar facility in the System V Bourne
shell and afew other shells. A function is sort of a script-within-a-script; you useit to define some shell
code by name and store it in the shell's memory, to be invoked and run later.

Functions improve the shell's programmability significantly, for two main reasons. First, when you
invoke afunction, it is already in the shell's memory (except for autoloaded functions; see section titled
"Autoloaded Functions"); therefore a function runs faster. Modern computers have plenty of memory, so
there is no need to worry about the amount of space atypical function takes up. For this reason, most
peopl e define as many functions as possible rather than keep lots of scripts around.

The other advantage of functionsisthat they are ideal for organizing long shell scripts into modular
"chunks" of code that are easier to develop and maintain. If you aren't a programmer, ask one what life
would be like without functions (also called procedures or subroutinesin other languages) and you'll
probably get an earful.

To define afunction, you can use either one of two forms:
function functnane {

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_01.htm (3 of 6) [2/8/2001 4:54:48 PM]

[Chapter 4] Basic Shell Programming

shel | conmmands

or:

functnanme () {
shel | conmands
}

There is no difference between the two. Perhaps the first form was created to appeal to Pascal, Modula,
and Ada programmers, while the second resembles C; in any case, we will use the first form in this book.
Y ou can also delete a function definition with the command unset -f functname.

When you define afunction, you tell the shell to store its name and definition (i.e., the shell commandsiit
contains) in memory. If you want to run the function later, just typein its name followed by any
arguments, asif it were a shell script.

Y ou can find out what functions are defined in your login session by typing functions. [1] The shell will
print not just the names but the definitions of all functions, in alphabetical order by function name. Since
this may result in long output, you might want to pipe the output through more or redirect it to afile for
examination with atext editor.

[1] Thisisactualy an alias for typeset -f; see Chapter 6, Command-line Options and Typed
Variables.

Apart from the advantages, there are two important differences betweeen functions and scripts. First,
functions do not run in separate processes, as scripts are when you invoke them by name; the "semantics’
of running afunction are more like those of your .profile when you log in or any script when invoked
with the "dot" command. Second, if afunction has the same name as a script or executable program, the
function takes precedence.

Thisisagood time to show the order of precedence for the various sources of commands. When you
type a command to the shell, it looksin the following places until it finds a match:

1. Keywords such as function and severa others, likeif and for, that we will seein Chapter 5, Flow
Control

2. Aliases[2]

[2] However, it is possible to define an alias for a keyword, e.g., alias
aslongas=while. See Chapter 7 for more details.

3. Built-inslike cd and whence
4. Functions

5. Scripts and executable programs, for which the shell searches in the directories listed in the PATH
environment variable

WEe'll examine this process in more detail in the section on command-line processing in Chapter 7.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_01.htm (4 of 6) [2/8/2001 4:54:48 PM]

[Chapter 4] Basic Shell Programming

If you need to know the exact source of acommand, there is an option to the whence built-in command
that we saw in Chapter 3. whence by itself will print the pathname of acommand if the command isa
script or executable program, but it will only parrot the command's name back if it is anything else. But if
you type whence -v commandname, you get more complete information, such as:

$ whence -v cd

cd is a shell builtin

$ whence -v function
function is a keyword

$ whence -v nman

man i s /usr/bin/man

$ whence -v ||

Il is an alias for |s -|

We will refer mainly to scripts throughout the remainder of this book, but unless we note otherwise, you
should assume that whatever we say applies equally to functions.

4.1.1.1 Autoloaded functions

The simplest place to put your function definitionsisin your .profile or environment file. Thisisfine for
asmall number of functions, but if you accumulate lots of them-as many shell programmers eventually
do-you may find that logging in or invoking shell scripts (both of which involve processing your
environment file) takes an unacceptably long time, and that it's hard to navigate so many function
definitionsin asinglefile.

The Korn shell's autoload feature addresses these problems. If you put the command autoload fname [3]
in your .profile or environment file, instead of the function's definition, then the shell won't read in the
definition of fname until it's actually called. autoload can take more than one argument.

[3] autoload is actually an alias for typeset -fu; see Chapter 6.

How does the shell know where to get the definition of an autoloaded function? It uses the built-in
variable FPATH, which isalist of directorieslike PATH. The shell looks for afile called fname that
contains the definition of function fname in each of the directoriesin FPATH.

For example, assume this code isin your environment file:

FPATH=~/ f uncs
aut ol oad dave

When you invoke the command dave, the shell will ook in the directory ~/funcs for afile called dave
that has the definition of function dave. If it doesn't find the file, or if the file exists but doesn't contain
the proper function definition, the shell will complain with a"not found" message, just as if the command
didn't exist at all.

Function autoloading and FPATH are aso useful tools for system administrators who need to set up
system-wide Korn shell environments. See Chapter 10, Korn Shell Administration.

41 PREVIQUS HOME HEXT &

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_01.htm (5 of 6) [2/8/2001 4:54:48 PM]

[Chapter 4] Basic Shell Programming
3.6 Customization Hints BOOK INDEX 4.2 Shell Variables

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_01.htm (6 of 6) [2/8/2001 4:54:48 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 4] 4.2 Shell Variables

| Learning the KOrn Shell

4 PREVIOUS - Chapter 4 NEXT B
Basic Shell Programming

4.2 Shell Variables

A major piece of the Korn shell's programming functionality relates to shell variables. We've already
seen the basics of variables. To recap briefly: they are named places to store data, usually in the form of
character strings, and their values can be obtained by preceding their names with dollar signs ($). Certain
variables, called environment variables, are conventionally named in all capital letters, and their values
are made known (with the export statement) to subprocesses.

If you are a programmer, you already know that just about every major programming language uses
variables in some way; in fact, an important way of characterizing differences between languagesis
comparing their facilities for variables.

The chief difference between the Korn shell's variable schema and those of conventional languagesis
that the Korn shell's places heavy emphasis on character strings. (Thusit has more in common with a
special-purpose language like SNOBOL than a general-purpose one like Pascal.) Thisis also true of the
Bourne shell and the C shell, but the Korn shell goes beyond them by having additional mechanisms for
handling integers (explicitly) and simple arrays.

4.2.1 Positional Parameters

Aswe have already seen, you can define values for variables with statements of the form
varname=value, e.g..

$ fred=bob
$ print "$fred"
bob

Some environment variables are predefined by the shell when you log in. There are other built-in
variables that are vital to shell programming. We will ook at afew of them now and save the others for
later.

The most important special, built-in variables are called positional parameters. These hold the
command-line arguments to scripts when they are invoked. Positional parameters have names 1, 2, 3,
etc., meaning that their values are denoted by $1, $2, $3, etc. There is also a positional parameter O,
whose value is the name of the script (i.e., the command typed in to invoke it).

Two special variables contain all of the positional parameters (except positional parameter 0): * and @.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_02.htm (1 of 5) [2/8/2001 4:54:59 PM]

[Chapter 4] 4.2 Shell Variables

The difference between them is subtle but important, and it's apparent only when they are within double
quotes.

"$*" isasingle string that consists of all of the positional parameters, separated by the first character in
the environment variable | FS (internal field separator), which is a space, TAB, and NEWLINE by
default. On the other hand, " $@" isequa to" $1" " $2" ... " $N" , where N is the number of positiona
parameters. That is, it's equal to N separate double-quoted strings, which are separated by spaces. Welll
explore the ramifications of thisdifferencein alittle while.

The variable # holds the number of positional parameters (as a character string). All of these variables are
"read-only," meaning that you can't assign new values to them within scripts.

For example, assume that you have the following simple shell script:
print "fred: $@
print "$0: $1 and $2"
print "$# argunents”

Assume further that the script is called fred. Then if you type fred bob dave, you will see the following
outpult:

fred: bob dave
fred: bob and dave
2 argunents

In this case, $3, $4, etc., are all unset, which means that the shell will substitute the empty (or null) string
for them. [4]

[4] Unless the option nounset is turned on.
4.2.1.1 Positional parameters in functions

Shell functions use positional parameters and specia variableslike* and # in exactly the same way as
shell scripts do. If you wanted to define fred as a function, you could put the following in your .profile or
environment file:

function fred {
print "fred: $*"
print "$0: $1 and $2"
print "$# argunents”

}
Y ou will get the same result if you type fred bob dave.

Typically, severa shell functions are defined within a single shell script. Therefore each function will
need to handle its own arguments, which in turn means that each function needs to keep track of
positional parameters separately. Sure enough, each function has its own copies of these variables (even
though functions don't run in their own subshells, as scripts do); we say that such variables are local to
the function.

However, other variables defined within functions are not local [5] (they are global), meaning that their

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_02.htm (2 of 5) [2/8/2001 4:54:59 PM]

[Chapter 4] 4.2 Shell Variables

values are known throughout the entire shell script. For example, assume that you have a shell script
called ascript that contains this:

[5] However, see the section on typeset in Chapter 6 for away of making variableslocal to
functions.

function afunc {
print in function $0: $1 $2
var1="in function"

}

var 1="out si de of function"

print varl: $varl

print $0: $1 $2

afunc funcargl funcarg2

print varl: $varl

print $0: $1 $2

If you invoke this script by typing ascript argl arg2, you will see this output:

varl: outside of function

ascript: argl arg2

in function afunc: funcargl funcarg2
varl: in function

ascript: argl arg2

In other words, the function afunc changes the value of the variable var 1 from "outside of function” to
"in function," and that change is known outside the function, while $0, $1, and $2 have different values
in the function and the main script. Figure 4.2 shows this graphically.

Figure 4.2: Functions have their own positional parameters

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_02.htm (3 of 5) [2/8/2001 4:54:59 PM]

[Chapter 4] 4.2 Shell Variables

script ascript
varname | - known in script only

- Known i funchion only

VAMAME | - known i scopt and fusction

o

Svan

31

Wis

function #fune

51

BJil§

It is possible to make other variables local to functions by using the typeset command, which we'll seein
Chapter 6. Now that we have this background, let's take acloser look at " $@" and " $* " . These
variables are two of the shell's greatest idiosyncracies, so we'll discuss some of the most common sources
of confusion.

o Why arethe elementsof " $* " separated by the first character of | FSinstead of just spaces? To
give you output flexibility. Asasimple example, let's say you want to print alist of positional
parameters separated by commas. This script would do it:

| FS=,
print $*

Changing I FSin ascript isfairly risky, but it's probably OK aslong as nothing else in the script
depends on it. If this script were called arglist, then the command ar glist bob dave ed would
produce the output bob,dave,ed. Chapter 10 contains another example of changing I FS.

« Why does" $@" act like N separate double-quoted strings? To allow you to use them again as
separate values. For example, say you want to call a function within your script with the samelist
of positional parameters, like this:

function countargs {
print "$# args."
}

Assume your script is called with the same arguments as arglist above. Then if it contains the
command countargs" $*" , the function will print 1 args. But if the command is countar gs

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_02.htm (4 of 5) [2/8/2001 4:54:59 PM]

[Chapter 4] 4.2 Shell Variables

" $@" , the function will print 3 args.

4.2.2 More on Variable Syntax

Before we show the many things you can do with shell variables, we have to make a confession: the
syntax of $varname for taking the value of avariableis not quite accurate. Actualy, it's the simple form
of the more general syntax, which is ${varname}.

Why two syntaxes? For one thing, the more general syntax is necessary if your code refers to more than
nine positional parameters. you must use ${10} for the tenth instead of $10. Aside from that, consider the
example, from Chapter 3, of setting your primary prompt variable (PS1) to your login name:

PS1="($LOGNAMNE) - > "

This happens to work because the right parenthesis immediately following LOGNAME is"specid” (in
the sense of the specia characters introduced in Chapter 1) so that the shell doesn't mistake it for part of
the variable name. Now suppose that, for some reason, you want your prompt to be your login name
followed by an underscore. If you type:

PS1="$LOGNANME

then the shell will try to use "LOGNAME " asthe name of the variable, i.e., to take the value of
$LOGNAME . Since thereis no such variable, the value defaults to null (the empty string, "), and PS1
IS set to just a single space.

For this reason, the full syntax for taking the value of avariable is ${varname}. So if we used
PS1="${ LOGNAME} _ "

we would get the desired $yourname . It is safe to omit the curly brackets ({}) if the variable nameis
followed by a character that isn't aletter, digit, or underscore.

41 PREVIOUS HOME NEXT »
4.1 Shell Scriptsand BOOK INDEX 4.3 String Operators
Functions

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_02.htm (5 of 5) [2/8/2001 4:54:59 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 4] 4.3 String Operators

| Learning the KOrn Shell

4 PREVIOUS - Chapter 4 NEXT B
Basic Shell Programming

4.3 String Operators

The curly-bracket syntax allows for the shell's string operators. String operators allow you to manipul ate
values of variablesin various useful ways without having to write full-blown programs or resort to
external UNIX utilities. You can do alot with string-handling operators even if you haven't yet mastered
the programming features we'll seein later chapters.

In particular, string operators let you do the following:
« Ensurethat variables exist (i.e., are defined and have non-null values)
o Set default valuesfor variables
« Catch errors that result from variables not being set

« Remove portions of variables' values that match patterns

4.3.1 Syntax of String Operators

The basic idea behind the syntax of string operatorsisthat specia characters that denote operations are
inserted between the variable's name and the right curly brackets. Any argument that the operator may
need isinserted to the operator's right.

Thefirst group of string-handling operators tests for the existence of variables and allows substitutions of
default values under certain conditions. These arelisted in Table 4.1. [6]

[6] The colon (:) in each of these operatorsis actually optional. If the colon is omitted, then
change "existsand isn't null" to "exists' in each definition, i.e., the operator tests for
existence only.

Table 4.1 Substitution Operators

Oper ator Substitution

${varname: -word} If varname exists and isn't null, return its value; otherwise return word.

Pur pose: Returning a default value if the variable is undefined.

Example: ${count:-0} evaluatesto O if count is undefined.

$ varname: =word} If varname exists and isn't null, return its value; otherwise set it to word and then

return itsvalue.[7]

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (1 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

Pur pose: Setting a variable to adefault value if it is undefined.

Example: ${count:=0} sets count to O if it is undefined.

${varname: ?message} If varname exists and isn't null, return its value; otherwise print varname:
followed by message, and abort the current command or script. Omitting
message produces the default message parameter null or not set.

Pur pose: Catching errors that result from variables being undefined.

Example: {count: ?" undefined!" } prints" count: undefined!" and exitsif count is
undefined.

${varname: +word} If varname exists and isn't null, return word; otherwise return null.

Pur pose: Testing for the existence of avariable.

Example: ${count:+1} returns 1 (which could mean "true") if count is defined.

[7] Pascal, Modula, and Ada programmers may find it helpful to recognize the similarity of
this to the assignment operators in those languages.

Thefirst two of these operators are ideal for setting defaults for command-line arguments in case the user
omits them. We'll use the first onein our first programming task.

Task 4.1

Y ou have alarge album collection, and you want to write some software to keep track of it.
Assume that you have afile of data on how many albums you have by each artist. Linesin
thefilelook like this:

14 Bach, J.S.

1 Bal achander, S.
21 Beat | es

6 Bl akey, Art

Write a program that prints the N highest lines, i.e., the N artists by whom you have the most
abums. The default for N should be 10. The program should take one argument for the
name of the input file and an optional second argument for how many linesto print.

By far the best approach to this type of script isto use built-in UNIX utilities, combining them with I/O
redirectors and pipes. Thisisthe classic "building-block” philosophy of UNIX that is another reason for
its great popularity with programmers. The building-block technique lets us write afirst version of the
script that is only one line long:

sort -nr $1 | head -${2:-10}

Hereis how this works: the sort(1) program sorts the data in the file whose name is given as the first
argument ($1). The -n option tells sort to interpret the first word on each line as a number (instead of asa
character string); the -r tellsit to reverse the comparisons, so as to sort in descending order.

The output of sort is piped into the head(1) utility, which, when given the argument -N, printsthefirst N

lines of itsinput on the standard output. The expression -${2:-10} evaluates to a dash (-) followed by the
second argument if it isgiven, or to -10 if it's not; notice that the variable in this expression is 2, which is
the second positional parameter.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (2 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

Assume the script we want to write is called highest. Then if the user types highest myfile, the line that
actualy runsis:

sort -nr nyfile | head -10

Or if the user types highest myfile 22, the line that runsis:
sort -nr nyfile | head -22

Make sure you understand how the :- string operator provides a default value.

Thisis a perfectly good, runnable script-but it has afew problems. First, itsone lineis abit cryptic.
While thisisn't much of a problem for such atiny script, it's not wise to write long, elaborate scriptsin
this manner. A few minor changes will make the code more readable.

First, we can add comments to the code; anything between # and the end of aline isacomment. At a
minimum, the script should start with afew comment lines that indicate what the script does and what
arguments it accepts. Second, we can improve the variable names by assigning the values of the
positional parameters to regular variables with mnemonic names. Finally, we can add blank lines to
space things out; blank lines, like comments, are ignored. Here is a more readable version:

hi ghest fil ename [howmany]

Print howmany hi ghest-nunbered lines in file filenane.
The input file is assuned to have lines that start with
nunbers. Default for howmany is 10.

HHEFHHHEFH

fil ename=%$1

howrany=${ 2: - 10}
sort -nr $filenane | head -$howrany

The square brackets around howmany in the comments adhere to the convention in UNIX
documentation that square brackets denote optional arguments.

The changes we just made improve the code's readability but not how it runs. What if the user were to
invoke the script without any arguments? Remember that positional parameters default to null if they
aren't defined. If there are no arguments, then $1 and $2 are both null. The variable howmany ($2) is set
up to default to 10, but there is no default for filename ($1). The result would be that this command runs:

sort -nr | head -10

As it happens, if sort is called without a filename argument, it expects input to come from standard input,
e.g., apipe () or auser'sterminal. Since it doesn't have the pipe, it will expect the terminal. This means
that the script will appear to hang! Although you could always type [CTRL-D] or [CTRL-C] to get out of
the script, anaive user might not know this.

Therefore we need to make sure that the user supplies at least one argument. There are afew ways of
doing this; one of them involves another string operator. We'll replace the line:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (3 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

filenanme=%$1

with:

filename=${1: ?"fil ename m ssing."}
Thiswill cause two things to happen if a user invokes the script without any arguments: first the shell
will print the somewhat unfortunate message:

hi ghest: 1. filenane m ssing.

to the standard error output. Second, the script will exit without running the remaining code.

With a somewhat "kludgy" modification, we can get a slightly better error message. Consider this code:
filename=$1
filename=${fil enanme: ?"m ssing."}

Thisresults in the message:
hi ghest: fil enane: m ssing.

(Make sure you understand why.) Of course, there are ways of printing whatever message is desired;
we'll find out how in Chapter 5.

Before we move on, we'll look more closely at the two remaining operatorsin Table 4.1 and see how we

can incorporate them into our task solution. The := operator does roughly the same thing as :-, except
that it has the "side effect” of setting the value of the variable to the given word if the variable doesn't
exist.

Therefore we would like to use := in our script in place of :-, but we can't; we'd be trying to set the value
of apositiona parameter, which isnot allowed. But if we replaced:

howrany=${ 2: - 10}
with just:

howrany=$2
and moved the substitution down to the actual command line (as we did at the start), then we could use
the := operator:

sort -nr $filenane | head -${howrany: =10}

Using := has the added benefit of setting the value of howmany to 10 in case we need it afterwards in
later versions of the script.

The final substitution operator is:+. Hereis how we can useit in our example: Let's say we want to give
the user the option of adding a header line to the script's output. If he or she types the option -h, then the
output will be preceded by the line:

ALBUMS ARTI ST

Assume further that this option ends up in the variable header, i.e., $header is-h if the option is set or
null if not. (Later we will see how to do this without disturbing the other positional parameters.)

The expression:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (4 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

${ header : +" ALBUMS ARTI ST\ n"}

yields null if the variable header isnull, or ALBUMS ARTIST\n if itisnon-null. This means that we
can put the line:

print -n ${header:+"ALBUVS ARTI ST\ n"}

right before the command line that does the actual work. The -n option to print causesit not to print a
LINEFEED after printing its arguments. Therefore this print statement will print nothing-not even a
blank line-if header is null; otherwise it will print the header line and a LINEFEED (\n).

4.3.2 Patterns and Regular Expressions

WE'I continue refining our solution to Task 4-1 later in this chapter. The next type of string operator is
used to match portions of avariable's string value against patterns. Patterns, as we saw in Chapter 1 are

strings that can contain wildcard characters (*, ?, and [] for character sets and ranges).

Wildcards have been standard features of all UNIX shells going back (at Ieast) to the Version 6 Bourne
shell. But the Korn shell isthe first shell to add to their capabilities. It adds a set of operators, called
regular expression (or regexp for short) operators, that give it much of the string-matching power of
advanced UNIX utilities like awk(1), egrep(1) (extended grep(1)) and the emacs editor, albeit with a
different syntax. These capabilities go beyond those that you may be used to in other UNIX utilitieslike
grep, sed(1) and vi(1).

Advanced UNIX users will find the Korn shell's regular expression capabilities occasionally useful for
script writing, although they border on overkill. (Part of the problem is the inevitable syntactic clash with
the shell's myriad other special characters.) Therefore we won't go into great detail about regular
expressions here. For more comprehensive information, the "last word" on practical regular expressions
in UNIX issed & awk, an O'Reilly Nutshell Handbook by Dale Dougherty. If you are already
comfortable with awk or egrep, you may want to skip the following introductory section and go to "Korn
Shell Versus awk/egrep Regular Expressions” below, where we explain the shell's regular expression
mechanism by comparing it with the syntax used in those two utilities. Otherwise, read on.

4.3.2.1 Regular expression basics

Think of regular expressions as strings that match patterns more powerfully than the standard shell
wildcard schema. Regular expressions began as an ideain theoretical computer science, but they have
found their way into many nooks and crannies of everyday, practical computing. The syntax used to
represent them may vary, but the concepts are very much the same.

A shell regular expression can contain regular characters, standard wildcard characters, and additional
operators that are more powerful than wildcards. Each such operator has the form x(exp), where x is the
particular operator and exp is any regular expression (often simply aregular string). The operator
determines how many occurrences of exp a string that matches the pattern can contain. See Table 4.2 and

Table 4.3.

Table 4.2: Regular Expression Operators
Operator Meaning

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (5 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

* (exp) 0 or more occurrences of exp
+(exp) 1 or more occurrences of exp
?(exp) 0 or 1 occurrences of exp
@(expllexp2)|...) expl or exp2 or...

I(exp) Anything that doesn't match exp [8]

[8] Actualy, !(exp) is not aregular expression operator by the standard technical definition,
though it is a handy extension.

Table 4.3: Regular Expression
Operator Examples

Expression Matches

X X
*(X) Null string, X, XX, XXX, ...
+(X) X, XX, XXX, ...

?2(X) Null string, x

I(X) Any string except x
@x) X (see below)

Regular expressions are extremely useful when dealing with arbitrary text, as you already know if you
have used grep or the regular-expression capabilities of any UNIX editor. They aren't nearly as useful for
matching filenames and other ssimple types of information with which shell userstypically work.
Furthermore, most things you can do with the shell's regular expression operators can also be done
(though possibly with more keystrokes and less efficiency) by piping the output of a shell command

through grep or egrep.

Nevertheless, here are afew examples of how shell regular expressions can solve filename-listing
problems. Some of these will come in handy in later chapters as pieces of solutionsto larger tasks.

1. The emacs editor supports customization files whose names end in .el (for Emacs LISP) or .elc
(for Emacs LISP Compiled). List all emacs customization files in the current directory.

2. Inadirectory of C source code, list all filesthat are not necessary. Assume that "necessary" files
endin.cor .h, or are named Makefile or README.

3. Filenamesinthe VAX/VMS operating system end in a semicolon followed by a version number,
e.g., fred.bob;23. List all VAX/VMS-style filenamesin the current directory.

Here are the solutions;

1. Inthefirst of these, we are looking for files that end in .el with an optional c. The expression that
matchesthisis* .el?(c).

2. The second example depends on the four standard subexpressions * .c, * .h, M akefile, and
README. The entire expressionis!(* .c|* .h|MakefileREADM E), which matches anything that
does not match any of the four possibilities.

3. The solution to the third example starts with * \; : the shell wildcard * followed by a

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (6 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

backslash-escaped semicolon. Then, we could use the regular expression +([0-9]), which matches
one or more charactersin the range [0-9], i.e., one or more digits. Thisis amost correct (and
probably close enough), but it doesn't take into account that the first digit cannot be 0. Therefore
the correct expression is * \;[1-9]* ([0-9]), which matches anything that ends with a semicolon, a
digit from 1to 9, and zero or more digitsfrom 0 to 9.

Regular expression operators are an interesting addition to the Korn shell's features, but you can get
along well without them-even if you intend to do a substantial amount of shell programming.

In our opinion, the shell's authors missed an opportunity to build into the wildcard mechanism the ability
to match files by type (regular, directory, executable, etc., asin some of the conditional tests we will see
in Chapter 5) as well as by name component. We feel that shell programmers would have found this

more useful than arcane regular expression operators.

The following section compares Korn shell regular expressions to analogous features in awk and egrep.
If you aren't familiar with these, skip to the section entitled " Pattern-matching Operators.”

4.3.2.2 Korn shell versus awk/egrep regular expressions

Table 4.4 is an expansion of Table 4.2: the middle column shows the equivalents in awk/egrep of the
shell's regular expression operators.

Table 4.4: Shell Versus egrep/awk Regular Expression

Operators
Korn Shell egrep/awk Meaning
* (exp) exp* 0 or more occurrences of exp
+(exp) exp+ 1 or more occurrences of exp
?(exp) exp? 0 or 1 occurrences of exp
@(expllexp2|...) expllexp2)|... expl or exp2 or...
I(exp) (none) Anything that doesn't match exp

These equivalents are close but not quite exact. Actually, an exp within any of the Korn shell operators
can be a series of expl|exp2)|... alternates. But because the shell would interpret an expression like
davelfred|bob as a pipeline of commands, you must use @(davelfr ed|bob) for alternates by themselves.

For example:
« (@(davelfred|bob) matches dave, fred, or bob.

« *(davelfred|bob) means, "0 or more occurrences of dave, fred, or bob". This expression matches
strings like the null string, dave, davedave, fred, bobfred, bobbobdavefredbobfred, etc.

« +(davelfred|bob) matches any of the above except the null string.
» ?(davelfred|bob) matches the null string, dave, fred, or bob.
« !(davelfred|bob) matches anything except dave, fred, or bab.

It isworth re-emphasizing that shell regular expressions can still contain standard shell wildcards. Thus,

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (7 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

the shell wildcard ? (match any single character) isthe equivalent to . in egrep or awk, and the shell's
character set operator [...] isthe same asin those utilities. [9] For example, the expression +([0-9])
matches a number, i.e., one or more digits. The shell wildcard character * is equivalent to the shell
regular expression * (?) .

[9] And, for that matter, the same asin grep, sed, ed, vi, €tc.
A few egrep and awk regexp operators do not have equivaents in the Korn shell. These include:
« The beginning- and end-of-line operators* and $.
« The beginning- and end-of-word operators \< and \>.
o Repeat factorslike \{N\} and \{M , N'\}.

Thefirst two pairs are hardly necessary, since the Korn shell doesn't normally operate on text files and
does parse strings into words itself.

4.3.3 Pattern-matching Operators

Table 4.5 lists the Korn shell's pattern-matching operators.

Table 4.5: Pattern-matching Operators

Operator Meaning

${ variable#pattern} If the pattern matches the beginning of the variable's value, delete the shortest
part that matches and return the rest.

${ variablet#pattern} If the pattern matches the beginning of the variable's value, delete the longest
part that matches and return the rest.

${ variableYopattern} If the pattern matches the end of the variable's value, delete the shortest part that
matches and return the rest.

${ variable%%opattern} If the pattern matches the end of the variable's value, delete the longest part that
matches and return the rest.

These can be hard to remember, so here's a handy mnemonic device: # matches the front because number
signs precede numbers; % matches the rear because percent signs follow numbers.

The classic use for pattern-matching operatorsisin stripping off components of pathnames, such as
directory prefixes and filename suffixes. With that in mind, here is an example that shows how all of the
operators work. Assume that the variable path has the value /home /billr/menviong.file.name; then:

Expressi on Resul t

${ pat h##/ */ } | ong. fil e. nane
${pat h#/ */} billr/mem|ong.file.nane
$pat h /[honme/billr/menilong. file.nane
${ pat h% *} /[home/billr/menmllong.file

${ pat h%®s *} / home/ bi | | r/ men | ong

The two patterns used here are/ */ , which matches anything between two slashes, and .* , which
matches a dot followed by anything.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (8 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

We will incorporate one of these operators into our next programming task.
Task 4.2

Y ou are writing a C compiler, and you want to use the Korn shell for your front-end.[10]
[10] Don't laugh-many UNIX compilers have shell scripts as front-ends.

Think of a C compiler as a pipeline of data processing components. C source code is input to the
beginning of the pipeline, and object code comes out of the end; there are several stepsin between. The
shell script's task, among many other things, is to control the flow of data through the components and to
designate output files.

Y ou need to write the part of the script that takes the name of the input C source file and creates from it
the name of the output object code file. That is, you must take a filename ending in .c and create a
filename that is similar except that it endsin .o.

Thetask at hand is to strip the .c off the filename and append .o. A single shell statement will do it:
obj name=${fil enane% c}. o

Thistells the shell to look at the end of filename for .c. If there is amatch, return $filename with the
match deleted. So if filename had the value fred.c, the expression ${filename% .c} would return fred.
The .o is appended to make the desired fred.o, which is stored in the variable objname.

If filename had an inappropriate value (without .c) such asfred.a, the above expression would evaluate
to fred.a.o: since there was no match, nothing is deleted from the value of filename, and .o is appended
anyway. And, if filename contained more than one dot-e.g., if it were the y.tab.c that is so infamous
among compiler writers-the expression would still produce the desired y.tab.o. Notice that this would not
be true if we used % % in the expression instead of % . The former operator uses the longest match
instead of the shortest, so it would match .tab.o and evaluate to y.o rather than y.tab.o. So the single % is
correct in this case.

A longest-match deletion would be preferable, however, in the following task.
Task 4.3

Y ou are implementing afilter that prepares atext file for printer output. Y ou want to put the
file's name-without any directory prefix-on the "banner" page. Assume that, in your script,
you have the pathname of the file to be printed stored in the variable pathname.

Clearly the objective is to remove the directory prefix from the pathname. The following line will do it:
banner name=${ pat hnanme##*/}

This solution is similar to the first line in the examples shown before. If pathname were just afilename,
the pattern * / (anything followed by a slash) would not match and the value of the expression would be
pathname untouched. If pathname were something like fred/bob, the prefix fred/ would match the
pattern and be deleted, leaving just bob as the expression's value. The same thing would happen if
pathname were something like /dave/pete/fred/bob: since the ## del etes the longest match, it deletes the
entire /dave/pete/fred/.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (9 of 10) [2/8/2001 4:55:05 PM]

[Chapter 4] 4.3 String Operators

If we used #* / instead of ##* /, the expression would have the incorrect value dave/pete/fred/bob,
because the shortest instance of "anything followed by aslash” at the beginning of the string isjust a
dash (/).

The construct ${ variablet#* /} is actually equivalent to the UNIX utility basename(1). basename takes a
pathname as argument and returns the filename only; it is meant to be used with the shell's command
substitution mechanism (see below). basename is less efficient than ${ variablet##/* } because it runsin
its own separate process rather than within the shell. Another utility, dirname(1), does essentially the
opposite of basename: it returns the directory prefix only. It is equivalent to the Korn shell expression
${variable%o /*} and isless efficient for the same reason.

4.3.4 Length Operator

There are two remaining operators on variables. One is ${ #varname}, which returns the length of the
value of the variable as a character string. (In Chapter 6 we will see how to treat this and similar values
as actual numbers so they can be used in arithmetic expressions.) For example, if filename has the value
fred.c, then ${#filename} would have the value 6. The other operator (${#array[*]}) hasto do with
array variables, which are also discussed in Chapter 6.

41 PREVIOUS HOME HEXT B
4.2 Shell Variables BOOK INDEX 4.4 Command Substitution

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_03.htm (10 of 10) [2/8/2001 4:55:05 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 4] 4.4 Command Substitution

| Learning the KOrn Shell

4 PREVIOUS Chapter 4 MEXT

Basic Shell Programming

4.4 Command Substitution

From the discussion so far, we've seen two ways of getting values into variables: by assignment
statements and by the user supplying them as command-line arguments (positional parameters). Thereis
another way: command substitution, which allows you to use the standard output of acommand asif it
were the value of avariable. Y ou will soon see how powerful thisfeatureis.

The syntax of command substitution is: [11]

[11] Bourne and C shell users should note that the command substitution syntax of those
shells, " UNIX command™ (with backward quotes, a.k.a. grave accents), is also supported by
the Korn shell for backward compatibility reasons. However, Korn shell documentation
considers this syntax archaic. It is harder to read and |ess conducive to nesting.

$(UNI X comand)

The command inside the parenthesisis run, and anything the command writes to standard output is
returned as the value of the expression. These constructs can be nested, i.e., the UNIX command can
contain command substitutions.

Here are some simple examples:

The value of $(pwd) isthe current directory (same as the environment variable $PWD).
The value of $(1s) isthe names of adl filesin the current directory, separated by NEWLINEs.

To find out detailed information about a command if you don't know where itsfile resides, typels
-1 $(whence -p command). The -p option forces whence to do a pathname lookup and not consider
keywords, built-ins, etc.

To get the contents of afile into avariable, you can use varname=3$(< filename). $(cat filename)
will do the same thing, but the shell catches the former as a built-in shorthand and runs it more
efficiently.

If you want to edit (with emacs) every chapter of your book on the Korn shell that has the phrase
"command substitution,” assuming that your chapter files all begin with ch, you could type:

emacs $(grep -1 'conmand substitution' ch*)

The -l option to grep prints only the names of files that contain matches.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_04.htm (1 of 5) [2/8/2001 4:55:08 PM]

[Chapter 4] 4.4 Command Substitution

Command substitution, like variable and tilde expansion, is done within double quotes. Therefore, our
rule in Chapter 1 and Chapter 3, about using single quotes for strings unless they contain variables will
now be extended: "When in doubt, use single quotes, unless the string contains variables or command

substitutions, in which case use double quotes.”

Y ou will undoubtedly think of many ways to use command substitution as you gain experience with the
Korn shell. One that is a bit more complex than those mentioned previoudly relates to a customization
task that we saw in Chapter 3: personalizing your prompt string.

Recall that you can personalize your prompt string by assigning a value to the variable PSL1. If you are on
anetwork of computers, and you use different machines from time to time, you may find it handy to have
the name of the machine you're on in your prompt string. Most newer versions of UNIX have the
command hostname(1), which prints the network name of the machine you are on to standard output. (If
you do not have this command, you may have asimilar one like gethostname.) This command enables
you to get the machine name into your prompt string by putting aline like thisin your .profile or
environment file:

PS1="$(hostnane) \$ "

(The second dollar sign must be preceded by a backslash so that the shell will take it literally.) For
example, if your machine had the name coltrane, then this statement would set your prompt string to
"coltrane$".

Command substitution helps us with the solution to the next programming task, which relates to the
album database in Task 4-1.

Task 4.4

Thefileused in Task 4-1 is actually areport derived from a bigger table of data about
abums. Thistable consists of severa columns, or fields, to which a user refers by names
like "artist,” "title," "year," etc. The columns are separated by vertical bars (|, the same as the
UNIX pipe character). To deal with individual columnsin the table, field names need to be
converted to field numbers.

Suppose there is a shell function called getfield that takes the field name as argument and
writes the corresponding field number on the standard output. Use this routine to help
extract a column from the data table.

The cut(1) utility isanatural for thistask. cut isadatafilter: it extracts columns from tabular data. [12] If
you supply the numbers of columns you want to extract from the input, cut will print only those columns
on the standard output. Columns can be character positions or-relevant in this example-fields that are
separated by TAB characters or other delimiters.

[12] Some older BSD-derived systems don't have cut, but you can use awk instead.
Whenever you see acommand of the form:

cut -fN -dC fil enane

Use thisinstead:
awk -FC '{print $N}' fil enane

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_04.htm (2 of 5) [2/8/2001 4:55:08 PM]

[Chapter 4] 4.4 Command Substitution

Assume that the data table in our task isafile called albums and that it looks like this:

Col trane, John| G ant Steps|Atlantic| 1960|Ja

Col trane, John| Coltrane Jazz| Atl antic| 1960| Ja

Coltrane, John|My Favorite Things|Atlantic|1961| Ja

Col trane, John|Coltrane Plays the Blues|Atlantic|1961| Ja

Hereis how we would use cut to extract the fourth (year) column:
cut -f4 -d\| al buns

The -d argument is used to specify the character used asfield delimiter (TAB isthe default). The vertical
bar must be backslash-escaped so that the shell doesn't try to interpret it as a pipe.

From thisline of code and the getfield routine, we can easily derive the solution to the task. Assume that
the first argument to getfield is the name of the field the user wants to extract. Then the solutionis:

fi el dnane=$1

cut -f$(getfield $fieldnane) -d\| al buns
If we called this script with the argument year, the output would be:

1960
1960
1961
1961

Here's another small task that makes use of cut.
Task 4.5

Send amail message to everyone who is currently logged in.

The command who(1) tells you who islogged in (as well as which terminal they're on and when they
logged in). Its output looks like this:

billr consol e May 22 07:57
fred tty02 May 22 08: 31
bob tty04 May 22 08:12

Thefields are separated by spaces, not TABs. Since we need thefirst field, we can get away with using a
space as the field separator in the cut command. (Otherwise we'd have to use the option to cut that uses
character columnsinstead of fields.) To provide a space character as an argument on a command line,
you can surround it by quotes:

$ who | cut -d ' -f1

With the above who output, this command's output would look like this:
billr
fred

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_04.htm (3 of 5) [2/8/2001 4:55:08 PM]

[Chapter 4] 4.4 Command Substitution

bob
Thisleads directly to a solution to the task. Just type:
$ mail $(who | cut -d ' -f1l)

The command mail billr fred bob will run and then you can type your message.

Here is another task that shows how useful command pipelines can be in command substitution.
Task 4.6

The Is command gives you pattern-matching capability with wildcards, but it doesn't allow
you to select files by modification date. Devise a mechanism that lets you do this.

Thistask was inspired by the feature of the VAX/VMS operating system that lets you specify files by
date with BEFORE and SINCE parameters. We'll do thisin alimited way now and add featuresin the
next chapter.

Hereisafunction that allowsyou to list all files that were last modified on the date you give as
argument. Once again, we choose afunction for speed reasons. No pun is intended by the function's
name:

function |sd {

dat e=$1

ls -1 | grep -i "~.\{41\}$date' | cut -c55-
}

This function depends on the column layout of the s -I command. In particular, it depends on dates
starting in column 42 and filenames starting in column 55. If thisisn't the casein your version of UNIX,
you will need to adjust the column numbers. [13]

[13] For example, Is -1 on SUNOS 4.1.x has dates starting in column 33 and filenames
starting in column 46.

We use the grep search utility to match the date given as argument (in the form Mon DD, e.g., Jan 15 or
Oct 6, the latter having two spaces) to the output of Is-I. Thisgivesusalong listing of only those files
whose dates match the argument. The -i option to grep allows you to use all lowercase lettersin the
month name, while the rather fancy argument means, "Match any line that contains 41 characters
followed by the function argument.” For example, typing Isd ' jan 15' causes grep to search for lines
that match any 41 characters followed by jan 15 (or Jan 15). [14]

[14] Some older BSD-derived versions of UNIX (without System V extensions) do not
support the \{N\} option. For this example, use 41 periodsin arow instead of .\{41\}.

The output of grep is piped through our ubiquitous friend cut to retrieve the filenames only. The
argument to cut tellsit to extract charactersin column 55 through the end of the line.

With command substitution, you can use this function with any command that accepts filename
arguments. For example, if you want to print all filesin your current directory that were last modified
today, and today is January 15th, you could type:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_04.htm (4 of 5) [2/8/2001 4:55:08 PM]

[Chapter 4] 4.4 Command Substitution

$1p $(lsd 'jan 15")

The output of Isd is on multiple lines (one for each filename), but LINEFEEDs are legal field separators
for the Ip command, because the environment variable | FS (see earlier in this chapter) contains
LINEFEED by default.

41 PREVIOUS HOME NEXT &
4.3 String Operators BOOK INDEX 4.5 Advanced Examples:
pushd and popd

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_04.htm (5 of 5) [2/8/2001 4:55:08 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 4] 4.5 Advanced Examples: pushd and popd

Learning the Korn Shell

4 PREVIOUS - Chapter 4 HEXT &
Basic Shell Programming

4.5 Advanced Examples: pushd and popd

We will conclude this chapter with a couple of functions that you may find handy in your everyday UNIX
use.

Task 4.7

The functions pushd and popd implement a stack of directories that enable you to move to
another directory temporarily and have the shell remember where you were. The C shell
includes these functions, but for some reason the Korn shell omits them. Implement them as
shell functions.

We will start by implementing a significant subset of their capabilities and finish the implementation in
Chapter 6.

If you don't know what a stack is, think of a spring-loaded dish receptacle in a cafeteria. When you place
dishes on the receptacle, the spring compresses so that the top stays at roughly the same level. The dish
most recently placed on the stack is the first to be taken when someone wants food; thus, the stack is
known as a"last-in, first-out" or LIFO structure. [15] Putting something onto a stack is known in
computer science parlance as pushing, and taking something off the top is called popping.

[15] Victims of the early-90s recession will also recognize this mechanism in the context of
corporate layoff policies.

A stack is very handy for remembering directories, aswe will see; it can "hold your place" up to an
arbitrary number of times. The cd - form of the cd command does this, but only to one level. For example:
if you arein firstdir and then you change to seconddir, you can type cd - to go back. But if you start out in
firstdir, then change to seconddir, and then go to thirddir, you can use cd - only to go back to seconddir. If
you type cd - again, you will be back in thirddir, because it is the previous directory. [16]

[16] Think of cd - asasynonym for cd $OL DPWD; see the previous chapter.

If you want the "nested" remember-and-change functionality that will take you back to firstdir, you need a
stack of directories along with the pushd and popd commands. Here is how these work: [17]

[17] More accurately, thisis how the C shell doesiit, and yes, it is somewhat counterintuitive.
A more intuitive way would be:

« Thefirst time pushd dir iscalled, pushd cdsto dir and pushes the current directory followed by dir

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_05.htm (1 of 3) [2/8/2001 4:55:10 PM]

[Chapter 4] 4.5 Advanced Examples: pushd and popd

onto the stack.
o Subsequent callsto pushd cd to dir and push dir only onto the stack.

« popd removes the top directory off the stack, revealing a new top. Then it cds to the new top
directory.

For example, consider the series of eventsin Table 4.6. Assume that you have just logged in, and that you
are in your home directory (/home/you).

We will implement a stack as an environment variable containing alist of directories separated by spaces.

Table 4.6: pushd/popd Example

Command Stack Contents Result Directory
pushd fred /home/you/fred /home/you /home/youl/fred
pushd /etc /etc /homelyou/fred /homelyou /etc

popd /home/you/fred /home/you /home/youl/fred
popd /home/you /home/you

popd <empty> (error)

Y our directory stack should beinitialized to the null string when you log in. To do this, put thisin your
Jprofile:

DI RSTACK=""

export DI RSTACK

Do not put thisin your environment file if you have one. The export statement guarantees that
DIRSTACK is known to all subprocesses; you want to initialize it only once. If you put this code in an
environment file, it will get reinitialized in every subshell, which you probably don't want.

Next, we need to implement pushd and popd as functions. Here are our initial versions:

function pushd { # push current directory onto stack
di r nane=%$1
cd ${dirnane: ?"nm ssing directory nane."}
DI RSTACK="$di r name ${ DI RSTACK: - $PWD} "
print "$D RSTACK"

}

function popd { # pop directory off stack, cd to new top
DI RSTACK=${ DI RSTACK#* }
cd ${ DI RSTACK%8% *}
print "$PWD"

}

Notice that there isn't much code! Let's go through the two functions and see how they work, starting with
pushd. Thefirst line merely saves the first argument in the variable dir name for readability reasons.

The second line's main purpose is to change to the new directory. We use the : ? operator to handle the
error when the argument is missing: if the argument is given, then the expression ${dirname: ?" missing

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_05.htm (2 of 3) [2/8/2001 4:55:10 PM]

[Chapter 4] 4.5 Advanced Examples: pushd and popd

directory name." } evaluatesto $dirname, but if it is not given, the shell will print the message pushd:
dirname: missing directory name and exit from the function.

The third line of the function pushes the new directory onto the stack. The expression ${DIRSTACK

: -$PWD} evaluatesto $DIRSTACK if itisnon-null or $PWD (the current directory) if it isnull. The
expression within double quotes, then, consists of the argument given, followed by a single space,
followed by DIRSTACK or the current directory. The double quotes ensure that all of thisis packaged
into asingle string for assignment back to DIRSTACK. Thus, thisline of code handles the specid initial
case (when the stack is empty) aswell asthe more usual case (when it's not empty).

The last line merely prints the contents of the stack, with the implication that the leftmost directory is both
the current directory and at the top of the stack. (Thisiswhy we chose spaces to separate directories,
rather than the more customary colonsasin PATH and MAILPATH.)

The popd function makes yet another use of the shell's pattern-matching operators. Itsfirst line uses the #
operator, which tries to delete the shortest match of the pattern "* " (anything followed by a space) from
the value of DIRSTACK. The result is that the top directory (and the space following it) is deleted from
the stack.

The second line of popd uses the pattern-matching operator % % to delete the longest match to the pattern
" *" (agpace followed by anything) from DIRSTACK. This extracts the top directory as argument to cd,
but doesn't affect the value of DIRSTACK because there is no assignment. The final line just prints a
confirmation message.

This code is deficient in three ways: first, it has no provision for errors. For example:
o What if the user tries to push a directory that doesn't exist or isinvalid?
o What if the user tries popd and the stack is empty?

Test your understanding of the code by figuring out how it would respond to these error conditions. The
second deficiency isthat it implements only some of the functionality of the C shell's pushd and popd
commands-albeit the most useful parts. In the next chapter, we will see how to overcome both of these
deficiencies.

The third problem with the code isthat it will not work if, for some reason, a directory name contains a
space. The code will treat the space as a separator character. We'll accept this deficiency for now.
However, when you read about arrays in Chapter 6, Command-line Options and Typed Variables, think

about how you might use them to rewrite this code and eliminate the problem.

41 PREVIOUS HOME HEXT &
4.4 Command Substitution BOOK INDEX 5. Flow Control

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch04_05.htm (3 of 3) [2/8/2001 4:55:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 5] Flow Control

Learning the KOrn Shell

4 PREVIOUS Chapter 5 MEXT B

5. Flow Control

Contents:
if/else

for

case

select

while and until

If you are a programmer, you may have read the last chapter-with its claim at the outset that the Korn shell has an
advanced set of programming capabilities - and wondered where many features from conventional languages are.
Perhaps the most glaringly obvious "hol€" in our coverage thus far concerns flow control constructs like if, for,
while, and so on.

Flow control gives a programmer the power to specify that only certain portions of a program run, or that certain
portions run repeatedly, according to conditions such as the values of variables, whether or not commands execute
properly, and others. We call this the ability to control the flow of a program's execution.

Almost every shell script or function shown thus far has had no flow control-they have just been lists of
commands to be run! Y et the Korn shell, like the C and Bourne shells, has all of the flow control abilities you
would expect and more; we will examine them in this chapter. We'll use them to enhance the solutions to some of
the programming tasks we saw in the last chapter and to solve tasks that we will introduce here.

Although we have attempted to explain flow control so that non-programmers can understand it, we also
sympathize with programmers who dread having to slog through yet another tabula rasa explanation. For this
reason, some of our discussions relate the Korn shell's flow-control mechanisms to those that programmers should
know already. Therefore you will be in abetter position to understand this chapter if you aready have a basic
knowledge of flow control concepts.

The Korn shell supports the following flow control constructs:

if/else

Execute alist of statementsif a certain condition ig/is not true
for

Execute alist of statements afixed number of times
while

Execute alist of statements repeatedly while a certain condition holds true
until

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (1 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

Execute alist of statements repeatedly until a certain condition holds true
case

Execute one of several lists of statements depending on the value of avariable

In addition, the Korn shell provides a new type of flow-control construct:
select

Allow the user to select one of alist of possibilities from amenu

We will cover each of these, but be warned: the syntax is not pretty.

5.1 if/lelse

The simplest type of flow control construct is the conditional, embodied in the Korn shell's if statement. Y ou use
a conditional when you want to choose whether or not to do something, or to choose among a small number of
things to do, according to the truth or falsehood of conditions. Conditions test values of shell variables,
characteristics of files, whether or not commands run successfully, and other factors. The shell has alarge set of
built-in tests that are relevant to the task of shell programming.

Theif construct has the following syntax:

if condition
t hen
statenents
[elif condition
then statements...]
[el se
st at enent s]
fi

The simplest form (without the elif and else parts, ak.a. clauses) executes the statements only if the condition is
true. If you add an else clause, you get the ability to execute one set of statementsif a condition istrue or another
set of statementsif the condition isfalse. Y ou can use as many elif (a contraction of "else if") clauses as you wish;
they introduce more conditions, and thus more choices for which set of statementsto execute. If you use one or
more €lifs, you can think of the else clause asthe "if all else fails" part.

5.1.1 Exit Status and Return

Perhaps the only aspect of this syntax that differs from that of conventional languages like C and Pascal is that the
"condition" isreally alist of statements rather than the more usual Boolean (true or false) expression. How isthe
truth or falsehood of the condition determined? It has to do with a general UNIX concept that we haven't covered
yet: the exit status of commands.

Every UNIX command, whether it comes from source code in C, some other language, or a shell script/function,
returns an integer code to its calling process-the shell in this case-when it finishes. Thisis called the exit status. O
isusually the "OK" exit status, while anything else (1 to 255) usually denotes an error. [1]

[1] Becausethisisa"convention" and not a"law," there are exceptions. For example, diff (1) (find
differences between two files) returns O for "no differences," 1 for "differences found," or 2 for an
error such as an invalid filename argument.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (2 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

if checksthe exit status of the last statement in the list following the if keyword. [2] (Thelist isusually just a
single statement.) If the statusis O, the condition evaluates to true; if it is anything else, the condition is
considered false. The sameistrue for each condition attached to an elif statement (if any).

[2] LISP programmers will find thisideafamiliar.

This enables us to write code of the form:
i f command ran successfully

t hen
nor mal processi ng

el se
error processing

fi

More specifically, we can now improve on the pushd function that we saw in the last chapter:

function pushd { # push current directory onto stack

di r nane=%$1

cd ${dirnane: ?"m ssing directory nane."}
DI RSTACK="$di r nane ${ DI RSTACK: - $PWD} "
print $DI RSTACK

}

This function requires avalid directory asits argument. Let'slook at how it handles error conditions: if no
argument is given, the second line of code prints an error message and exits. Thisisfine.

However, the function reacts deceptively when an argument is given that isn't avalid directory. In case you didn't
figure it out when reading the last chapter, here is what happens: the cd fails, leaving you in the same directory
you werein. Thisis also appropriate. But then the third line of code pushes the bad directory onto the stack
anyway, and the last line prints a message that leads you to believe that the push was successful.

We need to prevent the bad directory from being pushed and to print an error message. Here is how we can do
this:
function pushd { # push current directory onto stack
di r name=%$1
if cd ${dirnane: ?"m ssing directory nane."} # if cd was successful
t hen
DI RSTACK="$di r name ${ DI RSTACK: - $PWD} "
print $DI RSTACK
el se
print still in $PWD.
fi
}

The call to cd isnow inside an if construct. If cd is successful, it will return O; the next two lines of code are run,
finishing the pushd operation. But if the cd fails, it returns with exit status 1, and pushd will print a message
saying that you haven't gone anywhere.

Y ou can usually rely on built-in commands and standard UNIX utilities to return appropriate exit statuses, but
what about your own shell scripts and functions? For example, what if you wrote a cd function that overrides the
built-in command?

Let's say you have the following code in your .profile or environment file:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (3 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

function _cd {

"cd" $*

print $CLDPWD -> $PWD
}

alias cd=_cd

The function _cd ssmply changes directories and prints a message saying where you were and where you are now.
Because functions have lower priority than built-in commands in the shell's order of command |ookup, we need to
define cd itself as an alias so that it overrides the built-in cd.

The function calls the built-in cd command, but notice that it's surrounded in double quotes: that prevents the
shell from looking it up as an alias. (This may seem like a kludge in the aliasing mechanism, but it's really just a
ramification of the shell's command-line processing rules, which welist in Chapter 7, Input/Output and
Command-line Processing.) [3] If it did find cd as an dlias, the shell would go into an "infinite recursion” in

which the alias is expanded to _cd, which runs the function, which calls cd, which the shell expandsto the alias
again, etc.

[3] A related result of command-line processing isthat if you surround a command with single
guotes, the shell won't look it up as an alias or as a function.

Anyway, we want this function to return the same exit status that the built-in cd returns. The problem is that the
exit statusis reset by every command, so it "disappears’ if you don't save it immediately. In this function, the
built-in cd's exit status disappears when the print statement runs (and sets its own exit status).

Therefore, we need to save the status that cd sets and use it as the entire function's exit status. Two shell features
we haven't seen yet provide the way. First is the special shell variable ?, whose value ($?) is the exit status of the
last command that ran. For example:

cd baddir
print $?

causes the shell to print 1, while:

cd gooddir
print $?

causes the shell to print O.

5.1.1.1 Return

The second feature we need is the statement return N, which causes the surrounding script or function to exit
with exit status N. N is actually optional; it defaults to 0. Scripts that finish without areturn statement (i.e., every
one we have seen so far) return whatever the last statement returns. If you use return within afunction, it will
just exit the function. (In contrast, the statement exit N exits the entire script, no matter how deeply you are nested
in functions.)

Getting back to our example: if the call to "real” cd werelast in our _cd function, it would behave properly.
Unfortunately, we really need the assignment statement whereiit is, so that we can avoid lots of ugly error
processing. Therefore we need to save cd's exit status and return it as the function's exit status. Here is how to do
it:
function _cd {

"cd" $*

es=$7?

print $CLDPWD -> $PWD

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (4 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

return $es

}

The second line saves the exit status of cd in the variable es; the fourth returns it as the function's exit status. Welll
see amore substantial "wrapper” for cd in Chapter 7.

Exit statuses aren't very useful for anything other than their intended purpose. In particular, you may be tempted
to use them as "return values' of functions, as you would with functionsin C or Pascal. That won't work; you
should use variables or command substitution instead to simulate this effect.

5.1.2 Combinations of Exit Statuses

One of the more obscure parts of Korn shell syntax alows you to combine exit statuses logically, so that you can
test more than one thing at atime.

The syntax statementl & & statement2 means, "execute statementl, and if its exit statusis 0, execute statement2."
The syntax statementl || statement2 is the converse: it means, "execute statementl, and if its exit statusis not O,
execute statement2."

At first, these look like "if/then" and "if not/then” constructs, respectively. But they are really intended for use
within conditions of if constructs-as C programmers will readily understand.

It's much more useful to think of these constructs as "and" and "or," respectively. Consider this:

if statenentl && statenent?2
t hen

fi

In this case, statementl is executed. If it returns a 0 status, then presumably it ran without error. Then statement2
runs. Thethen clause is executed if statement2 returns a 0 status. Conversely, if statementl fails (returns a non-0
exit status), then statement2 doesn't even run; the "last statement” in the condition was statement1, which
failed-so the then clause doesn't run. Taken all together, it's fair to conclude that the then clause runsiif
statement1 and statement2 both succeeded.

Similarly, consider this:

if statenentl || statenent2
t hen

fi

If statementl succeeds, then statement2 does not run. This makes statementl the last statement, which means that
the then clause runs. On the other hand, if statementl fails, then statement2 runs, and whether the then clause
runs or not depends on the success of statement2. The upshot is that the then clause runs if statementl or
Statement?2 succeeds.

As asimple example, assume that we need to write a script that checks afile for the presence of two words and
just prints a message saying whether either word isin the file or not. We can use grep for this: it returns exit
status O if it found the given string in itsinput, non-0 if not:

filenane=$1

wor d1=$2

wor d2=%$3

if grep $wordl $filename || grep $word2 $fil enane

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (5 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

t hen

print "$wordl or $word2 is in $filenane."
fi

The then clause of this code runs if either grep statement succeeds. Now assume that we want the script to say
whether or not the input file contains both words. Here's how to do it:

fil enanme=%$1
wor d1=$2
wor d2=$3
if grep $wordl $filenane && grep $word2 $fil enane
t hen
print "$wordl and $word2 are both in $fil enane."
fi

WEe'll see more examples of these logical operators later in this chapter and in the code for the kshdb debugger in
Chapter 9, Debugging Shell Programs.

5.1.3 Condition Tests

Exit statuses are the only things an if construct can test. But that doesn't mean you can check only whether or not
commands ran properly. The shell provides away of testing a variety of conditions with the [[]] construct. [4]

[4] The Korn shell also accepts the external [] and test commands. The [[]] construct has many more
options and is better integrated into the Korn shell language: specifically, word splitting and wildcard
expansion aren't done within [[and]J], making quoting less necessary.

Y ou can use the construct to check many different attributes of afile (whether it exists, what type of fileit is,
what its permissions and ownership are, etc.), compare two files to see which is newer, do comparisons and
pattern matching on strings, and more.

[[condition]] is actually a statement just like any other, except that the only thing it doesis return an exit status
that tells whether condition is true or not. Thusit fits within the if construct's syntax of if statements.

5.1.3.1 String comparisons

The double square brackets ([[]]) surround expressions that include various types of operators. We will start with
the string comparison operators, which are listed in Table 5.1. (Notice that there are no operators for "greater than
or equal” or "lessthan or equal.”) In the table, str refers to an expression with a string value, and pat refersto a
pattern that can contain wildcards (just like the patterns in the string-handling operators we saw in the last
chapter).

Table 5.1: String Comparison Operators
Operator Trueif...
str = pat[5] str matches pat.
str I=pat str does not match pat.
strl<str2 strlislessthan str2.
strl>str2 strlisgreater than str2.
-n str str isnot null (has length greater than 0).
-z str str isnull (has length 0).

[5] Note that there is only one equal sign (=). Thisis acommon source of errors.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (6 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

We can use one of these operators to improve our popd function, which reacts badly if you try to pop and the
stack is empty. Recall that the code for popd is:
function popd { # pop directory off the stack, cd there
DI RSTACK=${ DI RSTACK#* }
cd ${ Dl RSTACK®b *}
print "$PWD'
}

If the stack is empty, then $DIRSTACK isthe null string, asis the expression ${DIRSTACK %% *}. This
means that you will change to your home directory; instead, we want popd to print an error message and do
nothing.

To accomplish this, we need to test for an empty stack, i.e., whether $DIRSTACK isnull or not. Here is one way
todoit:

function popd { # pop directory off the stack, cd there
if [[-n $DIRSTACK]]: then
DI RSTACK=%${ DI RSTACK#* }
cd ${ DI RSTACK%8%o *}
print "$PWD'
el se
print "stack enpty, still in $PWD."
fi
}

Notice that instead of putting then on a separate line, we put it on the same line as the if after a semicolon, which
isthe shell's standard statement separator character.

We could have used operators other than -n. For example, we could have used -z and switched the code in the
then and else clauses. We aso could have used: [6]

[6] Note that this code does not work under the older [] or test syntax, which will complain about a
missing argument if the variable is null. This meansthat it is no longer necessary to surround both
sides with double quotes (or to use hacks like [xX$DIRSTACK = x]) as you had to with the Bourne
shell; the Korn shell's[[/]] syntax handles null values correctly.

if [[$DIRSTACK = ""]]; then

While we're cleaning up code we wrote in the last chapter, let's fix up the error handling in the highest script
(Task 4-1). The code for that scriptis:

filenane=${1:?"fil enane m ssing."}

howrany=${ 2: - 10}

sort -nr $filename | head - $howmany

Recall that if you omit the first argument (the filename), the shell prints the message highest: 1: filename
missing. We can make this better by substituting a more standard "usage”" message:
if [[-z $1]]; then
print 'usage: howrany filenane [-N]'
el se
filenanme=$1
howrany=${ 2: - 10}

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (7 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

sort -nr $filenane | head - $howrany
fi

It is considered better programming style to enclose all of the code in the if-then-else, but such code can get
confusing if you are writing along script in which you need to check for errors and bail out at several points along
the way. Therefore, amore usual style for shell programming isthis:

if [[-z $1]]; then
print 'usage: howmany filenane [-N'
return 1

fi

filenanme=$1

howrany=${ 2: - 10}

sort -nr $filenane | head -$hownany

The return statement informs any calling program that needs to know whether it ran successfully or not.

As an example of the = and != operators, we can add the shell script front end to a C compiler to our solution for
Task 4-2. Recall that we are given afilename ending in .c (the source code file), and we need to construct a
filename that is the same but endsin .o (the object code file). The modifications we will make have to do with
other types of files that can be passed to a C compiler.

5.1.3.2 About C Compilers

Before we get to the shell code, it is necessary to understand a few things about C compilers. We aready know
that they translate C source code into object code. Actualy, they are part of compilation systems that also perform
several other tasks. The term "compiler” is often used instead of "compilation system,” so we'll useit in both
Senses.

We're interested here in two tasks that compilers perform other than compiling C code: they can trandlate
assembly language code into object code, and they can link object code files together to form an executable
program.

Assembly language works at alevel that is close to the bare computer; each assembly statement is directly
translatable into a statement of object code-as opposed to C or other higher-level languages, in which asingle
source statement could translate to dozens of object code instructions. Trandating afile of assembly language
code into object code is called, not surprisingly, assembling the code.

Although many people consider assembly language to be quaintly old-fashioned - like a typewriter in this age of
WY SIWY G word processing and desktop publishing-some programmers still need to use it when dealing with
precise details of computer hardware. It's not uncommon for a program to consist of several files worth of codein
ahigher-level language (such as C) and afew low-level routines in assembly language.

The other task we'll worry about is called linking. Most real-world programs, unlike those assigned for afirst-year
programming class, consist of several files of source code, possibly written by severa different programmers.
These files are compiled into object code; then the object code must be combined to form the final, runnable
program, known as an executable. The task of combining is often called "linking": each object code component
usually contains references to other components, and these references must be resolved or "linked" together.

C compilation systems are capable of assembling files of assembly language into object code and linking object
code filesinto executables. In particular, acompiler cals a separate assembler to deal with assembly code and a
linker (also known as a"loader,” "linking loader," or "link editor") to deal with object code files. These separate
tools are known in the UNIX world as as and Id, respectively. The C compiler itself isinvoked with the command

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (8 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control
CC.

We can express all of these steps in terms of the suffixes of files passed as arguments to the C compiler.
Basically, the compiler does the following:

1. If theargument endsin .cit'sa C source file; compile into a.o object codefile.
2. If theargument endsin .s, it's assembly language; assembleinto a .o file.
3. If the argument endsin .0, do nothing; save for the linking step later.
4. |If the argument ends in some other suffix, print an error message and exit. [7]
[7] For the purposes of this example. We know thisisn't strictly truein real life.

5. Link all .0 object code filesinto an executable file called a.out. Thisfile is usually renamed to something
more descriptive.

Step 3 allows object code files that have already been compiled (or assembled) to be re-used to build other
executables. For example, an object code file that implements an interface to a CD-ROM drive could be useful in
any program that reads from CD-ROMS.

Figure 5.1 should make the compilation process clearer; it shows how the compiler processes the C source files

a.c and b.c, the assembly language file c.s, and the already-compiled object code file d.o. In other words, it shows
how the compiler handles the command cc a.c b.c c.sd.o.

Figure 5.1: Files produced by a C compiler

source code assembly code object code executable

Gy G

Coe >0,
; i ik |

Here is how we would begin to implement this behavior in a shell script. Assume that the variable filename holds
the argument in question, and that ccomis the name of the program that actually compiles a C sourcefileinto
object code. Assume further that ccom and as (assembler) take arguments for the names of the source and object
files:
if [[$filenane = *.c]]; then
obj name=${fil enane%c}. o
ccom $fi |l enane $obj nane
elif [[$filename = *.s]]; then
obj name=${fi | enane% s}. o

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (9 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

as $fil enane $obj nane

elif [[$filename !'= *.0]]; then
print "error: $filenanme is not a source or object file."
return 1

fi

further processing...

Recall from the previous chapter that the expression ${filename% .c}.o deletes .c from filename and appends .o;
${filename%o .s}.o does the analogous thing for filesending in .s.

The "further processing” isthe link step, which we will see when we complete this example later in the chapter.
5.1.3.3 File Attribute Checking

The other kind of operator that can be used in conditional expressions checks afile for certain properties. There
are 21 such operators. We will cover those of most general interest here; the rest refer to arcana like sticky bits,
sockets, and file descriptors, and thus are of interest only to systems hackers. Refer to Appendix B, Reference

Listsfor the complete list. Table 5.2 lists those that we will examine.

Table 5.2: File Attribute Operators
Operator Trueif...

-afile file exists

-dfile fileisadirectory

-f file fileisaregular file (i.e., not adirectory or other specia type of file)

-r file Y ou have read permission on file

-sfile file exists and is not empty

-w file Y ou have write permission on file

-x file Y ou have execute permission on file, or directory search permission if it isadirectory
-Ofile You own file

-Gfile Your group ID isthe same as that of file

filel -nt file2 filel is newer than file2[8]
filel -ot file2 filel is older than file2

[8] Specifically, the -nt and -ot operators compare modification times of two files.

Before we get to an example, you should know that conditional expressionsinside [[and]] can aso be combined
using the logical operators & & and ||, just as we saw with plain shell commands above, in the section entitled
"Combinations of Exit Statuses." It's also possible to combine shell commands with conditional expressions using
logical operators, likethis:

if command && [[condition]]; then

Chapter 7 contains an example of this combination.

Y ou can aso negate the truth value of a conditional expression by preceding it with an exclamation point (!), so
that ! expr evaluates to true only if expr isfalse. Furthermore, you can make complex logical expressions of
conditional operators by grouping them with parentheses. [9]

[9] It turns out that thisis true outside of the [[/]] construct as well. Aswe will see in Chapter 8,
Process Handling the construct (statement list) runs the statement list in a subshell, whose exit status
isthat of the last statement in the list. However, there is no equivalent of the negation (!) operator

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (10 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control
outside of the[[/]] construct, athough there will be in future rel eases.

Hereis how we would use two of the file operators to embellish (yet again) our pushd function. Instead of having
cd determine whether the argument given isavalid directory-i.e., by returning with a bad exit statusif it's not-we
can do the checking ourselves. Here is the code:

function pushd { # push current directory onto stack
di r nane=%$1
if [[-d $dirname & & -x $dirnane]]; then
cd $dirnane
DI RSTACK="$di r nane ${ DI RSTACK: - $PWD} "
print "$D RSTACK"
el se
print "still in $PWD."
fi
}

The conditional expression evaluates to true only if the argument $1 is adirectory (-d) and the user has
permission to changeto it (-x). [10] Notice that this conditional also handles the case where the argument is
missing: $dirnameis null, and since the null string isn't avalid directory name, the conditiona will fail.

[10] Remember that the same permission flag that determines execute permission on aregular file
determines search permission on a directory. Thisiswhy the -x operator checks both things
depending on file type.

Here is amore comprehensive example of the use of file operators.
Task 5.1

Write a script that prints essentially the same information as|s -I but in a more user-friendly way.

Although this task requires relatively long-winded code, it is a straightforward application of many of thefile
operators:

if [[! -a $1]]; then
print "file $1 does not exist."
return 1
fi
if [[-d $1]1]; then
print -n "$1 is a directory that you may "
if [[! -x $1]]; then
print -n "not "
fi
print "search."
elif [[-f $1]]; then
print "$1 is a regular file."
el se
print "$1 is a special type of file."
fi
if [[-O%$1]1]; then
print 'you own the file.'
el se
print 'you do not own the file."'

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (11 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

fi
if [[-r $1]1]; then
print 'you have read perm ssion on the file.'
fi
if [[-w$1]]; then
print 'you have wite perm ssion on the file.'
fi
if [[-x $1 & ! -d $1]]; then
print 'you have execute perm ssion on the file.'
fi

WEe'l call this script fileinfo. Here's how it works:

Thefirst conditional testsif the file given as argument does not exist (the exclamation point is the "not"
operator; the spaces around it are required). If the file does not exist, the script prints an error message and
exits with error status.

The second conditional testsif thefileisadirectory. If so, thefirst print prints part of a message; remember
that the -n option tells print not to print a LINEFEED at the end. The inner conditional checksif you do not
have search permission on the directory. If you don't have search permission, the word "not" is added to the
partial message. Then, the message is completed with "search." and aLINEFEED.

The €lif clause checksif thefileisaregular file; if so, it prints a message.

The else clause accounts for the various specia file types on recent UNIX systems, such as sockets,
devices, FIFO files, etc. We assume that the casual user isn't interested in details of these.

The next conditional teststo seeif thefile is owned by you (i.e., if its owner ID isthe same as your login
ID). If so, it prints a message saying that you own it.

The next two conditionals test for your read and write permission on thefile.

The last conditional checksif you can execute thefile. It checks to seeif you have execute permission and
that the fileis not adirectory. (If the file were a directory, execute permission would really mean directory
search permission.)

As an example of fileinfo's output, assume that you do an Is-I of your current directory and it contains these lines:

- T WXT - XTI - X 1 billr ot her 594 May 28 09:49 bob
STWIr-71- 1 billr ot her 42715 Apr 21 23:39 custom tbl
dr wxr - Xr - X 2 billr ot her 64 Jan 12 13:42 exp
-r-r-r- 1 root ot her 557 Mar 28 12:41 | pst

custom.tbl and Ipst are regular text files, exp isadirectory, and bob is a shell script. Typing fileinfo bob produces
this output:

bob is a regular file.

you own the file.

you have read perm ssion on the file.
you have wite perm ssion on the file.
you have execute perm ssion on the file.

Typing fileinfo custom.tbl resultsin this:

customtbl is a regular file.
you own the file.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (12 of 13) [2/8/2001 4:55:24 PM]

[Chapter 5] Flow Control

you have read perm ssion on the file.
you have wite perm ssion on the file.

Typing fileinfo exp resultsin this:
exp is a directory that you may search.
you own the file.
you have read perm ssion on the file.
you have wite perm ssion on the file.

Finally, typing fileinfo Ipst produces this:
| pst is a regular file.

you do not own the file.
you have read perm ssion on the file.

Chapter 7 contains an example of the -nt test operator.

5.1.4 Integer Conditionals

The shell also provides a set of arithmetic tests. These are different from character string comparisons like < and
>, which compare lexicographic values of strings, not numeric values. For example, "6" is greater than "57"
lexicographically, just as"p" is greater than "ox," but of course the opposite is true when they're compared as
integers.

The integer comparison operators are summarized in Table 5.3. FORTRAN programmers will find their syntax
dlightly familiar.

Table 5.3: Arithmetic Test
Operators

Test Comparison

-It Lessthan

-le Lessthan or equal

-eq Equal

-ge Greater than or equal

-gt Greater than

-ne Not equal

You'll find these to be of the most use in the context of the integer variables we'll seein the next chapter. They're
necessary if you want to combine integer tests with other types of tests within the same conditional expression.

However, the shell has a separate syntax for conditional expressions that involve integers only. It's considerably
more efficient, so you should use it in preference to the arithmetic test operators listed above. Again, we'll cover
the shell's integer conditionals in the next chapter.

41 PREVIOUS HOME NEXT B
4.5 Advanced Examples: BOOK INDEX 5.2 for
pushd and popd

LIBRARY HOME | UMIX POWER TOOLS | UWIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_01.htm (13 of 13) [2/8/2001 4:55:24 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 5] 5.2 for

2 Learning the Korn Shell

4 PREVIOUS Chapter 5 HEXT »
Flow Control

5.2 for

The most obvious enhancement we could make to the previous script is the ability to report on multiple filesinstead of just one.
Tests like -a and -d only take single arguments, so we need away of calling the code once for each file given on the command
line.

The way to do this-indeed, the way to do many things with the Korn shell-is with alooping construct. The simplest and most
widely applicable of the shell's looping constructs is the for loop. We'll use for to enhance fileinfo soon.

The for loop alows you to repeat a section of code afixed number of times. During each time through the code (known as an
iteration), a special variable called aloop variableis set to a different value; this way each iteration can do something sightly
different.

Thefor loop is somewhat, but not entirely, similar to its counterparts in conventional languages like C and Pascal. The chief
differenceisthat the shell's for loop doesn't let you specify a number of timesto iterate or arange of values over which to iterate;
instead, it only lets you give afixed list of values. In other words, you can't do anything like this Pascal-type code, which
executes statements 10 times:

for x := 1 to 10 do

begi n

statements. ..
end

(Y ou need the while construct, which we'll see soon, to construct this type of loop. Y ou also need the ability to do integer
arithmetic, which we will seein Chapter 6, Command-line Options and Typed Variables.)

However, the for loop isideal for working with arguments on the command line and with sets of files (e.g., al filesin agiven
directory). Well ook at an example of each of these. But first, we'll show the syntax for the for construct:

for name [in list]
do

statenments that can use $nane. ..
done

Thelistisalist of names. (If in list is omitted, the list defaultsto " $@" , i.e., the quoted list of command-line arguments, but
we'll always supply thein list for the sake of clarity.) In our solutions to the following task, we'll show two simple waysto
specify lists.

Task 5.2

Y ou work in an environment with several computersin alocal network. Write a shell script that tells you who is
logged in to each machine on the network.

The command finger (1) can be used (among other things) to find the names of users logged into a remote system; the command
finger @systemname does this. Its output depends on the version of UNIX, but it looks something like this:

[notet.early.com

Trying 127.146.63.17. ..

- User - -Ful'l name- -What- Idle TTY -Consol e Locati on-
hi | dy Hi | degard von Bi ngen ksh 2d5h pl1 jemcal (Telnet)

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_02.htm (1 of 5) [2/8/2001 4:55:34 PM]

[Chapter 5] 5.2 for
m kes M chael Schul t hei ss csh 1:21 r4 ncd2.cal (X display 0)

orlando Olando di Lasso csh 28 r7 maccal a (Tel net)
marin Marin Marais mush 1:02 pb nussell.cal (Telnet)
j ohnd John Dow and tcsh 17 pO nugget.west.nobis. (X W ndow)

In this output, motet.early.comis the full network name of the remote machine.

Assume the systems in your network are called fred, bob, dave, and pete. Then the following code would do the trick:

for sys in fred bob dave pete
do

finger @sys

pri nt
done

This works no matter which of the systems you are currently logged into. It prints output for each machine similar to the above,
with blank lines in between.

A dlightly better solution would be to store the names of the systemsin an environment variable. Thisway, if systems are added
to your network and you need a list of their names in more than one script, you need change them in only one place. If a
variable's value is several words separated by blanks (or TABS), for will treat it asalist of words.

Here is the improved solution. First, put linesin your .profile or environment file that define the variable SY SNAMES and make
it an environment variable:

SYSNAMES="fred bob dave pete"
export SYSNAMES

Then, the script can look like this:

for sys in $SYSNAMES
do
finger @sys
print
done

Theforegoing illustrated a simple use of for, but it's much more common to use for to iterate through alist of command-line
arguments. To show this, we can enhance the fileinfo script above to accept multiple arguments. First, we write a bit of "wrapper”
code that does the iteration:

for filename in "$@ ; do
finfo $fil enane
print

done

Next, we make the original script into afunction called finfo: [11]

function finfo {
if [[! -a$1]]; then
print "file $1 does not exist."
return 1
fi

}

[11] A function can have the same name as a script; however, thisisn't good programming practice.

The complete script consists of the for 1oop code and the above function, in either order; good programming style dictates that
the function definition should go first.

The fileinfo script works as follows: in the for statement, " $@" isalist of al positional parameters. For each argument, the body
of the loop isrun with filename set to that argument. In other words, the function fileinfo is called once for each value of
$filename asitsfirst argument ($1). The call to print after the call to fileinfo merely prints a blank line between sets of
information about each file.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_02.htm (2 of 5) [2/8/2001 4:55:34 PM]

[Chapter 5] 5.2 for

Given adirectory with the same files as the previous example, typing fileinfo * would produce the following output:

bob is a regular file.

you own the file.

you have read perm ssion on the file.
you have wite permi ssion on the file.
you have execute perm ssion on the file.

customtbl is a regular file.

you own the file.

you have read perm ssion on the file.
you have wite perm ssion on the file.

exp is a directory that you nay search.
you own the file.

you have read perm ssion on the file.
you have wite perm ssion on the file.

I pst is a regular file.
you do not own the file.
you have read perm ssion on the file.

Here is a programming task that exploits the other major use of for.
Task 5.3

Your UNIX system has the ability to transfer files from an MS-DOS system, but it leaves the DOS filenames intact.
Write a script that translates the filenames in a given directory from DOS format to a more UNIX-friendly format.

DOS filenames have the format FILENAME.EXT. FILENAME can be up to eight characters long; EXT is an extension that can be
up to three characters. The dot isrequired even if the extension is null; letters are al uppercase. We want to do the following:

1. Trandlate letters from uppercase to lowercase.
2. If the extension is null, remove the dot.

The first tool we will need for thisjob isthe UNIX tr(1) utility, which translates characters on a one-to-one basis. Given the
arguments charsetl and charset2, it will translate characters in the standard input that are members of charsetl into
corresponding characters in charset2. The two sets are ranges of characters enclosed in square brackets ([] in standard

regul ar-expression form in the manner of grep, awk, ed, etc.). Moreto the point, tr [A-Z] [a-Z] takesits standard input, converts
uppercase letters to lowercase, and writes the converted text to the standard output.

That takes care of the first step in the tranglation process. We can use a Korn shell string operator to handle the second. Hereis
the code for a script we'll call dosmv:

for filenane in ${1:+$1/}* ; do
newfil enane=$(print $filename | tr [A-Z] [a-2])
newf i | ename=%${ newfi | ename% }
print "$filenane -> $newfil enane”
mv $fi | ename $newfil enane
done

The* inthefor construct is not the same as $*. It'sawildcard, i.e, all filesin adirectory.

This script accepts a directory name as argument, the default being the current directory. The expression ${1:+$1/} evaluates to
the argument ($1) with a slash appended if the argument is supplied, or the null string if it isn't supplied. So the entire expression
${1:+$1/}* evauatesto al filesin the given directory, or al filesin the current directory if no argument is given.

Therefore, filename takes on the value of each filenamein thelist. filename gets trandated into newfilenamein two steps. (We
could have done it in one, but readability would have suffered.) The first step uses tr in a pipeline within a command substitution
construct. Our old friend print makes the value of filename the standard input to tr. tr's output becomes the value of the

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_02.htm (3 of 5) [2/8/2001 4:55:34 PM]

[Chapter 5] 5.2 for

command substitution expression, which is assigned to newfilename. Thus, if $filename were DOSFILE. TXT, newfilename
would become dosfile.txt.

The second step uses one of the shell's pattern-matching operators, the one that deletes the shortest match it finds at the end of the
string. The pattern hereis. , which means adot at the end of the string. [12] This means that the expression ${ newfilename% .}
will delete adot from $newfilename only if it's at the end of the string; otherwise the expression will leave $newfilename intact.
For example, if $newfilenameis dosfile.txt, it will be untouched, but if it's dosfile., the expression will change it to dosfile
without the final dot. In either case, the new value is assigned back to newfilename.

[12] UNIX regular expression mavens should remember that thisis shell wildcard syntax, in which dots are not
operators and therefore do not need to be backsl ash-escaped.

The last statement in the for loop body does the file renaming with the standard UNIX mv(1) command. Before that, a print
command simply informs the user of what's happening.

Thereis one little problem with the solution on the previous page: if there are any files in the given directory that aren't DOS
files (in particular, if there are files whose names don't contain uppercase letters and don't contain a dot), then the conversion will
do nothing to those filenames and mv will be called with two identical arguments. mv will complain with the message: mv:
filename and filename ar e identical. We can solve this problem by letting grep determine whether each file has a DOS filename
or not. The grep regular expression:

[fa-z]\{1,8\}\.["a-2]\{0, 3\}
is adequate (for these purposes) for matching DOS-format filenames. [13] The character class [a-z] means "any character except

alowercase letter.” [14] So the entire regular expression means. "Between 1 and 8 non-lowercase | etters, followed by a dot,
followed by 0 to 3 non-lowercase |etters."”

[13] Aswith the Isd function in Chapter 4, Basic Shell Programming older BSD-derived versions of UNIX don't
support the "repeat count™” operator within grep. Y ou must use this instead:
[ra-z][~a-z] ?["a-z] ?[a-z] ?[Ma-z] ?["a-z] ?["a-z] ?["a-z] ?\.[Ma-z] ?["a-z] ?["a-2] 7

[14] To be completely precise, this class also excludes NEWLINEs.

When grep runs, it normally prints al of the linesin its standard input that match the pattern you give it as argument. But we
only need it to test whether or not the pattern is matched. Luckily, grep's exit statusis "well-behaved": it's O if thereisamatch in
theinput, 1 if not. Therefore, we can use the exit status to test for a match. We also need to discard grep's output; to do this, we
redirect it to the special file /dev/null, which is colloquially known as the "bit bucket." [15] Any output directed to /dev/null
effectively disappears. Thus, the command line:

print "$filename" | grep '["a-z]\{1,8\}\.[”a-z]\{0,3\}' > /dev/null

[15] Some Berkeley-derived versions of UNIX have a-s ("silent") option to grep that suppresses standard outpuit,
thereby making redirection to /dev/null unnecessary.

prints nothing and returns exit status O if the filename isin DOS format, 1 if not.

Now we can modify our dosmv script to incorporate this code:
dos_regexp='["a-z]\{1,8\}\.["a-z]\ {0, 3\}'
for filenane in ${1:+$1/}* ; do
if print $filenane | grep $dos_regexp > /dev/null; then
newf il ename=$(print $filenane | tr [A-Z] [a-z])
newf i | ename=${ newfi | enanme% }
print "$filename -> $newfil enane"
mv $fil ename $newfil enane
fi
done

For readability reasons, we use the variable dos_regexp to hold the DOS filename-matching regular expression.

If you are familiar with an operating system other than DOS and UNIX, you may want to test your script-writing prowess at this
point by writing a script that translates filenames from that system's format into UNIX format. Use the above script asa
guideline.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_02.htm (4 of 5) [2/8/2001 4:55:34 PM]

[Chapter 5] 5.2 for

In particular, if you know DEC's VAX/VMS operating system, here's a programming challenge:

1. Write ascript caled vmsmv that is similar to dosmv but works on VAX/VMS filenames instead of DOS filenames.
Remember that VAX/VMS filenames end with semicolons and version numbers.

2. Modify your script so that if there are several versions of the samefile, it renames only the latest version (with the highest
version number).

3. Modify further so that your script erases old versions of files.
Thefirst of theseisarelatively straightforward modification of dosmv. Number 2 is difficult; here's a strategy hint:
« Develop aregular expression that matches VAX/VMS filenames (you need thisfor No. 1 anyway).

« Get alist of base names (sans version numbers) of filesin the given directory by piping Is through grep (with the above
regular expression), cut, and sort -u. Use cut with a semicolon as "field separator"; make sure that you quote the semicolon
so that the shell doesn't treat it as a statement separator. sort -u removes duplicates after sorting. Use command substitution
to save the resulting list in avariable.

« Useafor loop onthelist of base names. For each name, get the highest version number of the file (just the number, not the
whole name). Do this with another pipeline: pipe Is through cut, sort -n, and tail -1. sort -n sortsin numerical (not
lexicographical) order; tail -N outputs the last N lines of itsinput. Again, use command substitution to capture the output
of this pipelinein avariable.

« Append the highest version number to the base name; thisisthe file to rename in UNIX format.

Once you have completed No. 2, you can do No. 3 by adding asingle line of code to your script; seeif you can figure out how.

4 PREVIOUS HOME HEXT mp
51ifldse BEGOK INDEX 5.3 case

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_02.htm (5 of 5) [2/8/2001 4:55:34 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 5] 5.3 case

S8, Learning the KOrn Shell

4 PREVIOUS Chapter 5 MEXT B
Flow Control

5.3 case

The next flow control construct we will cover is case. While the case statement in Pascal and the similar
switch statement in C can be used to test simple values like integers and characters, the Korn shell's case
construct lets you test strings against patterns that can contain wildcard characters. Like its conventional
language counterparts, case lets you express a series of if-then-else type statements in a concise way.

The syntax of caseisasfollows:

case expression in
patternl)
statenents ;;
pattern2)
statenents ;;

esac

Any of the patterns can actually be several patterns separated by pipe characters (|). If expression matches
one of the patterns, its corresponding statements are executed. If there are several patterns separated by pipe
characters, the expression can match any of them in order for the associated statements to be run. The
patterns are checked in order until amatch is found; if none isfound, nothing happens.

This rather ungainly syntax should become clearer with an example. An obvious choice isto revisit our
solution to Task 4-2, the front-end for the C compiler. Earlier in this chapter, we wrote some code, that
processed input files according to their suffixes(.c .s, or .o for C, assembly, or object code, respectively).

We can improve upon this solution in two ways. First, we can use for to alow multiple files to be processed
at one time; second, we can use case to streamline the code:

for filename in $*; do
case $filenane in

*.C)
obj name=${fil enane% c}. o
ccom $fil enane $obj nane ;;

*.s)
obj name=${fil enane% s}. o
as $fil enane $objnane ;;

*.0) ;;

)

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_03.htm (1 of 4) [2/8/2001 4:55:37 PM]

[Chapter 5] 5.3 case

print "error: $filenanme is not a source or object file."
return 1 ;;
esac
done

The case construct in this code handles four cases. Thefirst two are similar to the if and first €lif casesin
the code earlier in this chapter; they call the compiler or the assembler if the filenameendsin.cor .s
respectively.

After that, the codeis a bit different. Recall that if the filename endsin .o nothing is to be done (on the
assumption that the relevant files will be linked later). If the filename does not end in .o thereis an error.
We handle this with the case * .0), which has no statements. There is nothing wrong with a"case" for
which the script does nothing.

Thefinal caseis*, which isacatchall for whatever didn't match the other cases. (Infact, a* caseis
analogous to adefault case in C and an other wise case in some Pascal-derived languages.)

The surrounding for loop processes all command-line arguments properly. Thisleadsto afurther
enhancement: now that we know how to process all arguments, we should be able to write the code that
passes all of the object filesto the linker (the program Id) at the end. We can do this by building up a string
of object file names, separated by spaces, and hand that off to the linker when we've processed al of the
input files. We initialize the string to null and append an object file name each time oneis created, i.e.,
during each iteration of the for loop. The code for thisis simple, requiring only minor additions:

objfiles=""
for filename in $*; do
case $filenane in
*.C)
obj name=${fil enane% c}. o
ccom $fil enanme $obj nane ;;
*.S)
obj name=${fil enane% s}. o
as $fil enane $objnane ;;
*.O)
obj nane=$%$fi | enane ;;
)
print "error: $filenanme is not a source or object file."
return 1 ;;
esac
obj fil es="%objfil es $objnane"
done
| d $objfiles

Thefirst linein this version of the script initializes the variable objfilesto null. [16] We added aline of
code in the *.0 case to set objname equal to $filename, because we already know it's an object file. Thus,
the value of objnameis set in every case-except for the error case, in which the routine prints a message
and bails out.

[16] Thisisn't strictly necessary, because all variables are assumed to be null if not explicitly
initialized (unless the nounset option isturned on). It just makes the code easier to read.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_03.htm (2 of 4) [2/8/2001 4:55:37 PM]

[Chapter 5] 5.3 case

Thelast line of codein the for loop body appends a space and the latest $objname to objfiles. Caling this
script with the same arguments as in Figure 5.1 would result in $objfiles being equal to " a.0 b.o c.0 d.o"
when the for loop finishes (the leading space doesn't matter). Thislist of object filenamesisgiventoldasa
single argument, but the shell dividesit up into multiple file names properly.

WE'll return to this example once more in Chapter 6 when we discuss how to handle dash options on the
command line. Meanwhile, here is a new task whose initial solution will use case.

Task 5.4

Y ou are a system administrator,[17] and you need to set up the system so that users TERM
environment variables reflect correctly what type of terminal they are on. Write some code that
doesthis.

[17] Our condolences.

The code for the solution to this task should go into the file /etc/profile, which is the master startup file that
isrun for each user before his or her .profile.

For the time being, we will assume that you have a traditional mainframe-style setup, in which terminals are
hard-wired to the computer. This means that you can determine which (physical) terminal is being used by
theline (or tty) itison. Thisistypicaly a name like /dev/ttyNN, where NN is the line number. Y ou can find
your tty with the command tty(1), which prints it on the standard outpui.

Let's assume that your system has ten lines plus a system console line (/dev/console), with the following
terminals:

o Linestty0O1, tty03, and tty04 are Givalt GL35a's (terminfo name "gl35a’").
o LinettyO7isaTsoris T-2000 ("t2000").

« Linetty08 and the console are Shande 531s ("s531").

o Therest are Vey VT99s ("vt99").

Here isthe code that does the job:

case $(tty) in
[dev/ttyO[134]) TERM=gl 35a ;
[dev/tty07) TERM<t 2000 ;
/dev/tty08 | /dev/console) TERM=s531 ;
*) TERM=EVt 99 ;
esac

The value that case checksis the result of command substitution. Otherwise, the only thing new about this
code is the pipe character after /dev/tty08. This means that /dev/tty08 and /dev/console are aternate patterns
for the case that sets TERM to "s531".

Note that it is not possible to put alternate patterns on separate lines unless you use backslash continuation
characters at the end of al but thelast ling, i.e., theline:

/dev/tty08 | /dev/console) TERM=S531 ;;

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_03.htm (3 of 4) [2/8/2001 4:55:37 PM]

[Chapter 5] 5.3 case

could be changed to the slightly more readable:

/dev/tty08 | \
/ dev/ consol e) TERMEs531

The backslash must be at the end of the line. If you omit it, or if there are characters (even blanks) following
it, the shell complains with a syntax error message.

This problem is actually better solved using afile that contains atable of lines and terminal types. We'll see
how to do it thisway in Chapter 7.

42 PREVIOUS HOME MEXT B
5.2 for BOOK INDEX 5.4 select

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARNING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_03.htm (4 of 4) [2/8/2001 4:55:37 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 5] 5.4 select

| Learning the KOrn Shell

4 PREVIOUS Chapter 5 MEXT
Flow Control

5.4 select

All of the flow-control constructs we have seen so far are also available in the Bourne shell, and the C
shell has equivalents with different syntax. Our next construct, select, is new for the Korn shell;
moreover, it has no analog in conventional programming languages.

select allows you to generate simple menus easily. It has concise syntax, but it does quite alot of work.
The syntax is:

select nane [in |ist]
do

statenents that can use $nane...
done

Thisisthe same syntax asfor except for the keyword select. And like for, you can omit thein list and it
will default to " $@", i.e., thelist of quoted command-line arguments.

Here iswhat select does:
o Generates amenu of each item in list, formatted with numbers for each choice
o Prompts the user for a number

o Storesthe selected choice in the variable name and the selected number in the built-in variable
REPLY

« Executesthe statementsin the body
» Repeatsthe process forever (but see below for how to exit)

Once again, an example should help make this process clearer. Assume you need to write the code for
Task 5-4, but your lifeis not as simple. Y ou don't have terminals hardwired to your computer; instead,
your users communicate through aterminal server. This means, among other things, that the tty number
does not determine the type of terminal.

Therefore, you have no choice but to prompt the user for his or her terminal type at login time. To do
this, you can put the following code in /etc/profile (assume you have the same choice of terminal types):

PS3="termnal ? '
select termin gl 35a t2000 s531 vt99; do

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_04.htm (1 of 3) [2/8/2001 4:55:39 PM]

[Chapter 5] 5.4 select

if [[-n $term]]; then

TERMESt er m
print TERMis $TERM
br eak
el se
print "invalid."'
fi
done

If you run this code, you will see this menu:

1) gl 35a
2) 12000
3) sbh31
4) vt 99
term nal ?

The built-in shell variable PS3 contains the prompt string that select uses; its default value is the not
particularly useful "#? ". Sothefirst line of the above code setsit to a more relevant value.

The select statement constructs the menu from the list of choices. If the user enters a valid number (from
1to 4), then the variable term is set to the corresponding value; otherwise it isnull. (If the user just
presses RETURN, the shell prints the menu again.)

The code in the loop body checks if term isnon-null. If so, it assigns $term to the environment variable
TERM and prints a confirmation message; then the break statement exits the select loop. If term isnull,
the code prints an error message and repeats the prompt (but not the menu).

The break statement is the usual way of exiting aselect loop. Actualy (likeitsanalogin C), it can be
used to exit any surrounding control structure we've seen so far (except case, where the
double-semicolons act like break) as well as the while and until we will see soon. We haven't introduced
break until now because it is considered bad coding style to use it to exit aloop. However, it is necessary
for exiting select when the user makes avalid choice. [18]

[18] A user can also type [CTRL-D] (for end-of-input) to get out of a select loop. This gives
the user auniform way of exiting, but it doesn't help the shell programmer much.

Let's refine our solution by making the menu more user-friendly, so that the user doesn't have to know
the terminfo name of his or her terminal. We do this by using quoted character strings as menu items and
then using case to determine the termcap name;

print 'Select your termnal type:'
PS3='term nal ? '
select termin \
"Gvalt GA35a \
"Tsoris T-2000" \
' Shande 531" \
'Vey VT99'
do
case $REPLY in

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_04.htm (2 of 3) [2/8/2001 4:55:39 PM]

[Chapter 5] 5.4 select

TERME=gIl 35a ;;
TERM=t 2000 ; ;
TERMESS531 ; ;
TERMEVL 99 ; ;
print "invalid.' ;;

*hAWDNPE
—

esac
if [[-n $term]]; then
print TERMis $TERM
br eak
fi
done
This code looks a bit more like a menu routine in a conventional program, though select still provides the
shortcut of converting the menu choices into numbers. We list each of the menu choices on its own line
for reasons of readability, but once again we need continuation characters to keep the shell from
complaining about syntax.

Here iswhat the user will see when this codeis run:

Sel ect your termnal type:
1) Gvalt G.35a

2) Tsoris T-2000

3) Shande 531

4) Vey VT99

term nal ?

Thisisabit more informative than the previous code's output.

When the body of the select loop is entered, $ter m equals one of the four strings (or is null if the user
made an invalid choice), while the built-in variable REPLY contains the number the user selects. We
need a case statement to assign the correct value to TERM ; we use the value of REPLY asthe case
selector.

Once the case statement is finished, the if checksto seeif avalid choice was made, asin the previous
solution. If the choice was valid, then TERM has already been assigned, so the code just printsa
confirmation message and exits the select loop. If it wasn't valid, the select oop repeats the prompt and
goes through the process again.

41 PREVIOQUS HOME HEXT B
5.3 case BOOK INDEX 5.5 while and until

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_04.htm (3 of 3) [2/8/2001 4:55:39 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 5] 5.5 while and until

| Learning the KOrn Shell

4 PREVIOUS Chapter 5 MEXT
Flow Control

5.5 while and until

The remaining two flow control constructs the Korn shell provides are while and until. These are
similar; they both allow a section of code to be run repetitively while (or until) a certain condition holds
true. They also resemble analogous constructs in Pascal (while/do and repeat/until) and C (while and
do/until).

while and until are actually most useful when combined with features we will see in the next chapter,
such asinteger arithmetic, input/output of variables, and command-line processing. Y et we can show a
useful example even with the machinery we have covered so far.

The syntax for whileis:

whil e condition
do

statenents. ..
done

For until, just substitute until for while in the above example. Aswith if, the condition isreally alist of
statements that are run; the exit status of the last one is used as the value of the condition. Y ou can use a
conditional with [[and]] here, just as you can with if.

Note that the only difference between while and until is the way the condition is handled. In while, the
loop executes as long as the condition istrue; in until, it runs as long as the condition isfalse. So far, so
familiar. BUT: the until condition is checked at the top of the loop, not at the bottom as it isin analogous
constructsin C and Pascal.

The result isthat you can convert any until into awhile by simply negating the condition. The only place
where until might be better is something like this:

until command; do
statenents. ..
done

The meaning of thisis essentialy, "Do statements until command runs correctly." Thisisnot, in our
opinion, alikely contingency. Therefore we will use while throughout the rest of this book.

Hereisatask that is a good candidate for while.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_05.htm (1 of 4) [2/8/2001 4:55:41 PM]

[Chapter 5] 5.5 while and until

Task 5.5

Implement a simplified version of the shell's built-in whence command.

By "simplified," we mean that we will implement only the part that checks al of the directoriesin your
PATH for the command you give as argument (we won't implement checking for aliases, built-in
commands, etc.).

We can do this by picking off the directoriesin PATH one by one, using one of the shell's
pattern-matching operators, and seeing if there is afile with the given name in the directory that you have
permission to execute. Here is the code:

pat h=$PATH:
di r =${ pat h%es *}
while [[-n $path]]; do
if [[-x $dir/$1 && ! -d $dir/$1]]; then
print "$dir/$1"
return
fi
pat h=%${ pat h#*: }
di r =${ pat h%% *}
done
return 1

Thefirst line of this code saves $PATH in path, our own temporary copy. We append a colon to the end
so that every directory in $path endsin acolon (in $PATH, colons are used only between directories);
subsequent code depends on this being the case.

The next line picks the first directory off of $path by using the operator that del etes the longest match to
the pattern given. In this case, we delete the longest match to the pattern : *, i.e., acolon followed by
anything. This gives us thefirst directory in $path, which we store in the variable dir.

The condition in the while loop checksif $path isnon-null. If it isnot null, it constructs the full
pathname $dir/$1 and seesif thereis afile by that name for which you have execute permission (and that
Isnot adirectory). If so, it prints the full pathname and exits the routine with a0 ("OK") exit status.

If afileisnot found, then this codeisrun:

pat h=${ pat h#*:}
di r =${ pat h%% *}

Thefirst of these uses another shell string operator: this one deletes the shortest match to the pattern
given from the front of the string. By now, this type of operator should be familiar. Thisline deletes the
front directory from $path and assigns the result back to path. The second line is the same as before the
while: it finds the (new) front directory in $path and assignsit to dir. This sets up the loop for another
iteration.

Thus, the code loops through all of the directoriesin PATH. It exits when it finds a matching executable
file or when it has "eaten up" the entire PATH. If no matching executable fileis found, it prints nothing
and exits with an error status.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_05.htm (2 of 4) [2/8/2001 4:55:41 PM]

[Chapter 5] 5.5 while and until

We can enhance this script a bit by taking advantage of the UNIX utility file(1). file examinesfiles given
as arguments and determines what type they are, based on the file's magic number and various heuristics
(educated guesses). A magic number isafield in the header of an executable file that the linker setsto
identify what type of executableit is.

If filename is an executable program (compiled from C or some other language), then typing file
filename produces output similar to this:

filename: ELF 32-bit LSB executable 80386 Version 1

However, if filename is not an executable program, it will examine the first few lines and try to guess

what kind of information the file contains. If the file contains text (as opposed to binary data), file will
look for indications that it is English, shell commands, C, FORTRAN, troff(1) input, and various other
things. file iswrong sometimes, but it is mostly correct.

We can just substitute file for print to print a more informative message in our script:
pat h=$PATH
di r =${ pat h%8s *}
while [[-n $path]]; do
if [[-x $dir/$1 && ! -d $dir/$1]]; then
file $dir/$1
return
fi
pat h=${ pat h#*: }
di r =${ pat h%86 *}
done
return 1

Assume that fred is an executable file in the directory /usr/bin, and that bob isa shell scriptin
/usr/local/bin. Then typing file fred produces this output:

fusr/bin/fred: ELF 32-bit LSB executable 80386 Version 1

And typing file bob has this result:

/usr/1ocal /bin/bob: conmands text
Before we end this chapter, we have two final notes. First, notice that the statement dir=${path% %:*}
appears in two places, before the start of the loop and as the last statement in the loop's body. Some

diehard C hackers are offended by this Pascal-like coding technique. Certain features of the C language
allow programmersto create loops of the form:

while iterative-step; condition; do
done

Thisisthe same as the form of the script above: the iterative-step runs just before the condition each time
around the loop.

We can write our script thisway:
pat h=$PATH

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_05.htm (3 of 4) [2/8/2001 4:55:41 PM]

[Chapter 5] 5.5 while and until
while dir=${path®s*}; [[-n $path]]; do
if [[-x $dir/$1 && ! -d $dir/$1]]; then
file $dir/$1
return
fi
pat h=${ pat h#*:}
done
return 1

Although this example doesn't show great programming style, it does make the code smaller-hence its
popularity with C programmers. Make sure you understand that our script is functionally identical to the
previous script.

Finally, just to show how little difference there is between while and until, we note that the line
until [[! -n $path]]; do

can be used in place of
while [[-n $path]]; do

with identical results.

WEe'll see additional examples of while in the next chapter.

41 PREVIOUS HOME HEXT %
5.4 select BOOK INDEX 6. Command-line Options and
Typed Variables

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch05_05.htm (4 of 4) [2/8/2001 4:55:41 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 6] Command-line Options and Typed Variables

| Learning the KON Shell

4 PREVIOUS Chapter 6 MEXT o

6. Command-line Options and Typed
Variables

Contents:
Command-line Options

Integer Variables and Arithmetic
Arrays
Y ou should have a healthy grasp of shell programming techniques now that you have gone through the

previous chapters. What you have learned up to this point enables you to write many nontrivial, useful shell
scripts and functions.

Still, you may have noticed some remaining gaps in the knowledge you need to write shell code that behaves
like the UNIX commands you are used to. In particular, if you are an experienced UNIX user, it might have
occurred to you that none of the example scripts shown so far have the ability to handle options (preceded by
adash (-)) on the command line. And if you program in a conventional language like C or Pascal, you will
have noticed that the only type of datathat we have seen in shell variablesis character strings, we haven't
seen how to do arithmetic, for example.

These capabilities are certainly crucial to the shell's ability to function as a useful UNIX programming
language. In this chapter, we will show how the Korn shell supports these and related features.

6.1 Command-line Options

We have already seen many examples of the positional parameters (variables called 1, 2, 3, etc.) that the
shell uses to store the command-line arguments to a shell script or function when it runs. We have also seen
related variables like * (for the string of all arguments) and # (for the number of arguments).

Indeed, these variables hold all of the information on the user's command-line. But consider what happens
when options are involved. Typical UNIX commands have the form command [-options]args, meaning that
there can be 0 or more options. If a shell script processes the command fred bob pete, then $1 is"bob" and
$2 is"pete". But if the command isfred -o bob pete, then $1is-o0, $2 is"bob", and $3 is "pete".

Y ou might think you could write code like this to handle it:

if [[$1 = -0]]; then
code that processes the -0 option

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (1 of 9) [2/8/2001 4:55:51 PM]

[Chapter 6] Command-line Options and Typed Variables
1=%$2
2=%$3
fi

normal processing of $1 and $2...

But this code has severa problems. First, assignments like 1=$2 areillegal because positional parameters are
read-only. Even if they were legal, another problem is that this kind of code imposes limitations on how
many arguments the script can handle-which is very unwise. Furthermore, if this command had severa
possible options, the code to handle all of them would get very messy very quickly.

6.1.1 shift

Luckily, the shell provides away around this problem. The command shift performs the function of:

1=$2
2=$%$3

for every argument, regardless of how many there are. If you supply a numeric argument to shift, it will shift
the arguments that many times over; for example, shift 3 has this effect:

1=%4

2=$5

This leads immediately to some code that handles a single option (call it -0) and arbitrarily many arguments:

if [[$1 = -0]]; then
process the -o option
shift

fi

normal processing of argunents...

After theif construct, $1, $2, etc., are set to the correct arguments.

We can use shift together with the programming features we have seen so far to implement simple option
schemes. However, we will need additional help when things get more complex. The getopts built-in
command, which we will introduce later, provides this help.

shift by itself gives us enough power to implement the -N option to the highest script we saw in Chapter 4,
Basic Shell Programming (Task 4-1). Recall that this script takes an input file that lists artists and the number
of albums you have by them. It sorts the list and prints out the N highest numbers, in descending order. The
code that does the actual data processing is:

fil enane=$1

howrany=${ 2: - 10}

sort -nr $filenane | head - $howrany

Our original syntax for calling this script was highest filename [-N], where N defaults to 10 if omitted. Let's
change thisto a more conventional UNIX syntax, in which options are given before arguments. highest [-N]
filename. Here is how we would write the script with this syntax:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (2 of 9) [2/8/2001 4:55:51 PM]

[Chapter 6] Command-line Options and Typed Variables

if [[$1 = -+([0-9])]1; then
howrany=$1
shift

elif [[$1 = -*]]; then
print 'usage: highest [-N] fil enang'
return 1

el se
howrany="- 10"

fi

fil ename=$1

sort -nr $filenane | head $hownmany

In this code, the option is considered to be supplied if $1 matches the pattern -+([0-9]). This uses one of the
Korn shell's regular expression operators, which we saw in Chapter 4. Notice that we didn't surround the

pattern with quotes (even double quotes); if we did, the shell would interpret it literally, not as a pattern. This
pattern means " A dash followed by one or more digits." If $1 matches, then we assign it to the variable
howmany.

If $1 doesn't match, we test to seeif it'san option at all, i.e., if it matches the pattern -* . If it does, then it's
invalid; we print an error message and exit with error status. If we reach the final (else) case, we assume that
$lisafilename and treat it as such in the ensuing code. The rest of the script processes the data as before.

We can extend what we have learned so far to a genera technique for handling multiple options. For the sake
of concreteness, assume that our script is called bob and we want to handle the options -a, -b, and -c:

while [[$1 = -*]]; do
case $1 in
-a) process option -a ;;
-b) process option -b ;;
-C) process option -c ;;
*) print 'usage: bob [-a] [-b] [-c] args...'
return 1
esac
shift
done

normal processing of argunents...

This code checks $1 repeatedly as long asit starts with a dash (-). Then the case construct runs the
appropriate code depending on which option $1 is. If the optionisinvalid - i.e., if it starts with adash but isn't
-a, -b, or -c - then the script prints a usage message and returns with an error exit status. After each optionis
processed, the arguments are shifted over. The result is that the positional parameters are set to the actual
arguments when the while [oop finishes.

Notice that this code is capable of handling options of arbitrary length, not just one letter (e.g., -fred instead
of -a).

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (3 of 9) [2/8/2001 4:55:51 PM]

[Chapter 6] Command-line Options and Typed Variables

6.1.2 Options with Arguments

We need to add one more ingredient to make option processing really useful. Recall that many commands
have options that take their own arguments. For example, the cut command, on which we relied heavily in
Chapter 4, accepts the option -d with an argument that determines the field delimiter (if it is not the default

TAB). To handle this type of option, we just use another shift when we are processing the option.

Assume that, in our bob script, the option -b requires its own argument. Here is the modified code that will
processit:
while [[$1 = -*]]; do
case $1 in
-a) process option -a ;;
-b) process option -b
$2 is the option's argunent
shift ;;

-C) process option -c ;;
*) print 'usage: bob [-a] [-b barg] [-c] args...'
return 1
esac
shift
done

normal processing of argunents...

6.1.3 getopts

So far, we have a complete, though still constrained, way of handling command-line options. The above code
does not allow a user to combine arguments with asingle dash, e.g., -abc instead of -a -b -c. It also doesn't
allow one to specify arguments to options without a space in between, e.g., -barg in addition to -b arg. [1]

[1] Although most UNIX commands allow this, it is actually contrary to the Command Syntax
Standard Rulesin intro(1) of the User's Manual.

The shell provides a built-in way to deal with multiple complex options without these constraints. The
built-in command getopts [2] can be used as the condition of the while in an option-processing loop. Given a
specification of which options are valid and which require their own arguments, it sets up the body of the
loop to process each option in turn.

[2] getopts replaces the external command getopt(1), used in Bourne shell programming;
getoptsis better integrated into the shell's syntax and runs more efficiently. C programmers will
recognize getopts as very similar to the standard library routine getopt(3).

getopts takes two arguments. Thefirst isastring that can contain letters and colons. Each letter isavalid
option; if aletter isfollowed by a colon, the option requires an argument. getopts picks options off the
command line and assigns each one (without the leading dash) to a variable whose name is getopts second
argument. Aslong as there are options left to process, getopts will return exit status O; when the options are
exhausted, it returns exit status 1, causing the while loop to exit.

getopts does afew other things that make option processing easier; we'll encounter them as we examine how

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (4 of 9) [2/8/2001 4:55:51 PM]

[Chapter 6] Command-line Options and Typed Variables
to use getoptsin the preceding example:
whil e getopts ":ab:c" opt; do
case $opt in
a) process option -a ;;
b) process option -b
$OPTARG i s the option's argunent ;;
C) process option -c ;;
\?) print 'usage: bob [-a] [-b barg] [-c] args...'
return 1
esac
done
shift $(($OPTIND - 1))

normal processing of argunents...

The call to getoptsin the while condition sets up the loop to accept the options -a, -b, and -c, and specifies
that -b takes an argument. (We will explain the : that starts the option string in amoment.) Each time the loop
body is executed, it will have the latest option available, without adash (-), in the variable opt.

If the user types an invalid option, getopts normally prints an unfortunate error message (of the form cmd:
getopts: o bad option(s)) and sets opt to ?. However-now here's an obscure kludge-if you begin the option
letter string with a colon, getopts won't print the message. [3] We recommend that you specify the colon and
provide your own error message in a case that handles ?, as above.

[3] Evidently this was deemed necessary because you can't redirect getopts' standard error
output to /dev/null; the result is (usually) a core dump.

We have modified the code in the case construct to reflect what getopts does. But notice that there are no
more shift statements inside the while loop: getopts does not rely on shifts to keep track of whereitis. Itis
unnecessary to shift arguments over until getoptsisfinished, i.e., until the while loop exits.

If an option has an argument, getopts storesit in the variable OPT ARG, which can be used in the code that
processes the option.

The one shift statement left is after the while loop. getopts storesin the variable OPTIND the number of the
next argument to be processed; in this case, that's the number of the first (non-option) command-line
argument. For example, if the command line were bob -ab pete, then SOPTIND would be "2". If it were bob
-a -b pete, then SOPTIND would be"3".

The expression $(($OPTIND - 1)) isan arithmetic expression (as we'll see later in this chapter) equal to
$OPTIND minus 1. Thisvalueis used as the argument to shift. The result is that the correct number of
arguments are shifted out of the way, leaving the "real" arguments as $1, $2, etc.

Before we continue, now is a good time to summarize everything that getopts does:

1. Itsfirst argument isastring containing all valid option letters. If an option requires an argument, a
colon followsiits letter in the string. An initial colon causes getopts not to print an error message when
the user gives an invalid option.

2. Its second argument is the name of avariable that will hold each option letter (without any leading
dash) asit is processed.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (5 of 9) [2/8/2001 4:55:51 PM]

[Chapter 6] Command-line Options and Typed Variables

3. If an option takes an argument, the argument is stored in the variable OPTARG.

4. Thevariable OPTIND contains a number equal to the next command-line argument to be processed.
After getoptsisdone, it equals the number of the first "real” argument.

The advantages of getopts are that it minimizes extra code necessary to process options and fully supports
the standard UNIX option syntax (as specified in intro(1) of the User's Manual).

As amore concrete example, let's return to our C compiler front end (Task 4-2). So far, we have given our
script the ability to process C source files (ending in .c), assembly code files (.s), and object code files (.0).
Hereisthe latest version of the script:

objfiles=""
for filename in "$@; do
case $filenane in
*.C)
obj name=%${fil ename% c}. o
conpil e $fil ename $obj nane ;;
*.S)
obj name=${fil enane% s}. o
assenbl e $fil ename $obj nane ;;
*.0)
obj nane=%fi | enane ;;
)
print "error: $filenane is not a source or object file."
return 1 ;;
esac
obj fil es="%objfil es $obj nane"
done
| d $objfiles

Now we can give the script the ability to handle options. To know what options we'll need, we'll have to
discuss further what compilers do.

6.1.3.1 More About C Compilers

The C compiler on atypical modern UNIX system (ANSI C on System V Release 4) has roughly 30 different
command-line options, but we'll limit ourselves to the most widely-used ones.

Here's what we'll implement. All compilers provide the ability to eliminate the final linking step, i.e., the call
to the linker Id. Thisis useful for compiling C code into object code files that will be linked later, and for
taking advantage of the compiler's error checking separately before trying to link. The -c option suppresses
the link step, producing only the compiled object code files.

C compilers are aso capable of including lots of extrainformation in an object code file that can be used by a
debugger (though it isignored by the linker and the running program). If you don't know what a debugger is,
see Chapter 9, Debugging Shell Programs. The debugger needs lots of information about the original C code

to be able to do its job; the option -g directs the compiler to include thisinformation in its object-code output.

If you aren't already familiar with UNIX C compilers, you may have thought it strange when you saw in the

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (6 of 9) [2/8/2001 4:55:51 PM]

[Chapter 6] Command-line Options and Typed Variables

last chapter that the linker puts its output (the executable program) in afile called a.out. This conventionisa
historical relic that no one has bothered to change. Although it's certainly possible to change the executable's
name with the mv command, the C compiler provides the option -o filename, which uses filename instead of
a.out.

Another option we will support here has to do with libraries. A library is a collection of object code, some of
which isto be included in the executable at link time. (Thisisin contrast to a precompiled object codefile,
all of which islinked in.) Each library includes alarge amount of object code that supports a certain type of
interface or activity; typical UNIX systems have libraries for things like networking, math functions, and

graphics.

Libraries are extremely useful as building blocks that help programmers write complex programs without
having to "reinvent the wheel" every time. The C compiler option -1 name tells the linker to include whatever
code is necessary from the library name [4] in the executable it builds. One particular library called c (thefile
libc.a) isalways included. Thisis known as the C runtime library; it contains code for C's standard input and
output capability, among other things.

[4] Thisisactually afile caled libname.a in a standard library directory such as/lib.

Finally, it is possible for agood C compiler to do certain things that make its output object code smaller and
more efficient. Collectively, these things are called optimization. Y ou can think of an optimizer as an extra
step in the compilation process that 1ooks back at the object-code output and changes it for the better. The
option -O invokes the optimizer.

Table 6.1 summarizes the options we will build into our C compiler front end.

Table 6.1: Popular C Compiler Options
Option Meaning
-C Produce object code only; do not invoke the linker
-g Include debugging information in object code files
-1 lib Include the library lib when linking
-0 exefile Produce the executabl e file exefile instead of the default a.out
-0 Invoke the optimizer

Y ou should also bear in mind this information about the options:
« Theoptions-o0 and -I lib are merely passed on to the linker (Id), which processes them on its own.
o The-I lib option can be used multiple timesto link in multiple libraries.
« The-g option is passed to the ccom command (the program that does the actual C compilation).

« Wewill assume that the optimizer is a separate program called optimize that accepts an object file as
argument and optimizesit "in place," i.e., without producing a separate output file.

Here is the code for the script occ that includes option processing:

initialize option-related vari abl es
do_|ink=true

debug=""

link |ibs="-1 c"

exefile=""

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (7 of 9) [2/8/2001 4:55:51 PM]

[Chapter 6] Command-line Options and Typed Variables
opt =f al se

process command-|ine options
whil e getopts ":cgl:0: 0 opt; do
case $opt in

c) do_| i nk=f al se ;

g) debug="-g" ;

|) link _libs="$link_|libs -1 $OPTARG' ;;

o) exefil e="-0 $OPTARG' ;;

0) opt=true ;;

\?) print 'usage: occ [-cgQ [-I lib] [-o file] files...'
return 1 ;;

esac
done

shift $(($OPTIND - 1))

process the input files

objfiles=""

for filenane in "$@; do

case $filenane in
*.Cc)
obj nanme=${fil ename% c}. o
ccom $debug $fil enane $obj nane
if [[$opt = true]]; then
opti m ze $obj nane

fi 5

obj name=${fi |l ename% s}. o
as $fil enane $objnanme ;;
*.0)
obj nanme=$%$fil enane ;;
*
)
print "error: $filenane is not a source or object file.
return 1 ;;

esac
obj files="%objfil es $objnane"
done

if [[$do_link = true]]; then
| d $exefile $link Iibs $objfiles
fi

L et's examine the option-processing part of this code. The first severa linesinitialize variables that we will
use later to store the status of each of the options. We use "true" and "false" for truth values for readability;
they are just strings and otherwise have no special meaning. The initializations reflect these assumptions:

1. Wewill want to link.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (8 of 9) [2/8/2001 4:55:51 PM]

[Chapter 6] Command-line Options and Typed Variables
2. Wewill not want the compiler to generate space-consuming debugger information.

3. Theonly object-code library we will need is c, the standard C runtime library that is automatically
linked in.

4. The executable file that the linker creates will be the linker's default file, a.out.
5. Wewill not want to invoke the optimizer.

The while, getopts, and case constructs process the options in the same way as the previous example. Hereis
what the code that handles each option does:

« If the-coptionisgiven, thedo link flagisset to "false," which will cause theif condition at the end
of the script to be false, meaning that the linker will not run.

o If -gisgiven, thedebug variableis set to "-g". Thisis passed on the command line to the compiler.

« Each -l libthat isgiven is appended to the variable link_libs, so that when the while loop exits,
$link_libsisthe entire string of - options. This string is passed to the linker.

« If -ofileisgiven, the exefile variableis set to "-o file". Thisstring is passed to the linker.

« If -O isgpecified, the opt flag will be set. This specification causes the conditional if [[$opt = true]]
to be true, which means that the optimizer will run.

The remainder of the code is a modification of the for loop we have aready seen; the modifications are direct
results of the above option processing and should be self-explanatory.

41 PREVIOUS HOME NEXT »
5.5 while and until BOOK INDEX 6.2 Integer Variables and
Arithmetic

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & HUTSHELL | LEARMING V1 | SED & AWK | NORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_01.htm (9 of 9) [2/8/2001 4:55:51 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 6] 6.2 Integer Variables and Arithmetic

Learning the Korn Shell

4 PREVIOUS Chapter 6 HEXT &
Command-line Options and

Typed Variables

6.2 Integer Variables and Arithmetic

The expression $((JOPTIND - 1)) in the last example gives a clue asto how the shell can do integer
arithmetic. As you might guess, the shell interprets words surrounded by $((and)) as arithmetic
expressions. Variables in arithmetic expressions do not need to be preceded by dollar signs, thoughiit is
not wrong to do so.

Arithmetic expressions are evaluated inside double quotes, like tildes, variables, and command
substitutions. We're finally in a position to state the definitive rule about quoting strings. When in doulbt,
enclose astring in single quotes, unlessit containstildes or any expression involving adollar sign, in
which case you should use double quotes.

For example, the date(1) command on System V-derived versions of UNIX accepts arguments that tell it
how to format its output. The argument +%] tellsit to print the day of the year, i.e., the number of days
since December 31st of the previous year.

We can use +%] to print alittle holiday anticipation message:
print "Only $(((365-%(date +%)) / 7)) weeks until the New Year!"

WEe'll show where thisfitsin the overall scheme of command-line processing in Chapter 7, Input/Output
and Command-line Processing.

The arithmetic expression feature is built in to the Korn shell's syntax, and was available in the Bourne
shell (most versions) only through the external command expr(1). Thusit is yet another example of a
desirable feature provided by an external command (i.e., a syntactic kludge) being better integrated into
the shell. [[/]] and getopts are also examples of this design trend.

Korn shell arithmetic expressions are equivalent to their counterparts in the C language. [5] Precedence
and associativity are the same asin C. Table 6.2 shows the arithmetic operators that are supported.

Although some of these are (or contain) special characters, there is no need to backslash-escape them,
because they are within the $((...)) syntax.

[5] The assignment forms of these operators are also permitted. For example, $((x += 2))
adds 2 to x and stores the result back in x.

Table 6.2: Arithmetic Operators
Operator Meaning

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_02.htm (1 of 8) [2/8/2001 4:55:58 PM]

[Chapter 6] 6.2 Integer Variables and Arithmetic

+ Plus

Minus
* Times
/ Division (with truncation)
% Remainder
<< Bit-shift left
>> Bit-shift right
& Bitwise and
| Bitwise or
~ Bitwise not
N

Bitwise exclusive or

Parentheses can be used to group subexpressions. The arithmetic expression syntax also (like C) supports
relational operators as "truth values' of 1 for true and O for false. Table 6.3 shows the relational operators

and the logical operators that can be used to combine relational expressions.

Table 6.3: Relational Operators
Operator Meaning

< Lessthan

> Greater than

<= L ess than or equal
>= Greater than or equal
== Equa

I= Not equal

&& Logica and

| Logical or

For example, $((3 > 2)) hasthevaue 1; $(((3> 2) || (4 <=1))) also hasthe value 1, since at |east one of
the two subexpressionsistrue.

The shell aso supports base N numbers, where N can be up to 36. The notation B#N means "N base B". Of
course, if you omit the B#, the base defaultsto 10.

6.2.1 Arithmetic Conditionals

Another construct, closely related to $((...)), is ((...)) (without the leading dollar sign). We use thisfor
evaluating arithmetic condition tests, just as[[...]] isused for string, file attribute, and other types of tests.

((...)) evaluates relational operators differently from $((...)) so that you can useit in if and while
constructs. Instead of producing atextual result, it just setsits exit status according to the truth of the
expression: O if true, 1 otherwise. So, for example, ((3 > 2)) produces exit status 0, asdoes (((3> 2) || (4
<=1))),but (((83>2) && (4<=1))) hasexit status 1 since the second subexpression isn't true.

Y ou can also use numerical values for truth values within this construct. It's like the analogous concept in
C, which means that it's somewhat counterintuitive to non-C programmers: avalue of 0 meansfalse (i.e.,
returns exit status 1), and a non-0 value means true (returns exit status 0), e.g., ((14)) istrue. See the code

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_02.htm (2 of 8) [2/8/2001 4:55:58 PM]

[Chapter 6] 6.2 Integer Variables and Arithmetic

for the kshdb debugger in Chapter 9 for two more examples of this.

6.2.2 Arithmetic Variables and Assignment

The ((...)) construct can aso be used to define integer variables and assign values to them. The statement:
((intvar=expression))

creates the integer variable intvar (if it doesn't already exist) and assignsto it the result of expression.

That syntax isn't intuitive, so the shell provides a better equivalent: the built-in command let. The syntax
IS

l et intvar=expression

It is not necessary (because it's actually redundant) to surround the expression with $((and)) in alet
statement. As with any variable assignment, there must not be any space on either side of the equal sign
(=). It isgood practice to surround expressions with quotes, since many characters are treated as special by
the shell (e.g., *, #, and parentheses); furthermore, you must quote expressions that include whitespace
(spacesor TABS). See Table 6.4 for examples.

Table 6.4: Sample
Integer Expression

Assignments
Assignment Value
let x= $x
1+4 5
"1+4 5
"(2+3)* 5 25
'2+3*5 17
1713 5
"17%3 2
' <4 16
'48>>3 6
"17&3 1
'17]3 19
17N 3 18

Hereisasmall task that makes use of integer arithmetic.
Task 6.1

Write a script called pages that, given the name of atext file, tells how many pages of output
it contains. Assume that there are 66 lines to a page but provide an option allowing the user to
override that.

WEe'll make our option -N, alahead. The syntax for this single option is so simple that we need not bother
with getopts. Here is the code:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_02.htm (3 of 8) [2/8/2001 4:55:58 PM]

[Chapter 6] 6.2 Integer Variables and Arithmetic

if [[$1 = -+([0-9]) 1]; then
| et page_|ines=${1#-}
shi ft

el se
| et page_ | ines=66

fi

let file_lines="$(wc -1 < $1)"

| et pages=file |lines/page |ines

if ((file_lines %page lines >0)); then
| et pages=pages+1

fi

print "$1 has $pages pages of text."
Notice that we use the integer conditional ((file_lines% page_lines> 0)) rather than the[[...]] form.

At the heart of this codeisthe UNIX utility wc(1), which counts the number of lines, words, and
characters (bytes) in itsinput. By default, its output |ooks something like this:

8 34 161 bob

wc's output means that the file bob has 8 lines, 34 words, and 161 characters. wc recognizes the options -I,
-w, and -c, which tell it to print only the number of lines, words, or characters, respectively.

wc normally prints the name of its input file (given as argument). Since we want only the number of lines,
we have to do two things. First, we give it input from file redirection instead, as in wc -l < bob instead of
wc -I bob. This produces the number of lines preceded by a single space (which would normally separate
the filename from the number).

Unfortunately, that space complicates matters: the statement let file lines=$(wc -I < $1) becomes "l et
file lines= N" after command substitution; the space after the equal signisan error. That leads to the
second modification, the quotes around the command substitution expression. The statement let
file_lines=" N" isperfectly legal, and let knows how to remove the leading space.

Thefirst if clause in the pages script checks for an option and, if it was given, strips the dash (-) off and
assignsit to the variable page_lines. wc in the command substitution expression returns the number of
linesin the file whose name is given as argument.

The next group of lines calculates the number of pages and, if there is aremainder after the division, adds
1. Finally, the appropriate message is printed.

As abigger example of integer arithmetic, we will complete our emulation of the C shell's pushd and popd
functions (Task 4-8). Remember that these functions operate on DIRSTACK, a stack of directories
represented as a string with the directory names separated by spaces. The C shell's pushd and popd take
additional types of arguments, which are:

« pushd +n takesthe nth directory in the stack (starting with 0), rotates it to the top, and cds to it.

« pushd without arguments, instead of complaining, swaps the two top directories on the stack and
cds to the new top.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_02.htm (4 of 8) [2/8/2001 4:55:58 PM]

[Chapter 6] 6.2 Integer Variables and Arithmetic

« popd +n takes the nth directory in the stack and just deletesiit.

The most useful of these featuresis the ability to get at the nth directory in the stack. Here are the | atest
versions of both functions:

function pushd { # push current directory onto stack
di r name=%$1
if [[-d $dirname && -x $dirname]]; then
cd $dirnane
DI RSTACK="$di r nane ${ DI RSTACK: - $PWD} "
print "$Dl RSTACK"
el se
print "still in $PWD. "
fi
}

function popd { # pop directory off the stack, cd to new top
if [[-n $DIRSTACK]]; then
DI RSTACK=%{ DI RSTACK#* }
cd ${ DI RSTACK%8%o *}
print "$PWD'
el se
print "stack enpty, still in $PWD."
fi
}

To get at the nth directory, we use awhile loop that transfers the top directory to atemporary copy of the
stack n times. We'll put the loop into afunction called getNdirs that looks like this:

function get Ndirs{

st ackfront =

| et count=0

while ((count < $1)); do
st ackfront =" $st ackfront ${ DI RSTACKY% *}"
DI RSTACK=${ DI RSTACK#* }
| et count=count +1

done

}

The argument passed to getNdirsisthe nin question. The variable stackfront isthe temporary copy that
will contain the first n directories when the loop is done. stackfront starts as null; count, which counts the
number of loop iterations, starts as 0.

Thefirst line of the loop body appends the top of the stack (${DIRSTACK % % *}) to stackfront; the
second line deletes the top from the stack. The last line increments the counter for the next iteration. The
entire loop executes N times, for values of count from O to N-1.

When the loop finishes, the last directory in $stackfront isthe Nth directory. The expression
${stackfront##* } extractsthis directory. Furthermore, DIRSTACK now contains the "back" of the

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_02.htm (5 of 8) [2/8/2001 4:55:58 PM]

[Chapter 6] 6.2 Integer Variables and Arithmetic

stack, i.e., the stack without the first n directories. With thisin mind, we can now write the code for the
improved versions of pushd and popd:

function pushd {
if [[$1 = ++([0-9])]]; then
case of pushd +n: rotate n-th directory to top
| et nume${ 1#+}
get Ndirs $num

newt op=${ st ackf r ont ##* }
st ackf ront =${ st ackf r ont %$newt op}

DI RSTACK="$newt op $st ackfront $DI RSTACK"
cd $new op

elif [[-z $1 1]; then
case of pushd without args; swap top two directories
firstdir=${D RSTACK%®b *}
DI RSTACK=%${ DI RSTACK#* }
seconddi r =${ DI RSTACK%% * }
DI RSTACK=%${ DI RSTACK#* }
DI RSTACK="$seconddir $firstdir $DI RSTACK"
cd $seconddir

el se
cd $di rnane
normal case of pushd dirnane
di r nane=%$1
if [[-d $dirname & -x $dirnane]]; then
DI RSTACK="$di r name ${ DI RSTACK: - $PWD} "
print "$D RSTACK"
el se
print still in "$PWD. "
fi
fi
}

function popd { # pop directory off the stack, cd to new top
if [[$1 = ++([0-9])]]; then
case of popd +n: delete n-th directory from stack
| et nume{ $1#+}
get Ndi rs $num
st ackfront =${ st ackfront % *}
DI RSTACK="$st ackfront $DI RSTACK"

el se
normal case of popd w thout argunent

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_02.htm (6 of 8) [2/8/2001 4:55:58 PM]

[Chapter 6] 6.2 Integer Variables and Arithmetic

if [[-n $DIRSTACK]]; then
DI RSTACK=${ DI RSTACK#* }
cd ${ Dl RSTACK%Y% *}
print "$PWD'

el se
print "stack enpty, still in $PWD. "

fi

fi
}

These functions have grown rather large; let'slook at them in turn. Theif at the beginning of pushd checks
if the first argument is an option of the form +N. If so, the first body of codeisrun. Thefirst let ssimply
strips the plus sign (+) from the argument and assigns the result - as an integer - to the variable num. This,
in turn, is passed to the getNdirs function.

The next two assignment statements set newtop to the Nth directory - i.e., the last directory in
$stackfront - and delete that directory from stackfront. The final two linesin this part of pushd put the
stack back together again in the appropriate order and cd to the new top directory.

The €lif clause tests for no argument, in which case pushd should swap the top two directories on the
stack. Thefirst four lines of this clause assign the top two directories to fir stdir and seconddir, and delete
these from the stack. Then, as above, the code puts the stack back together in the new order and cds to the
new top directory.

The else clause corresponds to the usual case, where the user supplies a directory name as argument.

popd works similarly. The if clause checks for the +N option, which in this case means del ete the Nth
directory. A let extracts the N as an integer; the getNdirs function puts the first n directories into
stackfront. Then the line stackfront=%{stackfront% *} deletesthe last directory (the Nth directory) from
stackfront. Finaly, the stack is put back together with the Nth directory missing.

The else clause covers the usual case, where the user doesn't supply an argument.
Before we leave this subject, here are afew exercises that should test your understanding of this code:

1. Add code to pushd that exits with an error message if the user supplies no argument and the stack
contains fewer than two directories.

2. Verify that when the user specifies +N and N exceeds the number of directoriesin the stack, both
pushd and popd use the last directory as the Nth directory.

3. Modify the getNdirs function so that it checks for the above condition and exits with an appropriate
error message if true.

4. Change getNdirs so that it uses cut (with command substitution), instead of the while loop, to
extract the first N directories. This uses less code but runs more slowly because of the extra

processes generated.
4 PREVIOUS HOME NEXT B
6.1 Command-line Options BOOK INDEX 6.3 Arrays

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_02.htm (7 of 8) [2/8/2001 4:55:58 PM]

[Chapter 6] 6.2 Integer Variables and Arithmetic

LIBRARY HOME | UNIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_02.htm (8 of 8) [2/8/2001 4:55:58 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 6] 6.3 Arrays

| Learning the KOrn Shell

4 PREVIOUS Chapter 6 MEXT %
Command-line Options and

Typed Variables

6.3 Arrays

So far we have seen two types of variables: character strings and integers. The third type of variable the
Korn shell supportsisan array. Asyou may know, an array islike alist of things; you can refer to
specific elementsin an array with integer indices, so that a[i] refersto the ith element of array a.

The Korn shell provides an array facility that, while useful, is much more limited than anal ogous features
in conventional programming languages. In particular, arrays can be only one-dimensional (i.e., no arrays
of arrays), and they are limited to 1024 elements. Indices can start at O.

There are two ways to assign values to elements of an array. The first is the most intuitive: you can use
the standard shell variable assignment syntax with the array index in brackets ([]). For example:

ni cknanes| 2] =bob
ni cknanmes| 3] =ed

puts the values bob and ed into the elements of the array nicknames with indices 2 and 3, respectively.
Aswith regular shell variables, values assigned to array elements are treated as character strings unless
the assignment is preceded by let.

The second way to assign values to an array is with avariant of the set statement, which we saw in
Chapter 3, Customizing Y our Environment. The statement:

set -A anane vall val2 val3 ...

creates the array aname (if it doesn't already exist) and assigns val1 to aname[0], val2 to aname[1], etc.
As you would guess, thisis more convenient for loading up an array with an initial set of values.

To extract avalue from an array, use the syntax ${aname [i]}. For example, ${nicknameg[2]} hasthe
value "bob". Theindex i can be an arithmetic expression-see above. If you use * in place of the index,
the value will be all elements, separated by spaces. Omitting the index is the same as specifying index O.

Now we come to the somewhat unusual aspect of Korn shell arrays. Assume that the only values
assigned to nicknames are the two we saw above. If you type print " ${nicknameg*]}", you will see
the output:

bob ed

In other words, nicknameg 0] and nicknameg| 1] don't exist. Furthermore, if you wereto type:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (1 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays

ni cknanes| 9] =pet e
ni cknanmes[31] =r al ph

and then type print " ${nicknameg[*]}", the output would look like this:
bob ed pete ral ph

Thisiswhy we said "the elements of nicknames with indices 2 and 3" earlier, instead of "the 2nd and
3rd elements of nicknames'. Any array elements with unassigned values just don't exist; if you try to
access their values, you will get null strings.

Y ou can preserve whatever whitespace you put in your array elements by using " ${aname[@]} " (with
the double quotes) instead of ${ aname[* |}" , just as you can with " $@" instead of $* .

The shell provides an operator that tells you how many elements an array has defined: ${#aname[*]}.
Thus ${#nicknameg[*]} has the value 4. Note that you need the [*] because the name of the array alone
isinterpreted as the Oth element. This means, for example, that ${#nicknames} equals the length of
nicknameg 0] (see Chapter 4). Since nicknameg[0] doesn't exist, the value of ${#nicknames} is 0, the

length of the null string.

To be quite frank, we feel that the Korn shell's array facility is of little use to shell programmers. Thisis
partially becauseit is so limited, but mainly because shell programming tasks are much more often
oriented toward character strings and text than toward numbers. If you think of an array as a mapping
from integersto values (i.e., put in a number, get out avalue), then you can see why arrays are
"number-dominated” data structures.

Nevertheless, we can find useful thingsto do with arrays. For example, here is a cleaner solution to Task
5-4, in which auser can select his or her terminal type (TERM environment variable) at login time.
Recall that the "user-friendly" version of this code used select and a case statement:

print 'Select your termnal type:'
PS3='"term nal ? '
select termin

"Gvalt A35a" \

"Tsoris T-2000" \

' Shande 531" \

"Vey VT99'
do

case $REPLY in
TERM=gI 35a ;;
TERM=t 2000 ; ;
TERMEs531 ; ;
TERM=VE 99 ;
print "invalid." ;;

B WN P
——

esac

if [[-n $term]]; then
print "TERM is $TERM
br eak

fi

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (2 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays

done

We can eliminate the entire case construct by taking advantage of the fact that the select construct stores
the user's number choicein the variable REPLY . We just need aline of code that stores all of the
possibilitiesfor TERM in an array, in an order that corresponds to the items in the select menu. Then we
can use SREPLY to index the array. The resulting codeis:

set -A termmanes gl 35a t2000 s531 vt 99
print 'Select your termnal type:'
PS3='term nal ? '
select termin

‘Gvalt G.35a \

"Tsoris T-2000" \

' Shande 531" \

'Vey VT99'
do
if [[-n $term]]; then
TERM=${ t er manes|[REPLY- 1] }
print "TERM is $TERM
br eak
fi
done

This code sets up the array termnames so that ${termnameg[0]} is"gl35a’, ${termnameg[1]} is
"t2000", etc. The line TERM =${termnameg REPL Y -1]} essentially replaces the entire case construct
by using REPLY to index the array.

Notice that the shell knows to interpret the text in an array index as an arithmetic expression, asif it were
enclosed in ((and)), which in turn means that variable need not be preceded by adollar sign ($). We
have to subtract 1 from the value of REPLY because array indices start at 0, while select menu item
numbers start at 1.

6.3.1 typeset

Thefinal Korn shell feature that relates to the kinds of values that variables can hold is the typeset
command. If you are a programmer, you might guess that typeset is used to specify the type of avariable
(integer, string, etc.); you'd be partialy right.

typeset isarather ad hoc collection of things that you can do to variables that restrict the kinds of values
they can take. Operations are specified by options to typeset; the basic syntax is:

typeset -0 varnane[=val ue]

Options can be combined; multiple varnames can be used. If you leave out varname, the shell printsalist
of variables for which the given option is turned on.

The options available break down into two basic categories.
1. String formatting operations, such as right- and left-justification, truncation, and letter case
control.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (3 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays

2. Type and attribute functions that are of primary interest to advanced programmers.

6.3.2 Local Variables in Functions

typeset without options has an important meaning: if atypeset statement is inside afunction definition,
then the variablesinvolved all become local to that function (in addition to any properties they may take
on as aresult of typeset options). The ability to define variables that are local to "subprogram" units
(procedures, functions, subroutines, etc.) is necessary for writing large programs, because it helps keep
subprograms independent of the main program and of each other.

If you just want to declare avariable local to afunction, use typeset without any options. For example:

function afunc {
typeset diffvar
sanevar =f uncval ue
di f fvar=funcval ue
print "sanmevar is $sanevar"
print "diffvar is $diffvar"

}

sanmevar =gl obval ue

di f fvar =gl obval ue

print "sanevar is $sanevar"
print "diffvar is $diffvar"”
af unc

print "sanevar is $sanevar"
print "diffvar is $diffvar"

This code will print the following:

sanmevar is gl obval ue
di ffvar is gl obval ue
samevar i s funcval ue
diffvar is funcval ue
sanevar i s funcval ue
di ffvar is gl obval ue

Figure 6.1 shows this graphically.

Figure 6.1: Local variables in functions

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (4 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays

script ascript

varname | - known in script only

varname | - known in funclion only

Esamavar

Sdithvar

[mrnamf | - known in script and function

I

L

function afunc

Ssamavar

Sdithvar

i

3

Y ou will see several additional examples of local variables within functionsin Chapter 9.

6.3.3 String Formatting Options

Now let'slook at the various optionsto typeset. Table 6.5 lists the string formatting options; the first
three take an optional numeric argument.

Table 6.5: Typeset String Formatting Options

Option Operation

-Ln Left-justify. Remove leading blanks; if nisgiven, fill with blanks or truncate on right to length
n.

-Rn Right-justify. Remove trailing blanks; if nisgiven, fill with blanks or truncate on left to length
n.

-Zn Same as above, except add leading O's instead of blanks if needed.

-| Convert letters to lowercase.

-u Convert letters to uppercase.

Here are afew simple examples. Assume that the variable alpha is assigned the letters of the alphabet, in
alternating case, surrounded by three blanks on each side:

al pha=" aBcDeFgH JkLmNoPgRs TuVwxy Z

Table 6.6 shows some typeset statements and their resulting values (assuming that each of the statements
are run "independently").

Table 6.6: Examples of typeset String Formatting Options

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (5 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays

Statement Valueof v

typeset -L v=%alpha "aBcDeFgH JkLmNoPgRsTuVWwxyzZ "
typeset -L10 v=$alpha " aBcDeFgH J"

typeset -R v=%$alpha " aBcDeFgH JkLmNoPgRs TuVwxy Z"
typeset -R16 v=$apha " kLnNoPqRsTuVwXyZ"

typeset -1 v=%alpha " abcdef ghi j kI mopqr st uvwxyz"

typeset -uR5v=%alpha " VWKYZ"
typeset -Z8v="123. 50" "00123. 50"

When you run typeset on an existing variable, its effect is cumulative with whatever typesets may have
been used previoudly. This has the obvious exceptions:

o A typeset -u undoes atypeset -l, and vice versa.
« A typeset -R undoes atypeset -L, and vice versa.
« typeset -Z has no effect if typeset -L has been used.

Y ou can turn off typeset options explicitly by typing typeset +o, where o is the option you turned on
before. Of course, it is hard to imagine scenarios where you would want to turn multiple typeset
formatting options on and off over and over again; you usually set atypeset option on agiven variable
only once.

An obvious application for the -L and -R optionsis one in which you need fixed-width output. The most
ubiquitous source of fixed-width output in the UNIX system is reflected in the following programming
task.

Task 6.2

Pretend that |s doesn't do multicolumn output; write a shell script that doesit.

For the sake of simplicity, we'll assume further that our version of UNIX isderived from AT& T System
V, inwhich filenames are (still!) limited to 14 characters.

Our solution to this task relies on many of the concepts we have seen earlier in this chapter. It also relies
on the fact that set -A (for constructing arrays) can be combined with command substitution in an
interesting way: each word (separated by blanks, TABs, or NEWLINESs) becomes an element of the
array. For example, if the file bob contains 50 words, then after the statement:

set -A fred $(< bob)
the array fred has 50 elements.

Our strategy isto get the names of all filesin the given directory into an array variable. We use awhile
loop that mimics afor loop, aswe saw earlier in this chapter, to get each filename into a variable whose
length has been set to 14. We print that variable in five-column format, with two spaces between each
column (for atotal of 80 columns), using a counter to keep track of columns. Here is the code:

set -A filenanmes $(Is $1)
typeset -L14 fnane

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (6 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays

| et count =0
| et nuntol s=5

while (($count < ${#filenanes[*]})); do
fname=${fi | enanmes[count]}
print -n "$fname "
| et count="count + 1"

i f ((count % nuntols == 0)); then
pri nt # NEWLI NE
fi
done
if ((count % nunctols !'=0)); then
print

fi

Thefirst line sets up the array filenames to contain all filesin the directory given by the first argument
(the current directory by default). The typeset statement sets up the variable fname to have a fixed width
of 14 characters. The next line initializes a counter that counts elementsin the array. numcolsisthe
number of columns per line.

The while loop iterates once for every element in filenames. In the body of the loop, the first line assigns
the next array element to the fixed-width variable. The print statement prints the latter followed by two
spaces; the -n option suppresses print's final NEWLINE.

The let statements increments the counter. Then there isthe if statement, which determines when to start
the next line. It checks the remainder of $count divided by $numcols-remember that dollar signs aren't
necessary within a$((...)) construct-and if the result is 0, it's time to output a NEWLINE viaaprint
statement without arguments. Notice that even though $count increases by 1 with every iteration of the
loop, the remainder goesthrough acycleof 1, 2, 3,4,0, 1, 2, 3, 4, 0,...

After the loop, an if construct outputs afinal NEWLINE if necessary, i.e., if theif within the loop didn't
just doit.

We can also use typeset options to clean up the code for our dosmv function (Task 5-3), which translates
filenames in agiven directory from MS-DOS to UNIX format. The code for the function is:
dos_regexp='"["a-z]\{1,8\}\.["*a-z]\ {0, 3\}'
for filename in ${1:+$1/}* ; do
if print "$filenanme” | grep $dos _regexp > /dev/null; then
newfil enane=$(print $filename | tr [A-Z] [a-z])
newf i | enane=${ newf i | enane% }
print "$filename -> $newfil enane”
mv $fil ename $newfil ename
fi
done

We can replace the call to tr in the for loop with oneto typeset - before the loop:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (7 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays

typeset -1 newfil enane
dos_regexp='"["a-z]\{1,8\}\.["*a-z]\ {0, 3\}'
for filename in ${1:+$1/}* ; do
if print "$filenanme” | grep $dos_regexp > /dev/null; then
newf i | enane=%${fi | enane% }
print "$filename -> $newfil enane”
mv $fil ename $newfil enane
fi
done

Thisway, the trandation to lowercase |etters is done automatically each time avalueis assigned to
newfilename. Not only is this code cleaner, but it is also more efficient because the extra processes
created by tr and command substitution are eliminated.

6.3.4 Type and Attribute Options

The other options to typeset are of more use to advanced shell programmers who are "tweaking" large
scripts. These options are listed in Table 6.7.

Table 6.7: Typeset Type and Attribute Options
Option Operation
-in Represent the variable internally as an integer; improves efficiency of arithmetic. If nisgiven, it

is the base used for output.
-r Make the variable read-only: forbid assignment to it and disallow it from being unset.[6]
-X Export; same as export command.
-f Refer to function names only; see "Function Options" below.

[6] The built-in command readonly does the same thing.

-i isthe most useful of these. Y ou can put it in a script when you are done writing and debugging it to
make arithmetic run a bit faster, though the speedup will be apparent only if your script does alot of
arithmetic. The more readable integer isabuilt-in alias for typeset -i, so that integer x=5 isthe same as
typeset -i x=5.

The -r option isuseful for setting up "constants" in shell scripts; constants are like variables except that
you can't change their values once they have been initialized. Constants alow you to give namesto
values even if you don't want them changed; it is considered good programming practice to use constants
in large programs,

The solution to Task 6-2 contains a good candidate for typeset -r: the variable numcols, which specifies
the number of columnsin the output. Since numcolsis an integer, we could also use the -i option, i.e.,
replace let numcols=5 with typeset -ri numcols=5. If we were to try assigning another value to
numcols, the shell would respond with the error message ksh: numcols: isread only.

-r isalso useful for system administrators who set up shell variables in /etc/profile, the system-wide Korn
shell initidlization file. For example, if you wanted to tighten system security, one step you might takeis
to prevent the PATH environment variable from being changed. This helps prevent computer crackers

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (8 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays
from installing bogus executables. The statement typeset -r PATH does the trick.

These options are also useful without arguments, i.e., to see which variables exist that have those options
turned on.

6.3.5 Function Options

The -f option has various suboptions, all of which relate to functions. These are listed in Table 6.8.

Table 6.8: Typeset Function Options
Option Operation

-f With no arguments, prints all function definitions.
-f fname Prints the definition of function fname.
+f Prints all function names.

-ft Turns on trace mode for named function(s). (Chapter 9)
+ft Turns off trace mode for named function(s). (Chapter 9)
-fu Defines given name(s) as autoloaded function(s). (Chapter 4)

Two of these have built-in aliases that are more mnemonic: functionsisan aliasfor typeset -f and
autoload isan diasfor typeset -fu.

Finaly, if you type typeset without any arguments, you will see alist of all currently-defined variables
(in no discernable order), preceded by appropriate keywords if they have one or more typeset options
turned on. For example, typing typeset in an uncustomized shell gives you alisting of the shell's built-in
variables and their attributes that looks like this: [7]

[7] For some reason, thislist excludes PS1 and afew others.

export HZ
export PATH

I nt eger ERRNO

I nt eger OPTI ND
function LI NENO
export LOGNAME
export MAIL
functi on SECONDS
I nt eger PPID
PS3

pPS2

export TERMCAP
OPTARG

functi on RANDOM
export SHELL

I nt eger TMOUT
export HOVE
export _
FCED T

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (9 of 10) [2/8/2001 4:56:04 PM]

[Chapter 6] 6.3 Arrays

export TERM

export PVD

export TZ

I nt eger MAI LCHECK
4 PREVIOUS HOME NEXT »
6.2 Integer Variables and BOOK INDEX 7. Input/Output and
Arithmetic Command-line Processing

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch06_03.htm (10 of 10) [2/8/2001 4:56:04 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 8] Process Handling

| Learning the KOrn Shell

4 PREVIOUS Chapter 8 MEXT

8. Process Handling

Contents:
Process | Ds and Job Numbers

Job Control
Signals
trap
Coroutines
Subshélls

The UNIX operating system built its reputation on a small number of concepts, all of which are smple
yet powerful. We've seen most of them by now: standard input/output, pipes, text-filtering utilities, the
tree-structured file system, and so on. UNIX also gained notoriety as the first small-computer operating
system to give each user control over more than one process. We call this capability user-controlled
multitasking.

If UNIX isthe only operating system that you're familiar with, you might be surprised to learn that
several other major operating systems have been sadly lacking in this area. For example, Microsoft's
MS-DOS, for IBM PC compatibles, has no multitasking at all, let alone user-controlled multitasking.
IBM's own VM/CMS system for large mainframes handles multiple users but gives them only one
process each. DEC's VAX/VMS has user-controlled multitasking, but it islimited and difficult to use.
The latest generation of small-computer operating systems, such as Apple's Macintosh OS System 7,
IBM's OS/2 Version 2, and Microsoft's Windows NT, finally include user-controlled multitasking at the
operating system level. [1]

[1] Programs like Apple's Multifinder and Microsoft Windows work on top of the operating
system (Mac OS Version 6 and MS-DOS, respectively) to give the user limited
multitasking.

But if you've gotten this far in this book, you probably don't think that multitasking isabig deal. You're
probably used to the idea of running a process in the background by putting an ampersand (&) at the end
of the command line. Y ou have also seen the idea of a subshell in Chapter 4, Basic Shell Programming

when we showed how shell scripts run.

In this chapter, we will cover most of the Korn shell's features that relate to multitasking and process
handling in general. We say "most" because some of these features are, like the file descriptors we saw in

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_01.htm (1 of 3) [2/8/2001 4:58:11 PM]

[Chapter 8] Process Handling
the previous chapter, of interest only to low-level systems programmers.

WEe'l start out by looking at certain important primitives for identifying processes and for controlling
them during login sessions and within shell scripts. Then we will move out to a higher-level perspective,
looking at ways to get processes to communicate with each other. The Korn shell's coroutine facility is
the most sophisticated interprocess communication scheme that we'll examine; we'll also look in more
detail at concepts we've already seen, like pipes and subshells.

Don't worry about getting bogged down in low-level technical details about UNIX. We will provide only
the technical information that is necessary to explain higher-level features, plus afew other tidbits
designed to pique your curiosity. If you are interested in finding out more about these areas, refer to your
UNIX Programmer's Manual or abook on UNIX internals that pertains to your version of UNIX.

We strongly recommend that you try out the examples in this chapter. The behavior of code that involves
multiple processes is not as easy to understand on paper as most of the other examples in this book.

8.1 Process IDs and Job Numbers

UNIX gives all processes numbers, called process | Ds, when they are created. Y ou will notice that, when
you run a command in the background by appending & to it, the shell responds with aline that looks like
this:

$ fred &

[1] 2349

In this example, 2349 is the process ID for the fred process. The [1] isajob number assigned by the shell
(not the operating system). What's the difference? Job numbers refer to background processes that are
currently running under your shell, while process IDs refer to all processes currently running on the
entire system, for al users. Theterm job basically refers to a command line that was invoked from your
login shell.

If you start up additional background jobs while the first oneis still running, the shell will number them
2, 3, etc. For example:

$ bob &

[2] 2367
$ dave &

[3] 2382

Clearly, 1, 2, and 3 are easier to remember than 2349, 2367, and 2382!

The shell includes job numbers in messages it prints when a background job completes, like this:
[1] + Done fred &

WEe'l explain what the plus sign means soon. If the job exits with non-zero status (see Chapter 5, Flow
Contral), the shell will include the exit status in parentheses:

[1] + Done(1) fred &

The shell prints other types of messages when certain abnormal things happen to background jobs; welll

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_01.htm (2 of 3) [2/8/2001 4:58:11 PM]

[Chapter 8] Process Handling
see these later in this chapter.

41 PREVIOUS HOME NEXT »
7.3 Command-line Processing BOOK INDEX 8.2 Job Control

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_01.htm (3 of 3) [2/8/2001 4:58:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 7] 7.3 Command-line Processing

¥, Learning the Korn Shell

4 PREVIOUS Chapter 7 MEXT
I nput/Output and

Command-line Processing

7.3 Command-line Processing

We've seen how the shell usesread to process input lines: it deals with single quotes (' '), double quotes
(" "), and backslashes (\); it separates lines into words, according to delimiters in the environment
variable | FS; and it assigns the words to shell variables. We can think of this process as a subset of the
things the shell does when processing command lines.

We've touched upon command-line processing (see Figure 7.1) throughout this book; now isagood timeto
make the whole thing explicit. [7] Each line that the shell reads from the standard input or a script is called
apipeling; it contains one or more commands separated by zero or more pipe characters ([). For each
pipelineit reads, the shell breaks it up into commands, sets up the 1/O for the pipeline, then does the
following for each command:

[7] Even this explanation is dlightly ssimplified to elide the most petty details, e.g., "middles’
and "ends' of compound commands, specia characters within [[...]] and ((...)) constructs, etc.
The last word on this subject is the reference book, The KornShell Command and
Programming Language, by Morris Bolsky and David Korn, published by Prentice-Hall.

1. Splitsthe command into tokens that are separated by the fixed set of metacharacters. SPACE, TAB,
NEWLINE,; , (,), <,>, |, and &. Types of tokens include words, keywords, 1/O redirectors, and
semicolons.

2. Checksthe first token of each command to seeif it is akeyword with no quotes or backslashes. If it's
an opening keyword (if and other control-structure openers, function, {, (, ((, or [[), then the
command is actually a compound command. The shell sets things up internally for the compound
command, reads the next command, and starts the process again. If the keyword isn't a compound
command opener (e.g., isacontrol-structure "middie” like then, else, or do, an "end" like fi or done,
or alogical operator), the shell signals a syntax error.

3. Checksthe first word of each command against the list of aliases. If amatch isfound, it substitutes
the alias' definition and goes back to Step 1; otherwise it goes on to Step 4. This scheme allows
recursive aliases; see Chapter 3. It also allows aliases for keywords to be defined, e.g., alias

aslongas=while or alias procedure=function.

4. Substitutes the user's home directory (HOME) for tildeif it is at the beginning of aword.
Substitutes user's home directory for ~user. [8]

[8] Two obscure variations on this: the shell substitutes the current directory ($PWD)

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (1 of 13) [2/8/2001 4:59:51 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm

[Chapter 7] 7.3 Command-line Processing

for ~+ and the previous directory (3OL DPWD) for ~-.
Performs parameter (variable) substitution for any expression that starts with adollar sign ($).
Does command substitution for any expression of the form $(string).

Evaluates arithmetic expressions of the form $((string)).

© N o O

Takes the parts of the line that resulted from parameter, command, and arithmetic substitution and
splits them into words again. Thistime it uses the charactersin $I FS as delimiters instead of the set
of metacharactersin Step 1.

9. Performs filename generation, a.k.a. wildcard expansion, for any occurrences of *, ?, and [/] pairs. It
also processes the regular expression operators that we saw in Chapter 4.

Figure 7.1: Steps in Command-line Processing

; - split into tokens
%= - ﬂ.
& & checkist token
R spniax amor
opening keyword other keyword y -
i not kenyword
"
=1
=
8 o
checklst token k5
| 5
Ex
=
not alias =
filde expansion
variable substitution
E- wy
: o vy __ g
e commend substitution _;
- B
£ arithmetic expression substitution
]
: o v |
% word splitfing of expanded text w
s & E
L =
- (o} 2 s
wildcard expansion =
+ =
@ 1 e L e e 1 |

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (2 of 13) [2/8/2001 4:59:51 PM]

[Chapter 7] 7.3 Command-line Processing

COMIMAND 00KUR: DUNT-IN COMmmana, |
| function, executable file |<

run
aval

10. Usesthefirst word as a command by looking up its source according to the rest of the list in Chapter
4, 1.e., as abuilt-in command, then as afunction, then as afilein any of the directoriesin $PATH.

11. Runsthe command after setting up I/O redirection and other such things.

That'salot of steps - and it's not even the whole story! But before we go on, an example should make this
process clearer. Assume that the following command has been run:

alias I ="Is -|"

Further assume that afile exists called .hist537 in user fred's home directory, which is/home/fred, and that
thereis adouble-dollar-sign variable $$ whose value is 2537 (we'll see what this special variableisin the
next chapter).

Now let's see how the shell processes the following command:
Il $(whence cc) ~fred/.*$(($$%1000))

Here iswhat happens to thisline:
1. Il $(whence cc) ~fred/.* $(($$% 1000))
Splitting the input into words.
2. Il'isnot akeyword, so step 2 does nothing.
3. Is-l $(whence cc) ~fred/.* $(($$% 1000))

Substituting Is - for itsaias "llI". The shell then repeats steps 1 through 3; step 2 splitsthe Is -1 into
two words. [9]

[9] Some of the shell's built-in aliases, however, seem to make it through single quotes:
true (an diasfor :, a"do-nothing" command that always returns exit status 0), false (an
aliasfor let 0, which always returns exit status 1), and stop (an aliasfor kill -STOP).

4. s -l $(whence cc) /home/fred/.* $(($$% 1000))
Expanding ~fred into /home/fred.

5. Is-I $(whence cc) /Thome/fred/.* $((2537% 1000))
Substituting 2537 for $3.

6. Is-I /usr/bin/cc /home/fred/.* $((2537% 1000))

Doing command substitution on "whence cc".

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (3 of 13) [2/8/2001 4:59:51 PM]

[Chapter 7] 7.3 Command-line Processing

7. 1s-l lusr/bin/cc /home/fred/.* 537
Evaluating the arithmetic expression 2537% 1000.
8. Is-I /usr/bin/cc /home/fred/.* 537
This step does nothing.
9. Is-I /usr/bin/cc /home/fred/.hist537
Substituting the filename for the wildcard expression .*537.
10. The command Isisfound in /usr/bin.
11. /usr/bin/lsisrun with the option -I and the two arguments.

Although thislist of stepsisfairly straightforward, it is not the whole story. There are still two ways to
subvert the process. by quoting and by using the advanced command eval.

7.3.1 Quoting

Y ou can think of quoting as away of getting the shell to skip some of the 11 steps above. In particular:

o Singlequotes(' ') bypasseverything through Step 9 - including aliasing. [10] All characters
inside a pair of single quotes are untouched. Y ou can't have single quotes inside single quotes - not
even if you precede them with backslashes.

[10] However, aswe saw in Chapter 1' \ ' ' (i.e., single quote, backslash, single quote,
single quote) acts pretty much like a single quote in the middle of a single-quoted string;
e.g., ' abc' \'' def' evaluatesto abc' def.

o Doublequotes (" ") bypass steps 1 through 4, plus steps 8 and 9. That is, they ignore pipe
characters, aliases, tilde substitution, wildcard expansion, and splitting into words via delimiters (e.g.,
blanks) inside the double quotes. Single quotes inside double quotes have no effect. But double
guotes do allow parameter substitution, command substitution, and arithmetic expression evaluation.
Y ou can include a double quote inside a double-quoted string by preceding it with a backslash (\).

Y ou must also backslash-escape $, © (the archaic command substitution delimiter), and \ itself.

Table 7.5 contains some simple examples that show how these work; they assume that the statement
dave=bob was run and that user fred's home directory is/home/fred.

If you are wondering whether to use single or double quotes in a particular shell programming situation, it is
safest to use single quotes unless you specifically need parameter, command, or arithmetic substitution.

Table 7.5: Examples of

Quoting Rules
Expression Value
$dave bob
"$dave' bob
\\$dave $dave
' $dave’ $dave

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (4 of 13) [2/8/2001 4:59:51 PM]

[Chapter 7] 7.3 Command-line Processing

' $dave’ ' bob'
~fred /homeffred
" ~fred" ~fred
' ~fred' ~fred

Here's a more advanced example of command-line processing that should give you deeper insight into the
overall process.

Task 7.5

Customize your primary prompt string so that it contains the current directory with tilde (~)
notation.

Recall from Chapter 4 that we found a simple way to set up the prompt string PS1 so that it always contains
the current directory:
PS1=" ($PVD) - > '

One problem with this setup is that the resulting prompt strings can get very long. One way to shorten them
isto substitute tilde notation for users home directories. This cannot be done with asimple string
expression analogous to the above. The solution is somewhat complicated and takes advantage of the
command-line processing rules.

The basic ideaisto create a "wrapper" around the cd command, as we did in Chapter 5, that installs the
current directory with tilde notation as the prompt string. Because cd is a built-in command, the wrapper
must be an alias in order to override it. But the code we need to insert tilde notation is too complicated for
an alias, so we'll use afunction and then alias the function as cd.

Well start with afunction that, given a pathname as argument, printsits equivalent in tilde notation if
possible:

function tildize {
if [[$1 = $HOVE*]]; then
print "\~/${1#$HOVE}"
return O
fi
awk '{FS=":"; print $1, $6}' /etc/passwd |
whil e read user honedir; do
if [[$honedir !'=/ && $1 = ${honedir}?(/*)]]; then
print "\~$user/ ${1#Shonedir}"
return O
fi
done
print "$1"
return 1

}

Thefirst if clause checksif the given pathname is under the user's home directory. If so, it substitutestilde
(~) for the home directory in the pathname and returns.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (5 of 13) [2/8/2001 4:59:52 PM]

[Chapter 7] 7.3 Command-line Processing

If not, we use the awk utility to extract the first and sixth fields of the file /etc/passwd, which contain users
IDs and home directories, respectively. In this case, awk acts like cut. The FS=":" isanaogousto -d:,
which we saw in Chapter 4, except that it prints the values on each line separated by blanks, not colons (:).

awk's output is fed into awhile loop that checks the pathname given as argument to seeif it contains some
user's home directory. (Thefirst part of the conditional expression eliminates "users' like daemon and root,
whose home directories are root and therefore are contained in every full pathname.The second part
matches home directories by themselves or with some other directory appended (the ?(/*) part.)) If auser's
home directory is found, then ~user is substituted for the full home directory in the given pathname, the
result is printed, and the function exits.

Finally, if the while loop exhausts all users without finding a home directory that is a prefix of the given
pathname, then tildize simply echoes back its input.

Now that we have this function, you might think we could use it in acommand substitution expression like
this:
PS1="3$(til di ze $PWD)"

But thiswon't work, because the shell doesn't do command substitution when it eval uates the prompt string
after every command. That's why we have to incorporate it into an alias that supersedes cd. The following
code should go into your .profile or environment file, along with the definition of tildize:

PS1=$(ti | di ze $PWD)

function _cd {
n Cdll n $@
es=$?
PS1=$(til di ze $PWD)
return $es

}

alias cd=_cd

When you log in, this code will set PS1 to theinitial current directory (presumably your home directory).
Then, whenever you enter acd command, the alias runs the function _cd, which looks alot like the

"wrapper" in Chapter 5.

Thefirst linein _cd runsthe "real" cd by surrounding it in quotes - which makes the shell bypass dias
expansion (Step 3 in thelist). Then the shell resets the prompt string to the new current directory, or the old
oneif the cd failed for some reason.

Of course, the function tildize can be any code that formats the directory string. See the exercises at the end
of this chapter for a couple of suggestions.

7.3.2 eval

We have seen that quoting lets you skip steps in command-line processing. Then there's the eval command,
which lets you go through the process again. Performing command-line processing twice may seem strange,
but it's actually very powerful: it lets you write scripts that create command strings on the fly and then pass
them to the shell for execution. This means that you can give scripts "intelligence” to modify their own

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (6 of 13) [2/8/2001 4:59:52 PM]

[Chapter 7] 7.3 Command-line Processing

behavior as they are running.

The eval statement tells the shell to take eval's arguments and run them through the command-line
processing steps all over again. To help you understand the implications of eval, we'll start with atrivia
example and work our way up to a situation in which we're constructing and running commands on the fly.

eval |s passes the string Is to the shell to execute; the shell printslist of filesin the current directory. Very
simple; there is nothing about the string |s that needs to be sent through the command-processing steps
twice. But consider this:

| i st page="Is | nore"
$l i st page

Instead of producing a paginated file listing, the shell will treat | and mor e as argumentsto Is, and Is will
complain that no files of those names exist. Why? Because the pipe character "appears' in step 5 when the
shell evaluates the variable, after it has actually looked for pipe characters (in step 2). The variable's
expansion isn't even parsed until step 8. As aresult, the shell will treat | and mor e as argumentsto Is, so that
Iswill try to find files called | and more in the current directory!

Now consider eval $listpage instead of just $listpage. When the shell getsto the last step, it will run the
command eval with argumentsls, |, and more. This causes the shell to go back to Step 1 with aline that
consists of these arguments. It finds | in Step 2 and splits the line into two commands, |s and more. Each
command is processed in the normal (and in both casestrivial) way. The result is a paginated list of the files
in your current directory.

Now you may start to see how powerful eval can be. It is an advanced feature that requires considerable
programming cleverness to be used most effectively. It even has a bit of the flavor of artificial intelligence,
in that it enables you to write programs that can "write" and execute other programs. [11] Y ou probably
won't use eval for everyday shell programming, but it's worth taking the time to understand what it can do.

[11] You could actually do thiswithout eval, by printing commands to atemporary file and
then "sourcing” that file with . filename. But that is much less efficient.

Asamore interesting example, we'll revisit Task 4-1, the very first task in the book. In it, we constructed a
simple pipeline that sorts afile and prints out the first N lines, where N defaults to 10. The resulting pipeline
was:

sort -nr $1 | head -${2:-10}
The first argument specified the file to sort; $2 is the number of linesto print.

Now suppose we change the task just abit so that the default isto print the entire file instead of 10 lines.
This means that we don't want to use head at all in the default case. We could do thisin the following way:
if [[-n $2]]; then
sort -nr $1 | head -%$2
el se
sort -nr $1
fi

In other words, we decide which pipeline to run according to whether or not $2 is null. But here is amore
compact solution:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (7 of 13) [2/8/2001 4:59:52 PM]

[Chapter 7] 7.3 Command-line Processing

eval sort -nr \$1 ${2:+"| head -\$2"}

Thelast expression in thisline evaluates to the string | head -\$2 if $2 exists (is not null); if $2 is null, then
the expression is null too. We backslash-escape dollar signs (\$) before variable names to prevent
unpredictable resultsif the variables values contain special characterslike > or |. The backslash effectively
puts off the variables' evaluation until the eval command itself runs. So the entire lineis either:

eval sort -nr \$1 | head -\$2

if $2isgivenor:
eval sort -nr \$1

if $2 isnull. Once again, we can't just run this command without eval because the pipeis "uncovered" after
the shell triesto break the line up into commands. eval causes the shell to run the correct pipeline when $2
isgiven.

Next, well revisit Task 7-3 from earlier in this chapter, the start script that lets you start acommand in the
background and save its standard output and standard error in alogfile. Recall that the one-line solution to
thistask had the restriction that the command could not contain output redirectors or pipes. Although the
former doesn't make sense when you think about it, you certainly would want the ability to start a pipeline
in thisway.

eval isthe obvious way to solve this problem:
eval "$@ > logfile 2>&81 &

The only restriction that this imposes on the user is that pipes and other such special characters be quoted
(surrounded by quotes or preceded by backslashes).

Here'saway to apply eval in conjunction with various other interesting shell programming concepts.
Task 7.6

Implement the guts of the make(1) utility as a shell script.

make is known primarily as a programmer's tool, but it seems as though someone finds a new use for it
every day. Without going into too much extraneous detail, make basically keeps track of multiplefilesin a
particular project, some of which depend on others (e.g., a document depends on its word processor input
file(s)). It makes sure that when you change afile, all of the other files that depend on it are processed.

For example, assume you're using the troff word processor to write a book. Y ou have files for the book's
chapters called chl.t, ch2.t, and so on; the troff output for these files are chl.out, ch2.out, etc. Y ou run
commands like tr off chN.t > chN.out to do the processing. While you're working on the book, you tend to
make changes to several filesat atime.

In this situation, you can use make to keep track of which files need to be reprocessed, so that all you need
to do istype make, and it will figure out what needs to be done. Y ou don't need to remember to reprocess
the files that have changed.

How does make do this? Simple: it compares the modification times of the input and output files (called
sources and targets in make terminology), and if the input file is newer, then make reprocessesit.

Y ou tell make which files to check by building afile called makefile that has constructs like this:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (8 of 13) [2/8/2001 4:59:52 PM]

[Chapter 7] 7.3 Command-line Processing

target : sourcel source2 ...
commands to nmake target

This essentially says, "For target to be up to date, it must be newer than all of the sources. If it's not, run the
commands to bring it up to date." The commands are on one or more lines that must start with TABs:. e.g.,
to make ch7.out:

ch7.out : ch7.t
troff ch7.t > ch7. out

Now suppose that we write a shell function called makecmd that reads and executes a single construct of
this form. Assume that the makefile is read from standard input. The function would look like the following
code.

function makecnd {
read target col on sources
for src in $sources; do
if [[$src -nt $target]]; then
while read cnmd && [[$cnd = \t*]]; do

print "$cnd"
eval ${cnd#\t}
done
br eak

fi
done

}

This function reads the line with the target and sources; the variable colon isjust a placeholder for the :.
Then it checks each source to see if it's newer than the target, using the -nt file attribute test operator that
we saw in Chapter 5. If the source is newer, it reads, prints, and executes the commands until it findsaline
that doesn't start with a TAB or it reaches end-of-file. (The real make does more than this; see the exercises
at the end of this chapter.) After running the commands (which are stripped of the initial TAB), it breaks out
of thefor loop, so that it doesn't run the commands more than once.

7.3.2.1 The C Compiler as Pipeline

Asafinal example of eval, welll revisit our old friend occ, the C compiler from the previous three chapters.
Recall that the compiler does its work by calling separate programs to do the actual compile from C to
object code (the ccom program), optimization of object code (optimize), assembly of assembler code files
(as), and final linking of object code files into an executable program (Id). These separate programs use
temporary filesto store their outputs.

Now we'll assume that these components (except the linker) pass information in a pipeline to the final
object code output. In other words, each component takes standard input and produces standard output
instead of taking filename arguments. Welll also change an earlier assumption: instead of compilingaC
source file directly to object code, occ compiles C to assembler code, which the assembler then assembles
to object code. Thislets us suppose that occ works like this:

ccom< filename.c | as | optimze > filenane.o

Or, if you prefer:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (9 of 13) [2/8/2001 4:59:52 PM]

[Chapter 7] 7.3 Command-line Processing

cat filenanme.c | ccom| as | optimze > filenane.o

To get thisin the proper framework for eval, let's assume that the variables srcname and objname contain
the names of the source and object files, respectively. Then our pipeline becomes:

cat $srcnanme | ccom| as | optim ze > $obj nane

Aswe've already seen, thisis equivalent to:
eval cat \$srcname | ccom| as | optimze > \$objnane

Knowing what we do about eval, we can transform this into:
eval cat \$srcname " | ccom " | as" " | optimze" > \$objname

and from that into:

conpi l e=" | ccont
assenbl e=" | as"
optim ze=" | optim ze"

eval cat \$srcnanme \$conpile \$assenbl e \ $opti m ze > \ $obj nane

Now, consider what happens if you don't want to invoke the optimizer - which is the default case anyway.
(Recall that the -O option invokes the optimizer.) We can do this:

optimze=""

If -O given then
optimze=" | optimze"

fi

In the default case, $optimize evaluates to the empty string, causing the final pipeline to "collapse” into:
eval cat $srcnanme | ccom | as > $objnane

Similarly, if you pass occ afile of assembler code (filename.s), you can collapse the compile step: [12]

[12] Astute readers will notice that, according to this rationale, we would handle object-code
input files (filename.o) with the pipeline eval cat $srcname > $objname, where the two
names are the same. Thiswill cause UNIX to destroy filename.o by truncating it to zero length.
We won't worry about this here.

assenbl e="| as”

if $srcname ends in .s then
conpi |l e=""

fi

That resultsin this pipeline:
eval cat \$srcnane | as > \ $obj nane
Now we're ready to show the full "pipeline" version of occ. It's similar to the previous version, except that

for each input file, it constructs and runs a pipeline as above. It processes the -g (debug) option and the link
step in the same way as before. Here is the code:

initialize option-related vari abl es
do_link=true

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (10 of 13) [2/8/2001 4:59:52 PM]

[Chapter 7] 7.3 Command-line Processing

link Iibs="-1 c¢"
exefile=""

initialize pipeline conponents

conpi l e=" | ccont
assenbl e=" | as"
optim ze=""

process conmand-1ine options
whil e getopts ":cgl:0: 0" opt; do
case $opt in

c) do_|ink=fal se ;
g) debug="-g" ;;
|) link libs="$link libs -1 $OPTARG' ;;
0) exefile="-0 $OPTARG' ;;
0) optimze=" | optimze" ;;
\?) print 'usage: occ [-cgQ [-] lib] [-o0 file] files..."’
return 1 ;;
esac
done

shift $(($OPTIND - 1))

process the input files
for filenane in "$@; do
case $filenane in

*.C)
obj name=${fil enane% c}.o ;;
*.5)
obj name=${fil enane% s}. o
conpil e="" ;;
*.0)
conpi |l e=""
assenbl e="" ;;
)
print "error: $filenanme is not a source or object file."
return 1 ;;

esac

run a pipeline for each input file

eval cat \$filename \$conpile \$assenbl e \$optim ze > \ $obj nane
obj fil es=$objfiles" "$objnane

done

if [[$do_link = true]]; then

ld $exefile $link |ibs $objfiles
fi

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (11 of 13) [2/8/2001 4:59:52 PM]

[Chapter 7] 7.3 Command-line Processing

We could go on forever with increasingly complex examples of eval, but we'll settle for concluding the
chapter with afew exercises. The last two are really more like items on the menu of food for thought; the
very last oneis particularly difficult.

1. Here are acouple of ways to enhance occ, our C compiler:

1. Real-world C compilers accept the option -S, which tells the compiler to suppress the assembly
step and leave the output in files of assembler code whose names end in .s. Modify occ so that
it recognizes this option.

2. Thelanguage C++ isan evolutionary successor to C; it includes advanced features like
operator overloading, function argument type checking, and class definitions. (Don't worry if
you don't know what these are.) Some C++ compilers use C as an "assembly language”, i.e.,
they compile C++ source files to C code and then pass them to a C compiler for further
processing. Assume that C++ source files have names ending in .cc, and that /lib/cfront is the
C++ compiler "front-end" that produces C code on its standard output. Modify occ so that it
accepts C++ aswell as C, assembler, and object code files.

2. The possibilities for customizing your prompt string are practically endless. Here are two
enhancements to customization schemes that we've seen aready:

1. Enhance the current-directory-in-the-prompt scheme by limiting the prompt string's length to a
number of characters that the user can define with an environment variable.

2. On some UNIX systems, it's not possible to get alist of all users by looking at /etc/passwd. For
example, networks of Suns use the Network Information Service (NIS, ak.a. "Yellow Pages"),
which stores a protected password file for the entire network on one server machine, instead of
having separate /etc/passwd files on each machine.

If such amachineis set up so that all login directories are under a common directory (e.g.,
/users), you can get alist of all users by simply Is-ing that directory. Modify the tildize
function so that it uses this technique; pay particular attention to execution speed.

3. Thefunction makecmd in the solution to Task 7-6 represents an oversimplification of the real make's
functionality. make actually checks file dependencies recursively, meaning that a source on one line
in a makefile can be atarget on another line. For example, the book chapters in the example could
themselves depend on some figures in separate files that were made with a graphics package.

1. Write afunction called readtar gets that goes through the makefile and stores all of the targets
in avariable or temp file.

2. Instead of reading the makefile from standard input, read it into an array variable called lines.
Use the variable curline as the "current line" index. Modify makecmd so that it reads lines
from the array starting with the current line.

3. makecmd merely checksto seeif any of the sources are newer than the given target. It should
really be arecursive routine that looks like this:

function nakecmd {
t ar get =$1
get sources for $target

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (12 of 13) [2/8/2001 4:59:52 PM]

[Chapter 7] 7.3 Command-line Processing

for each source src; do
if $src is also a target in this nmakefile then
makecnd $src
fi
if [[$src -nt $target]]; then
run commands to make target
return
fi
done

}

Implement this.

4. Write the "driver" script that turns the makecmd function into afull make program. This
should make the target given as argument, or if noneis given, the first target listed in the
makefile.

5. The above makecmd still doesn't do one important thing that the real make does: allow for
"symbolic" targets that aren't files. These give make much of the power that makesit
applicable to such an incredible variety of situations. Symbolic targets aways have a
modification time of 0, so that make always runs the commands to make them. Modify
makecmd so that it allows for symbolic targets. (Hint: the crux of this problem isto figure out
how to get afile's modification time. Thisis quite difficult.)

4. Finaly, here are some problems that really test your knowledge of eval and the shell's command-line
processing rules. Solve these and you're atrue Korn shell hacker!

1. Advanced shell programmers sometimes use alittle trick that includes eval: using the value of
avariable as the name of another variable. In other words, you can give a shell script control
over the names of variablesto which it assigns values. How would you do this? (Hint: if $fred
equals "dave’, and $daveis"bob", then you might think that you could type print $$fred and
get the response bob. This doesn't actually work, but it's on the right track.)

2. You could use the above technique together with other eval tricks to implement new control
structures for the shell. For example, seeif you can write a script that emulates the behavior of
afor loop in aconventional language like C or Pascal, i.e., aloop that iterates a fixed number
of times, with aloop variable that steps from 1 to the number of iterations (or, for C fans, O to
iterations-1). Call your script loop to avoid clashes with the keywords for and do.

4 PREVIOUS HOME HEXT
7.2 String 1/0 BOOK INDEX 8. Process Handling

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARNING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch07_03.htm (13 of 13) [2/8/2001 4:59:52 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/ch07_02.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 8] 8.2 Job Control

| Learning the KOrn Shell

4 PREVIOUS Chapter 8 NEXT B
Process Handling

8.2 Job Control

Why should you care about process | Ds or job numbers? Actually, you could probably get along fine
through your UNIX life without ever referring to process I Ds (unless you use awindowing
workstation-as we'll see soon). Job numbers are more important, however: you can use them with the
shell commands for job contral. [2]

[2] NOTE: If you have an older version of UNIX, it is possible that your system does not
support job control. Thisis particularly true for many systems derived from Xenix, System
[11, or early versions of System V. On such systems, the Korn shell does not have the fg and
bg commands, you can't type [CTRL-Z] to suspend ajob, and the TSTP signal doesn't exist.
The shell does, however, support everything else discussed here, including job numbers and
the jobs and kill commands, if monitor mode ison. To ensure this, put the line set -0
monitor in your .profilefile.

Y ou aready know the most obvious way of controlling ajob: you can create one in the background with
& . Onceajob isrunning in the background, you can let it run to completion, bring it into the foreground,
or send it amessage called asignal.

8.2.1 Foreground and Background

The built-in command fg brings a background job into the foreground. Normally this means that the job
will have control of your terminal or window and therefore will be able to accept your input. In other
words, the job will begin to act asif you typed its command without the & .

If you have only one background job running, you can use fg without arguments, and the shell will bring
that job into the foreground. But if you have several running in the background, the shell will pick the
one that you put into the background most recently. If you want some other job put into the foreground,
you need to use the job's command name, preceded by a percent sign (%), or you can use its job number,
also preceded by %, or its process ID without a percent sign. If you don't remember which jobs are
running, you can use the command jobs to list them.

A few examples should make this clearer. Let's say you created three background jobs as above. Then if
you type jobs, you will see this:

[1] Runni ng fred &
[2] - Running bob &

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_02.htm (1 of 4) [2/8/2001 4:59:55 PM]

[Chapter 8] 8.2 Job Control

[3] + Running dave &
jobs has afew interesting options. jobs -I also lists process IDs:
[1] 2349 Runni ng fred &
[2] - 2367 Runni ng bob &
[3] + 2382 Runni ng dave &
The -p option tellsjobsto list only process IDs:
2349
2367
2382

This could be useful with command substitution; see Task 8-1 below. Finally, the -n option lists only
those jobs whose status has changed since the shell last reported it - whether with ajobs command or
otherwise.

If you type fg without an argument, the shell will put dave in the foreground, because it was put in the
background most recently. But if you type fg % bob (or fg % 2), bob will go in the foreground.

Y ou can also refer to the job most recently put in the background by % +. Similarly, %i- refersto the
background job invoked next-most-recently (bob in this case). That explains the plus and minus signsin
the above: the plus sign shows the most recently invoked job; the minus sign shows the
next-most-recently invoked job. [3]

[3] Thisisanaogousto ~+ and ~- as references to the currently and previous directory; see
the footnote in Chapter 7, Input/Output and Command-line Processing. Also: %% isa

synonym for % +.

If more than one background job has the same command, then % command will disambiguate by
choosing the most recently invoked job (as you'd expect). If thisisn't what you want, you need to use the
job number instead of the command name. However, if the commands have different arguments, you can
use % ?string instead of % command. % ?string refers to the job whose command contains the string. For
example, assume you started these background jobs:

$ bob pete &

[1] 189

$ bob ral ph &

[2] 190

$

Then you can use % ?pete and % ?ralph to refer to each of them, although actually % ?pe and % ?ra
are sufficient to disambiguate.

Table 8.1 lists al of the ways to refer to background jobs. We have found that, given how infrequently

people use job control commands, job numbers or command names are sufficient, and the other ways are
superfluous.

Table 8.1: Waysto Refer to Background Jobs
Refer ence Background job

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_02.htm (2 of 4) [2/8/2001 4:59:55 PM]

[Chapter 8] 8.2 Job Control

%N Job number N
%string Job whose command begins with string
% ?string Job whose command contains string

%+ Most recently invoked background job
% % Same as above
%- Second-most recently invoked background job

8.2.2 Suspending a Job

Just as you can put background jobs into the foreground with fg, you can also put aforeground job into
the background. Thisinvolves suspending ajob, so that the shell regains control of your terminal.

To suspend ajob, type [CTRL-Z] [4] whileit isrunning. Thisis analogous to typing [CTRL-C] (or
whatever your interrupt key is), except that you can resume the job after you have stopped it. When you
type [CTRL-Z], the shell responds with a message like this:

[4] This assumesthat the [CTRL-Z] key is set up as your suspend key; just as with
[CTRL-C] and interrupts, thisis conventional but by no means required.

[1] + Stopped command
Then it gives you your prompt back.

To resume a suspended job so that it continues to run in the foreground, just type fg. If, for some reason,
you put other jobs in the background after you typed [CTRL-Z], use fg with ajob name or number. For
example:

fred is running...

CTRL-Z

[1] + Stopped fred
$ bob &

[2] bob &

$ fg %red

fred resunes in the foreground...

The ability to suspend jobs and resume them in the foreground comes in very handy when you have a
conventional terminal (as opposed to a windowing workstation) and you are using atext editor like vi on
afile that needsto be processed. For example, if you are editing afile for the troff text processor, you can
do the following:

$ vi nyfile

edit the file... CTRL-Z

St opped [1] vi

$ troff nyfile

troff reports an error

$ fg

vi cones back up in the sane place in your file

Programmers often use the same technique when debugging source code.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_02.htm (3 of 4) [2/8/2001 4:59:55 PM]

[Chapter 8] 8.2 Job Control

Y ou will probably also find it useful to suspend ajob and resume it in the background instead of the
foreground. Y ou may start acommand in the foreground (i.e., normally) and find that it takes much
longer than you expected-for example, agrep, sort, or database query. Y ou need the command to finish,
but you would also like control of your terminal back so that you can do other work. If you type
[CTRL-Z] followed by bg, you will move the job to the background. [5]

[5] Be warned, however, that not all commands are "well-behaved" when you do this. Be
especially careful with commands that run over a network on a remote machine; you may
end up "confusing" the remote program.

41 PREVIOUS HOME HEXT »
8.1 Process |Ds and Job BOOK INDEX 8.3 Signals
Numbers

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMIMG VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_02.htm (4 of 4) [2/8/2001 4:59:55 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 8] 8.3 Signals

| Learning the KOrn Shell

4 PREVIOUS Chapter 8 NEXT B
Process Handling

8.3 Signals

We mentioned earlier that typing CTRL-Z to suspend ajob is similar to typing CTRL-C to stop ajob,
except that you can resume the job later. They are actually similar in a deeper way: both are particular
cases of the act of sending asignal to a process.

A signal is amessage that one process sends to another when some abnormal event takes place or when it
wants the other process to do something. Most of the time, a process send a signal to a subprocess it
created. Y ou're undoubtedly already comfortable with the idea that one process can communicate with
another through an 1/0 pipeline; think of asignal as another way for processes to communicate with each
other. (In fact, any textbook on operating systems will tell you that both are examples of the general
concept of inter process communication, or IPC.) [6]

[6] Pipes and signals were the only |PC mechanismsin early versions of UNIX. More
modern versions like System V and 4.x BSD have additional mechanisms, such as sockets,
named pipes, and shared memory. Named pipes are accessible to shell programmers through
the mknod(1) command, which is beyond the scope of this book.

Depending on the version of UNIX, there are two or three dozen types of signals, including afew that
can be used for whatever purpose a programmer wishes. Signals have numbers (from 1 to the number of
signals the system supports) and names; we'll use the latter. Y ou can get alist of al the signals on your
system, by name and number, by typing kill -I. Bear in mind, when you write shell code involving
signals, that signal names are more portable to other versions of UNIX than signal numbers.

8.3.1 Control-key Signals

When you type CTRL-C, you tell the shell to send the INT (for "interrupt") signal to the current job;
[CTRL-Z] sends TSTP (on most systems, for "terminal stop"). You can also send the current job aQUIT
signal by typing CTRL -\ (control-backslash); thisis sort of like a"stronger" version of [CTRL-C]. [7]

Y ou would normally use [CTRL-] when (and only when) [CTRL-C] doesn't work.

[7] [CTRL-]\ can also cause the shell to leave afile called core in your current directory.
Thisfile contains an image of the process to which you sent the signal; a programmer could
use it to help debug the program that was running. The file's nameis a (very) old-fashioned
term for a computer's memory. Other signals |eave these "core dumps' as well; you should
feel free to delete them unless a systems programmer tells you otherwise.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_03.htm (1 of 6) [2/8/2001 4:59:59 PM]

[Chapter 8] 8.3 Signals

Aswell see soon, thereisalso a"panic" signal called KILL that you can send to a process when even
[CTRL-] doesn't work. But it isn't attached to any control key, which means that you can't use it to stop
the currently running process. INT, TSTP, and QUIT are the only signals you can use with control keys.

[8]
[8] Some BSD-derived systems have additional control-key signals.

Y ou can customize the control keys used to send signals with options of the stty(1) command. These vary
from system to system-consult your man page for the command-but the usual syntax is stty signame
char. signame is a name for the signal that, unfortunately, is often not the same as the names we use here.
Table 1.7 in Chapter 1, Korn Shell Basics lists stty names for signals found on all versions of UNIX. char
isthe control character, which you can give in the same notation we use. For example, to set your INT
key to [CTRL-X] on most systems, use:

stty intr X

Now that we've told you how to do this, we should add that we don't recommend it. Changing your signal
keys could lead to trouble if someone else has to stop arunaway process on your machine.

Most of the other signals are used by the operating system to advise processes of error conditions, like a
bad machine code instruction, bad memory address, or division by zero, or "interesting” events such asa
user logging out or atimer ("alarm™) going off. The remaining signals are used for esoteric error
conditions that are of interest only to low-level systems programmers,; newer versions of UNIX have
more and more arcane signal types.

8.3.2 kill

Y ou can use the built-in shell command kill to send a signal to any process you created-not just the
currently running job. kill takes as argument the process ID, job number, or command name of the
process to which you want to send the signal. By default, kill sendsthe TERM ("terminate") signal,
which usually has the same effect asthe INT signal that you send with [CTRL-C]. But you can specify a
different signal by using the signal name (or number) as an option, preceded by a dash.

Kill is so-named because of the nature of the default TERM signal, but there is another reason, which has
to do with the way UNIX handles signalsin general. The full details are too complex to go into here, but
the following explanation should suffice.

Most signals cause a process that receives them to roll over and die; therefore if you send any one of
these signals, you "kill" the process that receives it. However, programs can be set up to "trap" specific
signals and take some other action. For example, atext editor would do well to save the file being edited
before terminating when it receives asignal such asINT, TERM, or QUIT. Determining what to do when
various signals come in is part of the fun of UNIX systems programming.

Here is an example of kill. Say you have afred process in the background, with process ID 480 and job
number 1, that needs to be stopped. Y ou would start with this command:

$ kill %

If you were successful, you would see a message like this:
[1] + Term nated fred &

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_03.htm (2 of 6) [2/8/2001 4:59:59 PM]

[Chapter 8] 8.3 Signals
If you don't see this, then the TERM signal failed to terminate the job. The next step would be to try
QUIT:
$kill -QUT %A

If that worked, you would see these messages:

fred[1]: 480 Quit(coredunp)
[1] + Done(131) fred &

The 131 isthe exit status returned by fred. [9] But if even QUIT doesn't work, the "last-ditch" method
would be to use KILL:

[9] When ashell scriptissent asignal, it exits with status 128+N, where N is the number of
the signal it received (128 changesto 256 in future releases). In this case, fred is a shell
script, and QUIT happens to be signal number 3.

$ kill -KILL %4

(Notice how this has the flavor of "yelling" at the runaway process.) This produces the message:
[1] + Killed fred &

It isimpossible for aprocessto "trap" a KILL signal-the operating system should terminate the process
immediately and unconditionally. If it doesn't, then either your processisin one of the "funny states"
we'll see later in this chapter, or (far less likely) there's abug in your version of UNIX.

Here's another example.
Task 8.1

Write ascript called killalljobs that kills all background jobs.

The solution to thistask is simple, relying on jobs -p:
Kill "$@ $(jobs -p)

Y ou may be tempted to use the KILL signal immediately, instead of trying TERM (the default) and
QUIT first. Don't do this. TERM and QUIT are designed to give a process the chance to "clean up"
before exiting, whereas KILL will stop the process, wherever it may bein its computation. Use KILL
only as a last resort!

Y ou can use the kill command with any process you create, not just jobs in the background of your
current shell. For example, if you use awindowing system, then you may have several terminal windows,
each of which runsits own shell. If one shell isrunning a process that you want to stop, you can kill it
from another window-but you can't refer to it with ajob number because it's running under a different
shell. You must instead use its process ID.

8.3.3 ps

Thisis probably the only situation in which a casual user would need to know the ID of a process. The
command ps(1) gives you thisinformation; however, it can give you lots of extrainformation that you
must wade through as well.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_03.htm (3 of 6) [2/8/2001 4:59:59 PM]

[Chapter 8] 8.3 Signals

psisacomplex command. It takes several options, some of which differ from one version of UNIX to
another. To add to the confusion, you may need different options on different UNIX versionsto get the
same information! We will use options available on the two major types of UNIX systems, those derived
from System V (such as most of the versions for Intel 386/486 PCs, aswell asIBM'sAlX and
Hewlett-Packard's HP/UX) and BSD (DEC's Ultrix, SunOS). If you aren't sure which kind of UNIX
version you have, try the System V optionsfirst.

You can invoke psin its ssimplest form without any options. In this case, it will print aline of information
about the current login shell and any processes running under it (i.e., background jobs). For example, if
you invoked three background jobs, as we saw earlier in the chapter, ps on System V-derived versions of
UNIX would produce output that looks something like this:

PID TTY TI ME COVMD
146 pts/ 10 0: 03 ksh
2349 pts/ 10 0:03 fred
2367 pts/ 10 0:17 bob
2389 pts/ 10 0:09 dave

2390 pts/10 0: 00 ps

The output on BSD-derived systems looks like this:
PID TT STAT TIME COMVAND

146 10 S 0: 03 /bin/ksh -i

2349 10 R 0:03 fred

2367 10 D 0:17 bob -f /dev/rntO
2389 10 R 0: 09 dave

2390 10 R 0: 00 ps

(You canignorethe STAT column.) Thisisabit like the jobs command. PID isthe processID; TTY (or
TT) istheterminal (or pseudo-terminal, if you are using a windowing system) the process was invoked
from; TIME isthe amount of processor time (not real or "wall clock" time) the process has used so far;
COMD (or COMMAND) isthe command. Notice that the BSD version includes the command's
arguments, if any; also notice that the first line reports on the parent shell process, and in the last line, ps
reports on itself.

ps without arguments lists all processes started from the current terminal or pseudo-terminal. But since ps
Isnot ashell command, it doesn't correlate process |Ds with the shell's job numbers. It aso doesn't help
you find the ID of the runaway process in another shell window.

To get thisinformation, use ps-a (for "all"); thislistsinformation on adifferent set of processes,
depending on your UNIX version.

8.3.3.1 System V

Instead of listing all of those that were started under a specific terminal, ps -a on System V-derived
systems lists all processes associated with any terminal that aren't group leaders. For our purposes, a
"group leader" isthe parent shell of aterminal or window. Therefore, if you are using a windowing
system, ps-alistsall jobs started in all windows (by all users), but not their parent shells.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_03.htm (4 of 6) [2/8/2001 4:59:59 PM]

[Chapter 8] 8.3 Signals

Assume that, in the above example, you have only one terminal or window. Then ps -a will print the
same output as plain ps except for the first line, since that's the parent shell. This doesn't seem to be very
useful.

But consider what happens when you have multiple windows open. Let's say you have three windows, all
running terminal emulators like xterm for the X Window System. Y ou start background jobs fred, dave,
and bob in windows with pseudo-terminal numbers 1, 2, and 3, respectively. This situation is shown in

Figure 8.1.

Figure 8.1: Background jobs in multiple windows

= |4|_|I
= |
$ fred &
[1] 2349
1# = £ bob &
(1] 235&7
15

¥ dave &

[1] 2389

Assume you are in the uppermost window. If you type ps, you will see something like this:

PID TTY TI ME COMD
146 pts/1 0: 03 ksh
2349 pts/1 0:03 fred

2390 pts/1 0: 00 ps

But if you type ps -a, you will seethis;

PID TTY TI ME COVD
2349 pts/1 0:03 fred
2367 pts/2 0: 17 bob
2389 pts/3 0: 09 dave
2390 pts/1 0: 00 ps

Now you should see how ps-a can help you track down a runaway process. If it's dave, you can type kil
2389. If that doesn't work, try kill -QUIT 2389, or in the worst case, kill -KILL 2389.

8.3.3.2BSD

On BSD-derived systems, ps-a lists al jobs that were started on any terminal; in other words, it's a bit

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_03.htm (5 of 6) [2/8/2001 4:59:59 PM]

[Chapter 8] 8.3 Signals

like concatenating the the results of plain psfor every user on the system. Given the above scenario, ps-a
will show you all processes that the System V version shows, plus the group leaders (parent shells).

Unfortunately, ps-a (on any version of UNIX) will not report processes that are in certain pathological
conditions where they "forget" things like what shell invoked them and what terminal they belong to.
Such processes have colorful names ("zombies,” "orphans') that are actually used in UNIX technical
literature, not just informally by systems hackers. If you have a serious runaway process problem, it's
possible that the process has entered one of these states.

Let's not worry about why or how a process gets thisway. All you need to understand is that the process
doesn't show up when you type ps -a. Y ou need another option to psto seeit: on System V, it'sps -e
("everything"), whereas on BSD, it's ps -ax.

These optionstell psto list processes that either weren't started from terminals or "forgot" what terminal
they were started from. The former category includes lots of processes that you probably didn't even
know existed: these include basic processes that run the system and so-called daemons (pronounced
"demons") that handle system services like mail, printing, network file systems, etc.

In fact, the output of ps-e or ps-ax is an excellent source of education about UNIX system internals, if
you're curious about them. Run the command on your system and, for each line of the listing that looks
interesting, invoke man on the process name or look it up in the Unix Programmer's Manual for your
system.

User shells and processes are listed at the very bottom of ps-e or ps -ax output; this is where you should
look for runaway processes. Notice that many processes in the listing have ? instead of aterminal. Either
these aren't supposed to have one (such as the basic daemons) or they're runaways. Thereforeit's likely
that if ps-a doesn't find a process you're trying to kill, ps-e (or ps-ax) will listit with? inthe TTY (or
TT) column. Y ou can determine which process you want by looking at the COMD (or COMMAND)
column.

41 PREVIOUS HOME HEXT
8.2 Job Control BOOK INDEX 8.4 trap

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_03.htm (6 of 6) [2/8/2001 4:59:59 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 8] 8.4 trap

| Learning the KOrn Shell

4 PREVIOUS Chapter 8 NEXT B
Process Handling

8.4 trap

We've been discussing how signals affect the casual user; now let'stalk a bit about how shell
programmers can use them. We won't go into too much depth about this, because it's really the domain of
systems programmers.

We mentioned above that programs in general can be set up to "trap” specific signals and process them in
their own way. The trap built-in command lets you do this from within a shell script. trap is most
important for "bullet-proofing” large shell programs so that they react appropriately to abnormal
events-just as programs in any language should guard against invalid input. It's also important for certain
systems programming tasks, as we'll see in the next chapter.

The syntax of trap is:
trapcnd sigl sig2 ...

That is, when any of sigl, sig2, etc., are received, run cmd, then resume execution. After cmd finishes,
the script resumes execution just after the command that was interrupted. [10]

[10] Thisiswhat usually happens. Sometimes the command currently running will abort
(deep actslike this, as we'll see soon); other timesit will finish running. Further details are
beyond the scope of this book.

Of course, cmd can be a script or function. The sigs can be specified by name or by number. Y ou can
also invoke trap without arguments, in which case the shell will print alist of any traps that have been
set, using symbolic names for the signals.

Here's a simple example that shows how trap works. Suppose we have a shell script called loop with this
code:

while true; do
sl eep 60
done

Thiswill just pause for 60 seconds (the sleep(1) command) and repeat indefinitely. trueis a"do-nothing"
command whose exit status is aways 0. [11] Try typing in this script. Invoke it, let it run for alittle
while, then type [CTRL-C] (assuming that is your interrupt key). It should stop, and you should get your
shell prompt back.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_04.htm (1 of 7) [2/8/2001 5:00:03 PM]

[Chapter 8] 8.4 trap

[11] Actually, it'sabuilt-in aliasfor : , thereal shell "no-op."

Now insert the following line at the beginning of the script:
trap "print \'"You hit control-C\"'"" INT

Invoke the script again. Now hit CTRL-C. The odds are overwhelming that you are interrupting the sleep
command (as opposed to true). Y ou should see the message "Y ou hit control-C!", and the script will not
stop running; instead, the sleep command will abort, and it will loop around and start another sleep. Hit
CTRL-\ to get it to stop. Type rm cor e to get rid of the resulting core dump file.

Next, run the script in the background by typing loop & . Typekill %loop (i.e., send it the TERM
signal); the script will terminate. Add TERM to the trap command, so that it looks like this:

trap 'print \'"You hit control-C\'" INT TERM

Now repeat the process: run it in the background and type kill %loop. As before, you will see the
message and the process will keep on running. TypeKill -KILL %loop to stop it.

Notice that the message isn't really appropriate when you use kill. We'll change the script so it prints a
better message in the kill case:

trap "print \'"You hit control-C\"'" INT
trap "print \'"You tried to kill nme!\'" TERM

while true; do
sl eep 60
done

Now try it both ways: in the foreground with [CTRL-C] and in the background with kill. You'll see
different messages.

8.4.1 Traps and Functions

The relationship between traps and shell functionsiis straightforward, but it has certain nuances that are
worth discussing. The most important thing to understand is that functions can have their own local traps;
these aren't known outside of the function. In particular, the surrounding script doesn't know about them.
Consider this code:

function settrap {
trap "print \'"You hit control-C\'"" INT
}

settrap

while true; do
sl eep 60

done

If you invoke this script and hit your interrupt key, it will just exit. Thetrap on INT in the function is
known only inside that function. On the other hand:

function |oop {

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_04.htm (2 of 7) [2/8/2001 5:00:03 PM]

[Chapter 8] 8.4 trap

trap "print \'How dare you!\'' |INT
while true; do
sl eep 60
done
}
trap "print \'"You hit control-C\'" INT
| oop

When you run this script and hit your interrupt key, it will print "How dare you!". But how about this:

function | oop {
while true; do
sl eep 60
done

}

trap '"print \'You hit control-C\"" INT
| oop
print 'exiting...'

Thistime the looping code is within afunction, and the trap is set in the surrounding script. If you hit
your interrupt key, it will print the message and then print "exiting...". It will not repeat the loop as
above.

Why? Remember that when the signal comes in, the shell aborts the current command, which in this case
isacall to afunction. The entire function aborts, and execution resumes at the next statement after the
function call.

The advantage of traps that are local to functionsis that they allow you to control afunction's behavior
separately from the surrounding code.

Y et you may want to define global traps inside functions. There is arather kludgy way to do this; it
depends on afeature that we introduce in the next chapter, which we call a"fake signal." Hereisaway to
set trapcode as aglobal trap for signal S G inside a function:

trap "trap trapcode SIG'" EXIT

This sets up the command trap trapcode S G to run right after the function exits, at which time the
surrounding shell script isin scope (i.e., is"in charge"). When that command runs, trapcode is set up to
handle the S G signal.

For example, you may want to reset the trap on the signal you just received, like this:

function trap_handl er {
trap "trap second handler |INT" EXIT
print 'Interrupt: one nore to abort.'

}

function second_handl er {

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_04.htm (3 of 7) [2/8/2001 5:00:03 PM]

[Chapter 8] 8.4 trap
print 'Aborted.’
exit

}

trap trap_handl er | NT

This code acts like the UNIX mail utility: when you are typing in a message, you must press your
interrupt key twice to abort the process.

Speaking of mail, now we'll show amore practical example of traps.
Task 8.2

As part of an electronic mail system, write the shell code that lets a user compose a message.

The basic ideaisto use cat to create the message in atemporary file and then hand the file's name off to a
program that actually sends the message to its destination. The code to create the file is very ssmple:
msgfil e=/tnp/ neg$$
cat > $nsgfile

Since cat without an argument reads from the standard input, this will just wait for the user to type a
message and end it with the end-of -text character [CTRL-D].

8.4.2 Process ID Variables and Temporary Files

The only thing new about thisis 3 in the filename expression. Thisis a special shell variable whose
valueisthe process ID of the current shell.

To see how $$ works, type ps and note the process ID of your shell process (ksh). Thentype print " $$" ;
the shell will respond with that same number. Now type ksh to start a subshell, and when you get a
prompt, repeat the process. Y ou should see a different number, probably slightly higher than the last one.

A related built-in shell variableis! (i.e., itsvaueis $!), which contains the process ID of the most
recently invoked background job. To see how thisworks, invoke any job in the background and note the
process ID printed by the shell next to [1]. Then type print " $!" ; you should see the same number.

The! variable is useful in shell programs that involve multiple communicating processes, as we'll see
later.

To return to our mail example: since al processes on the system must have unique process IDs, $$is
excellent for constructing names of temporary files. We saw an example of this back in Chapter 2,
Command-line Editing: we used the expression .hist$$ as a way of generating unique names for
command history files so that several can be open at once, alowing multiple shell windows on a
workstation to have their own history files. This expression generates names like .hist234. There are aso
examples of $$ in Chapter 7 and Chapter 9, Debugging Shell Programs.

The directory /tmp is conventionally used for temporary files. Many systems also have another directory,
/usr/tmp, for the same purpose. All filesin these directories are usually erased whenever the computer is

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_04.htm (4 of 7) [2/8/2001 5:00:03 PM]

[Chapter 8] 8.4 trap

rebooted.

Nevertheless, a program should clean up such files before it exits, to avoid taking up unnecessary disk
space. We could do thisin our code very easily by adding the line rm $msgfile after the code that
actually sends the message. But what if the program receives a signal during execution? For example,
what if a user changes his or her mind about sending the message and hits CTRL-C to stop the process?
We would need to clean up before exiting. We'll emulate the actual UNIX mail system by saving the
message being written in afile called dead.letter in the current directory. We can do this by using trap
with acommand string that includes an exit command:

trap 'nmv $nsgfile dead.letter; exit' |INT TERM

msgfil e=/tnp/ neg$$

cat > $nsgfile

send the contents of $nsgfile to the specified nmail address...
rm $nsgfile

When the script receivesan INT or TERM signal, it will remove the temp file and then exit. Note that the
command string isn't evaluated until it needs to be run, so $msgfile will contain the correct value; that's
why we surround the string in single quotes.

But what if the script receives asignal before msgfile is created-unlikely though that may be? Then mv
will try to rename afile that doesn't exist. To fix this, we need to test for the existence of the file $msgfile
before trying to delete it. The code for thisis abit unwieldy to put in a single command string, so welll
use a function instead:

function cl eanup {
if [[-a $nmsgfile]]; then
mv $negfile dead.letter
fi
exit

}

trap cleanup | NT TERM

megfil e=/t np/ meg$$

cat > $nsgfile

send the contents of $nsgfile to the specified mail address...
rm $nsgfile

8.4.3 Ignoring Signals

Sometimes asignal comesin that you don't want to do anything about. If you give the null string (" * or
' ') asthe command argument to trap, then the shell will effectively ignore that signal. The classic
example of asignal you may want to ignore is HUP (hangup), the signal the shell sendsto all of your
background processes when you log out.

HUP has the usual default behavior: it will kill the process that receivesit. But there are bound to be
times when you don't want a background job to terminate when you log out. For example, you may start

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_04.htm (5 of 7) [2/8/2001 5:00:03 PM]

[Chapter 8] 8.4 trap

along compile or word processing job; you want to log out and come back later when you expect the job
to be finished. Under normal circumstances, your background job will terminate when you log out. But if
you run it in ashell environment where the HUP signal isignored, the job will finish.

To do this, you could write a simple function that looks like this:
function ignorehup {
trap "" HUP
eval "$@
}

We write this as afunction instead of a script for reasons that will become clearer when we look in detall
at subshells at the end of this chapter.

Actually, thereisa UNIX command called nohup that does precisely this. The start script from the last
chapter could include nohup:

eval nohup "$@ > logfile 2>&1 &

This prevents HUP from terminating your command and saves its standard and error output in afile.
Actually, the following isjust as good:

nohup "$@ > logfile 2>&1 &

If you understand why eval is essentially redundant when you use nohup in this case, then you have a
firm grasp on the material in the previous chapter.

8.4.4 Resetting Traps

Another "special case" of the trap command occurs when you give a dash (-) as the command argument.
This resets the action taken when the signal is received to the default, which usualy is termination of the
process.

As an example of this, let'sreturn to Task 8-2, our mail program. After the user has finished sending the
message, the temporary fileis erased. At that point, since thereis no longer any need to "clean up,” we
can reset the signal trap to its default state. The code for this, apart from function definitions, is:

trap abortnsg I NT
trap cl eanup TERM

megfil e=/tnp/ neg$P

cat > $nsgfile

send the contents of $nsgfile to the specified mail address...
rm $nsgfile

trap - I NT TERM
The last line of this code resets the handlers for the INT and TERM signals.

At this point you may be thinking that one could get seriously carried away with signal handlingin a
shell script. It istrue that "industrial strength" programs devote considerable amounts of code to dealing
with signals. But these programs are amost always large enough so that the signal-handling codeis a

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_04.htm (6 of 7) [2/8/2001 5:00:03 PM]

[Chapter 8] 8.4 trap

tiny fraction of the whole thing. For example, you can bet that the real UNIX mail system is pretty darn
bullet-proof.

However, you will probably never write a shell script that is complex enough, and that needs to be robust
enough, to merit lots of signal handling. Y ou may write a prototype for a program as large as mail in
shell code, but prototypes by definition do not need to be bullet-proofed.

Therefore, you shouldn't worry about putting signal-handling code in every 20-line shell script you write.
Our adviceisto determineif there are any situations in which asignal could cause your program to do
something seriously bad and add code to deal with those contingencies. What is "seriously bad"? Well,
with respect to the above examples, we'd say that the case where HUP causes your job to terminate on
logout is seriously bad, while the temporary file situation in our mail program is not.

The Korn shell has several new options to trap (with respect to the same command in most Bourne
shells) that make it useful as an aid for debugging shell scripts. We'll cover these in the next chapter.

41 PREVIOUS HOME HEXT &
8.3 Signals BOOK INDEX 8.5 Coroutines

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMIMG VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_04.htm (7 of 7) [2/8/2001 5:00:03 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 8] 8.5 Coroutines

| Learning the KOrn Shell

4 PREVIOUS Chapter 8 NEXT B
Process Handling

8.5 Coroutines

We've spent the last several pages on almost microscopic details of process behavior. Rather than
continue our descent into the murky depths, we'll revert to a higher-level view of processes.

Earlier in this chapter, we covered ways of controlling multiple simultaneous jobs within an interactive
login session; now we'll consider multiple process control within shell programs. When two (or more)
processes are explicitly programmed to run simultaneously and possibly communicate with each other,
we call them coroutines.

Thisisactually nothing new: a pipeline is an example of coroutines. The shell's pipeline construct
encapsulates afairly sophisticated set of rules about how processes interact with each other. If we take a
closer ook at these rules, we'll be better able to understand other ways of handling coroutines-most of
which turn out to be simpler than pipelines.

When you invoke asimple pipeline, say Is| mor e, the shell invokes a series of UNIX primitive
operations, a.k.a. system calls. In effect, the shell tells UNIX to do the following things; in case you're
interested, we include in parentheses the actual system call used at each step:

1. Create two subprocesses, which we'll call P1 and P2 (the fork system call).

2. Set up 1/0 between the processes so that P1's standard output feeds into P2's standard input (pipe).
3. Start /bin/lsin process P1 (exec).

4. Start /bin/more in process P2 (exec).

5. Wait for both processes to finish (wait).

Y ou can probably imagine how the above steps change when the pipeline involves more than two
processes.

Now let's make things simpler. We'll see how to get multiple processesto run at the same time if the
processes do not need to communicate. For example, we want the processes dave and bob to run as
coroutines, without communication, in ashell script. Our initial solution would be this:

dave &
bob

Assume for the moment that bob is the last command in the script. The above will work-but only if dave

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_05.htm (1 of 7) [2/8/2001 5:00:08 PM]

[Chapter 8] 8.5 Coroutines

finishesfirst. If daveis still running when the script finishes, then it becomes an orphan, i.e,, it enters
one of the "funny states’ we mentioned earlier in this chapter. Never mind the details of orphanhood; just
believe that you don't want this to happen, and if it does, you may need to use the "runaway process’
method of stopping it, discussed earlier in this chapter.

8.5.1 wait

Thereisaway of making sure the script doesn't finish before dave does: the built-in command wait.
Without arguments, wait simply waits until all background jobs have finished. So to make sure the above
code behaves properly, we would add wait, like this:

dave &
bob
wai t
Here, if bob finishesfirst, the parent shell will wait for dave to finish before finishing itself.

If your script has more than one background job and you need to wait for specific ones to finish, you can
give wait the same type of job argument (with a percent sign) as you would use with kill, fg, or bg.

However, you will probably find that wait without arguments suffices for all coroutines you will ever
program. Situations in which you would need to wait for specific background jobs are quite complex and
beyond the scope of this book.

8.5.2 Advantages and Disadvantages of Coroutines

In fact, you may be wondering why you would ever need to program coroutines that don't communicate
with each other. For example, why not just run bob after dave in the usual way? What advantage is there
in running the two jobs simultaneously?

If you are running on a computer with one processor (CPU), then there is a performance advantage-but
only if you have the bgnice option turned off (see Chapter 3, Customizing Y our Environment), and even

then only in certain situations.

Roughly speaking, you can characterize a process in terms of how it uses system resources in three ways:
whether it is CPU intensive (e.g., does lots of number crunching), 1/0O intensive (does alot of reading or
writing to the disk), or interactive (requires user intervention).

We aready know from Chapter 1 that it makes no sense to run an interactive job in the background. But
apart from that, the more two or more processes differ with respect to these three criteria, the more
advantage there is in running them simultaneously. For example, a number-crunching statistical
calculation would do well when running at the same time as along, |/O-intensive database query.

On the other hand, if two processes use resources in similar ways, it may even be less efficient to run
them at the same time as it would be to run them sequentially. Why? Basically, because under such
circumstances, the operating system often has to "time-slice" the resource(s) in contention.

For example, if both processes are "disk hogs," the operating system may enter a mode where it
constantly switches control of the disk back and forth between the two competing processes; the system

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_05.htm (2 of 7) [2/8/2001 5:00:08 PM]

[Chapter 8] 8.5 Coroutines

ends up spending at least as much time doing the switching as it does on the processes themselves. This
phenomenon is known as thrashing; at its most severe, it can cause a system to come to avirtual
standstill. Thrashing is a common problem; system administrators and operating system designers both
spend lots of time trying to minimize it.

8.5.3 Parallelization

But if you have a computer with multiple CPUs (such as a Pyramid, Sequent, or Sun MP), you should be
less concerned about thrashing. Furthermore, coroutines can provide dramatic increases in speed on this
type of machine, which is often called a parallel computer; analogously, breaking up a process into
coroutines is sometimes called parallelizing the job.

Normally, when you start a background job on a multiple-CPU machine, the computer will assign it to
the next available processor. This means that the two jobs are actually-not just metaphorically-running at
the same time.

In this case, the running time of the coroutinesis essentially equal to that of the longest-running job plus
abit of overhead, instead of the sum of the run times of all processes (although if the CPUs all share a
common disk drive, the possibility of 1/O-related thrashing still exists). In the best case-all jobs having
the same run time and no 1/O contention-you get a speedup factor equal to the number of jobs.

Parallelizing a program is often not easy; there are several subtle issues involved and there's plenty of
room for error. Nevertheless, it's worthwhile to know how to parallelize a shell script whether or not you
have a parallel machine, especially since such machines are becoming more and more common.

WEe'll show how to do this-and give you an idea of some of the problems involved-by means of asimple
task whose solution is amenable to parallelization.

Task 8.3

Write a utility that allows you to make multiple copies of afile at the same time.

WEe'l call this script mep. The command mcp filename destl dest2 ... should copy filename to al of the
destinations given. The code for this should be fairly obvious:
file=%$1
shift
for dest in "$@; do
cp $file $dest
done

Now let's say we have a parallel computer and we want this command to run asfast as possible. To
parallelize this script, it's a simple matter of firing off the cp commands in the background and adding a
wait at the end:

file=$1

shift

for dest in "$@; do

cp $file $dest &
done

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_05.htm (3 of 7) [2/8/2001 5:00:08 PM]

[Chapter 8] 8.5 Coroutines
wai t
Simple, right? Well, there is one little problem: what happens if the user specifies duplicate destinations?
If you're lucky, the file just gets copied to the same place twice. Otherwise, the identical cp commands
will interfere with each other, possibly resulting in afile that contains two interspersed copies of the

origina file. In contrast, if you give the regular cp command two arguments that point to the samefile, it
will print an error message and do nothing.

To fix this problem, we would have to write code that checks the argument list for duplicates. Although
thisisn't too hard to do (see the exercises at the end of this chapter), the time it takes that code to run
might offset any gain in speed from parallelization; furthermore, the code that does the checking detracts
from the simple elegance of the script.

Asyou can see, even aseemingly trivial parallelization task has problems resulting from multiple
processes having concurrent access to a given system resource (afile in this case). Such problems,
known as concurrency control issues, become much more difficult as the complexity of the application
increases. Complex concurrent programs often have much more code for handling the special cases than
for the actual job the program is supposed to do!

Therefore it shouldn't surprise you that much research has been and is being done on parallelization, the
ultimate goal being to devise atool that parallelizes code automatically. (Such tools do exist; they usually
work in the confines of some narrow subset of the problem.) Even if you don't have accessto a
multiple-CPU machine, parallelizing a shell script is an interesting exercise that should acquaint you with
some of the issues that surround coroutines.

8.5.4 Coroutines with Two-way Pipes

Now that we have seen how to program coroutines that don't communicate with each other, we'll build
on that foundation and discuss how to get them to communicate-in a more sophisticated way than with a
pipeline. The Korn shell has a set of features that allow programmers to set up two-way communication
between coroutines. These features aren't included in most Bourne shells.

If you start a background process by appending |& to a command instead of &, the Korn shell will set up
a specia two-way pipeline between the parent shell and the new background process. read -p in the
parent shell reads aline of the background process' standard output; similarly, print -p in the parent shell
feeds into the standard input of the background process. Figure 8.2 shows how this works.

Figure 8.2: Coroutine I/O

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_05.htm (4 of 7) [2/8/2001 5:00:08 PM]

[Chapter 8] 8.5 Coroutines

standard
input
T v standard
' Voo input
1.:ir'.t : T""""'!""""':
parenl shell background process
"-' """"""" . 1 i
read -po L e e
i v standard
L L i
Standard
output

This scheme has some intriguing possibilities. Notice the following things: first, the parent shell
communicates with the background process independently of its own standard input and output. Second,
the background process need not have any ideathat a shell script iscommunicating with it in this
manner. This means that the background process can be any pre-existing program that uses its standard
input and output in normal ways.

Here's atask that shows a simple example:
Task 8.4

Y ou would like to have an online calculator, but the existing UNIX utility dc(1) uses
Reverse Polish Notation (RPN), a la Hewlett-Packard calculators. Y ou'd rather have one
that works like the $3.95 model you got with that magazine subscription. Write a cal culator
program that accepts standard algebraic notation.

The objective hereisto write the program without re-implementing the cal culation engine that dc already
has-in other words, to write a program that translates algebraic notation to RPN and passes the trandlated
line to dc to do the actual calculation. [12]

[12] The utility bc(1) actually provides similar functionality.

WEe'll assume that the function alg2rpn, which does the translation, already exists: given aline of
algebraic notation as argument, it prints the RPN equivalent on the standard output. If we have this, then
the calculator program (which we'll call adc) isvery simple:

dc | &

while read |ine ?adc> '; do
print -p "$(al g2rpn $line)"
read -p answer
print " = $answer"

done

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_05.htm (5 of 7) [2/8/2001 5:00:08 PM]

[Chapter 8] 8.5 Coroutines

Thefirst line of this code starts dc as a coroutine with atwo-way pipe. Then the while loop prompts the
user for aline and readsiit until the user types [CTRL-D] for end-of-input. The loop body converts the
line to RPN, passes it to dc through the pipe, reads dc's answer, and printsit after an equal sign. For
example:

$ adc

adc> 2 + 3
=5

adc> (7 * 8) + 54
= 110

adc> D

$

Actually-as you may have noticed-it's not entirely necessary to have a two-way pipe with dc. Y ou could
do it with a standard pipe and let dc do its own output, like this:

{ while read line' ?adc> '; do
print "$(al g2rpn $line)"
done
} | dc

The only difference from the above is the lack of equal sign before each answer is printed.

But: what if you wanted to make a fancy graphical user interface (GUI), like the xcalc program that
comes with many X Window System installations? Then, clearly, dc's own output would not be
satisfactory, and you would need full control of your own standard output in the parent process. The user
interface would have to capture dc's output and display it in the window properly. The two-way pipeis
an excellent solution to this problem: just imagine that, instead of print " = $answer ", thereisacall to a
routine that displays the answer in the "readout" section of the calculator window.

All of this suggests that the two-way pipe schemeis great for writing shell scripts that interpose a
software layer between the user (or some other program) and an existing program that uses standard
input and output. In particular, it's great for writing new interfaces to old, standard UNIX programs that
expect line-at-a-time, character-based user input and output. The new interfaces could be GUIs, or they
could be network interface programs that talk to users over links to remote machines. In other words, the
Korn shell's two-way pipe construct is designed to help develop very up-to-date software!

8.5.5 Two-way Pipes Versus Standard Pipes

Before we leave the subject of coroutines, we'll complete the circle by showing how the two-way pipe
construct compares to regular pipelines. As you may have been able to figure out by now, it is possible to
program a standard pipeline by using |& with print -p.

This has the advantage of reserving the parent shell's standard output for other use. The disadvantageis
that the child process standard output is directed to the two-way pipe: if the parent process doesn't read it
with read -p, then it's effectively lost.

41 PREVIOUS HOME HEXT B

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_05.htm (6 of 7) [2/8/2001 5:00:08 PM]

[Chapter 8] 8.5 Coroutines

8.4 trap BOOK INDEX 8.6 Subshells

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_05.htm (7 of 7) [2/8/2001 5:00:08 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 8] 8.6 Subshells

| Learning the KOrn Shell

4 PREVIOUS Chapter 8 NEXT B
Process Handling

8.6 Subshells

Coroutines clearly represent the most complex relationship between processes that the Korn shell
defines. To conclude this chapter, we will ook at a much simpler type of interprocess relationship: that
of a subshell with its parent shell. We saw in Chapter 3 that whenever you run a shell script, you actually

invoke another copy of the shell that is a subprocess of the main, or parent, shell process. Now let's ook
at subshellsin more detail.

8.6.1 Subshell Inheritance

The most important things you need to know about subshells are what characteristics they get, or inherit,
from their parents. These are as follows:

o The current directory

« Environment variables

« Standard input, output, and error plus any other open file descriptors
« Any characteristics defined in the environment file (see Chapter 3)

« Signalsthat are ignored

Thefirst three of these are inherited by all subprocesses, while the last is unique to subshells. Just as
Important are the things that a subshell does not inherit from its parent:

« Shell variables, except environment variables and those defined in the environment file

« Handling of signalsthat are not ignored
We covered some of this earlier (in Chapter 3), but these points are common sources of confusion, so
they bear repeating.
8.6.2 Nested Subshells

Subshells need not be in separate scripts; you can aso start a subshell within the same script (or function)
as the parent. Y ou do thisin amanner very similar to the code blocks we saw in the last chapter. Just
surround some shell code with parentheses (instead of curly brackets), and that code will runin a

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_06.htm (1 of 4) [2/8/2001 5:00:10 PM]

[Chapter 8] 8.6 Subshells

subshell. WE'll call this a nested subshell.

For example, here is the calculator program, from above, with a subshell instead of a code block:

(while read line'?adc> '; do
print "$(al g2rpn $line)"
done
) | dc

The code inside the parentheses will run as a separate process. Thisis usually less efficient than a code
block. The differences in functionality between subshells and code blocks are very few; they primarily
pertain to issues of scope, i.e., the domains in which definitions of things like shell variables and signal
traps are known. First, code inside a nested subshell obeys the above rules of subshell inheritance, except
that it knows about variables defined in the surrounding shell; in contrast, think of blocks as code units
that inherit everything from the outer shell. Second, variables and traps defined inside a code block are
known to the shell code after the block, whereas those defined in a subshell are not.

For example, consider this code:

{
f r ed=bob

trap "print \'"You hit CTRL-C'\'"'" INT
}
while true; do

print "\$fred is $fred"

sl eep 60
done

If you run this code, you will see the message $fred isbob every 60 seconds, and if you type CTRL-C,
you will see the message, You hit CTRL-C!. You will need to type CTRL-\ to stop it (don't forget to
remove the corefile). Now let's change it to a nested subshell:

(
f red=bob

trap 'print \'You hit CTRL-CI\""' I NT
)
while true; do

print "\$fred is $fred"

sl eep 60
done

If you run this, you will see the message $fred is; the outer shell doesn't know about the subshell's
definition of fred and therefore thinksit's null. Furthermore, the outer shell doesn't know about the
subshell's trap of the INT signal, so if you hit CTRL-C, the script will terminate.

If alanguage supports code nesting, then it's considered desirable that definitions inside a nested unit
have a scope limited to that nested unit. In other words, nested subshells give you better control than
code blocks over the scope of variables and signal traps. Therefore we feel that you should use subshells
instead of code blocks if they are to contain variable definitions or signal traps-unless efficiency isa
concern.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_06.htm (2 of 4) [2/8/2001 5:00:10 PM]

[Chapter 8] 8.6 Subshells

This has been along chapter, and it has covered alot of territory. Here are some exercises that should
help you make sure you have afirm grasp on the material. The last exerciseis especialy difficult for
those without backgrounds in compilers, parsing theory, or formal language theory.

1.

Write a shell script called pinfo that combines the jobs and ps commands by printing alist of jobs
with their job numbers, corresponding process | Ds, running times, and full commands.

Take the latest version of our C compiler shell script-or some other non-trivial shell script-and
"bullet-proof" it with signal traps.

Take the non-pipeline version of our C compiler-or some other non-trivial shell script-and
parallelize it as much as possible.

Write the code that checks for duplicate arguments to the mecp script. Bear in mind that different
pathnames can point to the samefile. (Hint: if $i is"1", theneval ' print \${$i}' printsthefirst
command-line argument. Make sure you understand why.)

Redo the findterms program in the last chapter using a nested subshell instead of a code block.

(The following doesn't have that much to do with the material in this chapter per se, butitisa
classic programming exercise:)

1. Write the function alg2rpn used in adc. Here's how to do this. Arithmetic expressionsin
algebraic notation have the form expr op expr, where each expr is either a number or another
expression (perhaps in parentheses), and opis+, -, X, /, or % (remainder). In RPN,
expressions have the form expr expr op. For example: the algebraic expression 2+3is2 3 +
in RPN; the RPN equivalent of (2+3) x (9-5) is2 3+ 95 - x. The main advantage of RPN is
that it obviates the need for parentheses and operator precedence rules (e.g., x is evauated
before +). The dc program accepts standard RPN, but each expression should have "p"
appended to it: thistells dc to print its result, e.g., the first example above should be given to
dcas23+p.

2. You need to write aroutine that converts algebraic notation to RPN. This should be (or
include) afunction that callsitself (known as arecursive function) whenever it encounters a
subexpression. It is especially important that this function keep track of whereit isin the
input string and how much of the string it "eats up" during its processing. (Hint: make use of
the pattern matching operators discussed in Chapter 4 to ease the task of parsing input
strings.)

To make your life easier, don't worry about operator precedence for now; just convert to
RPN from left to right. e.g., treat 3+4x5 as (3+4)x5 and 3x4+5 as (3x4)+5. This makes it
possible for you to convert the input string on the fly, i.e., without having to read in the
whol e thing before doing any processing.

3. Enhance your solution to the previous exercise so that it supports operator precedence in the
"usual" order: x, /, % (remainder) +, -. e.g., treat 3+4x5 as 3+(4x5) and 3x4+5 as (3x4)+5.

41 PREVIOUS HOME HEXT %

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_06.htm (3 of 4) [2/8/2001 5:00:10 PM]

[Chapter 8] 8.6 Subshells
8.5 Coroutines BOOK INDEX 9. Debugging Shell Programs

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch08_06.htm (4 of 4) [2/8/2001 5:00:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 9] Debugging Shell Programs

| Learning the KOrn Shell

4 PREVIOUS Chapter 9 MEXT

9. Debugging Shell Programs

Contents:
Basic Debugging Aids
A Korn Shell Debugger

We hope that we have convinced you that the Korn shell can be used as a serious UNIX programming
environment. It certainly has enough features, control structures, etc. But another essential part of a
programming environment is a set of powerful, integrated support tools. For example, thereisawide
assortment of screen editors, compilers, debuggers, profilers, cross-referencers, etc., for languages like C
and C++. If you program in one of these languages, you probably take such tools for granted, and you
would undoubtedly cringe at the thought of having to develop code with, say, the ed editor and the adb
machine-language debugger.

But what about programming support tools for the Korn shell? Of course, you can use any editor you
like, including vi and emacs. And because the shell is an interpreted language, you don't need a compiler.
[1] But there are no other tools available. The most serious problem is the lack of a debugger.

[1] Actually, if you arereally concerned about efficiency, there are shell code compilerson
the market; they convert shell scriptsto C code that often runs quite a bit faster.

This chapter addresses that lack. The shell does have afew features that help in debugging shell scripts;
we'll see thesein thefirst part of the chapter. The Korn shell also has a couple of new features, not
present in most Bourne shells, that make it possible to implement a full-blown debugging tool. Well
show these features; more importantly, we will present kshdb, a Korn shell debugger that uses them.
kshdb is basic yet quite useable, and its implementation serves as an extended example of various shell
programming techniques from throughout this book.

9.1 Basic Debugging Aids

What sort of functionality do you need to debug a program? At the most empirical level, you need away
of determining what is causing your program to behave badly, and where the problem isin the code. Y ou
usually start with an obvious what (such as an error message, inappropriate output, infinite loop, etc.), try
to work backwards until you find awhat that is closer to the actual problem (e.g., a variable with a bad
value, a bad option to a command), and eventually arrive at the exact where in your program. Then you

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_01.htm (1 of 8) [2/8/2001 5:00:56 PM]

[Chapter 9] Debugging Shell Programs
can worry about how to fix it.

Notice that these steps represent a process of starting with obvious information and ending up with often
obscure facts gleaned through deduction and intuition. Debugging aids make it easier to deduce and intuit
by providing relevant information easily or even automatically, preferably without modifying your code.

The simplest debugging aid (for any language) is the output statement, print in the shell's case. Indeed,
old-timer programmers debugged their FORTRAN code by inserting WRITE cards into their decks. Y ou
can debug by putting lots of print statements in your code (and removing them later), but you will have
to spend lots of time narrowing down not only what exact information you want but also where you need
to seeit. You will also probably have to wade through lots and lots of output to find the information you
really want.

9.1.1 Set Options

Luckily, the shell has afew basic features that give you debugging functionality beyond that of print.
The most basic of these are options to the set -0 command (as covered in Chapter 3, Customizing Y our

Environment). These options can also be used on the command line when running a script, as Table 9.1
shows.

The ver bose option simply echoes (to standard error) whatever input the shell gets. It is useful for
finding the exact point at which a script is bombing. For example, assume your script looks like this:

fred
bob
dave
pet e
ed
ral ph

Table 9.1: Debugging Options
set -0 Option Command-line Option Action

noexec -n Don't run commands; check for syntax errors only
verbose -V Echo commands before running them
xtrace -X Echo commands after command-line processing

None of these commands are standard UNIX programs, and they al do their work silently. Say the script
crashes with a cryptic message like "segmentation violation." Thistells you nothing about which
command caused the error. If you type ksh -v scriptname, you might see this:

fred

bob

dave

segnent ati on viol ation

pet e

ed

ral ph

Now you know that dave is the probable culprit-though it is also possible that dave bombed because of

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_01.htm (2 of 8) [2/8/2001 5:00:56 PM]

[Chapter 9] Debugging Shell Programs
something it expected fred or bob to do (e.g., create an input file) that they did incorrectly.

The xtrace option is more powerful: it echoes command lines after they have been through parameter
substitution, command substitution, and the other steps of command-line processing (as listed in Chapter
Chapter 7, Input/Output and Command-line Processing). For example:

$ set -0 xtrace

$ fred=bob

+ fred=bob

$ print "$fred”

+ print bob

bob

$Is -1 $(whence enmcs)

+ whence enacs

+ |Is -1 [usr/share/bin/emacs

-rwxr-xr-x 1 root 1593344 Apr 8 1991 /usr/share/bin/emacs
$

Asyou can see, xtrace starts each lineit printswith +. Thisis actually customizable: it's the value of the
built-in shell variable PS4. So if you set PS4 to "xtrace-> " (e.g., in your .profile or environment file),
then you'll get xtrace listings that ook like this:

$1s -1 $(whence enacs)

Xt race-> whence emacs

xtrace-> |s -1 [usr/share/bin/ emacs

-rwxr-xr-x 1 root 1593344 Apr 8 1991 /usr/share/bin/emacs
$

An even better way of customizing PS4 isto use a built-in variable we haven't seen yet: LINENO, which
holds the number of the currently running linein a shell script. Put thislinein your .profile or
environment file:

PS4="11ne $LI NENO

We use the same technique as we did with PS1 in Chapter 3: using single quotes to postpone the
evaluation of the string until each time the shell prints the prompt. Thiswill print messages of the form
line N: in your trace output. Y ou could even include the name of the shell script you're debugging in this
prompt by using the positional parameter $0:
PS4="$0 |ine $LI NENO
As another example, say you are trying to track down abug in a script called fred that contains this code:
dbf ng=%$1. f nqg

fﬁars:$(cut -f3 -d" ' $df bn)

Y ou typefred bob to run it in the normal way, and it hangs. Then you type ksh -x fred bob, and you see
this:

+ dbf ng=bob. f ng

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_01.htm (3 of 8) [2/8/2001 5:00:56 PM]

[Chapter 9] Debugging Shell Programs
+ + cut -f3 -d

It hangs again at this point. Y ou notice that cut doesn't have a filename argument, which means that there
must be something wrong with the variable dbfmq. But it has executed the assignment statement
dbfmqg=bob.fmq properly... ah-hah! Y ou made atypo in the variable name inside the command
substitution construct. [2] You fix it, and the script works properly.

[2] We should admit that if you turned on the nounset option at the top of this script, the
shell would have flagged this error.

If the code you are trying to debug calls functions that are defined elsewhere (e.g., in your .profile or
environment file), you can trace through these in the same way with an option to the typeset command.
Just enter the command typeset -ft functname, and the named function will be traced whenever it runs.
Type typeset +ft functname to turn tracing off.

The last option is noexec, which reads in the shell script, checks for syntax errors, but doesn't execute
anything. It'sworth using if your script is syntactically complex (lots of loops, code blocks, string
operators, etc.) and the bug has side effects (like creating alarge file or hanging up the system).

Y ou can turn on these options with set -0 in your shell scripts, and, as explained in Chapter 3, turn them
off with set +o option. For example, if you're debugging a script with a nasty side effect, and you have
localized it to a certain chunk of code, you can precede that chunk with set -0 noexec (and, perhaps,
closeit with set +0 noexec) to avoid the side effect.

9.1.2 Fake Signals

A more sophisticated set of debugging aidsis the shell's three "fake signals,” which can be used intrap
statements to get the shell to act under certain conditions. Recall from the previous chapter that trap
allowsyou to install some code that runs when a particular signal is sent to your script.

Fake signals act like real ones, but they are generated by the shell (as opposed to real signals, which the
underlying operating system generates). They represent runtime events that are likely to be interesting to
debuggers-both human ones and software tools-and can be treated just like real signals within shell
scripts. The three fake signals and their meanings are listed in Table 9.2.

Table 9.2: Fake Signals

Fake Signal When Sent

EXIT The shell exits from afunction or script
ERR A command returns a non-0 exit status
DEBUG After every statement

9.1.2.1 EXIT

The EXIT trap, when set, will run its code when the function or script within which it was set exits.
Here'sasimple example:

function func {
print 'start of the function'

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_01.htm (4 of 8) [2/8/2001 5:00:56 PM]

[Chapter 9] Debugging Shell Programs

trap "print /'exiting fromthe function/'' EXIT
}

print 'start of the script'
trap 'print /'exiting fromthe script/''" EXIT
func

If you run this script, you will see this output:

start of the script

start of the function
exiting fromthe function
exiting fromthe script

In other words, the script starts by printing a message. Then it sets the trap for its own exit, then calls the
function. The function does the same-prints a message and sets atrap for its exit. (Remember that
functions can have their own local traps that supersede any traps set by the surrounding script.)

The function then exits, which causes the shell to send it the fake signal EXIT, which in turn runs the
code print ' exiting from the function' . Then the script exits, and itsown EXIT trap codeisrun.

An EXIT trap occurs no matter how the script or function exits-whether normally (by finishing the last
statement), by an explicit exit or return statement, or by receiving a"rea" signal such asINT or TERM.
Consider the following inane number-guessing program:

trap 'print /' Thank you for playing!/''" EXIT

magi cnunr$(($RANDOWA0+1))
print 'Guess a nunber between 1 and 10:'

whi | e read guess' ?nunber> '; do
sl eep 10
if (($guess == $magicnum)); then
print 'R ght!’
exit
fi
print 'Wong!'
done

This program picks a number between 1 and 10 by getting a random number (the built-in variable
RANDOM), extracting the last digit (the remainder when divided by 10), and adding 1. Then it prompts
you for a guess, and after 10 seconds, it will tell you if you guessed right.

If you did, the program will exit with the message, "Thank you for playing!", i.e., it will run the EXIT
trap code. If you were wrong, it will prompt you again and repeat the process until you get it right. If you
get bored with thislittle game and hit [CTRL-C] while waiting for it to tell you whether you were right,
you will also see the message.

9.1.2.2 ERR

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_01.htm (5 of 8) [2/8/2001 5:00:56 PM]

[Chapter 9] Debugging Shell Programs

The fake signal ERR enables you to run code whenever acommand in the surrounding script or function
exits with non-zero status. Trap code for ERR can take advantage of the built-in variable ?, which holds
the exit status of the previous command. It "survives' the trap and is accessible at the beginning of the
trap-handling code.

A simple but effective use of thisisto put the following code into a script you want to debug:
function errtrap {
es=$?
print "ERROR: Command exited with status $es.”
}

trap errtrap ERR

Thefirst line saves the non-zero exit status in the variable es. This code enables you to see which
command in your script exits with error status and what the statusis.

For example, if the shell can't find acommand, it returns status 1. If you put the code in a script with a
line of gibberish (like "Iskdjfafd"), the shell will respond with:

scriptname[N : Iskdjfafd: not found
ERROR: conmand exited with status 1.

N isthe number of the line in the script that contains the bad command. In this case, the shell prints the
line number as part of its own error-reporting mechanism, since the error was a command that the shell
could not find. But if the non-0 exit status comes from another program, the shell won't report the line
number. For example;

function errtrap {

es=$?

print "ERROR: Command exited with status $es.”
}

trap errtrap ERR

function bad {
return 17
}

bad
Thiswill only print, ERROR: Command exited with status 17.

It would obvioudly be an improvement to include the line number in this error message. The built-in
variable LINENO exists, but if you useit inside afunction, it evaluates to the line number in the
function, not in the overal file. In other words, if you used $L INENO in the print statement in the
errtrap routine, it would always evaluate to 2.

To get around this problem, we simply pass $L INENO as an argument to the trap handler, surrounding it
in single quotes so that it doesn't get evaluated until the fake signal actually comesin:

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_01.htm (6 of 8) [2/8/2001 5:00:56 PM]

[Chapter 9] Debugging Shell Programs

function errtrap {
es=$?
print "ERROR line $1. Command exited with status $es."

}
trap "errtrap $LI NENO ERR

If you use this with the above example, the result is the message, ERROR line 12: Command exited
with status 17. Thisis much more useful. We'll see a variation on this technique shortly.

This ssimple code is actually not a bad all-purpose debugging mechanism. It takes into account that a
non-0 exit status does not necessarily indicate an undesirable condition or event: remember that every
control construct with a conditional (if, while, etc.) uses anon-0 exit status to mean "false". Accordingly,
the shell doesn't generate ERR traps when statements or expressions in the "condition™ parts of control
structures produce non-0 exit statuses.

But a disadvantage is that exit statuses are not as uniform (or even as meaningful) as they should be-as
we explained in Chapter 5, Flow Control. A particular exit status need not say anything about the nature

of the error or even that there was an error.

9.1.2.3 DEBUG

Thefinal fake signal, DEBUG, causes the trap code to be run after every statement in the surrounding
function or script. This has two possible uses. First is the use for humans, as a sort of a"brute force"
method of tracking a certain element of a program's state that you notice is going awry.

For example, you notice that the value of a particular variable is running amok. The naive approach
would be to put in lots of print statementsto check the variable's value at several points. The DEBUG
trap makes this easier by letting you do this:

function dbgtrap {
print "badvar is $badvar "
}

trap dbgtrap DEBUG
...section of code in which problemoccurs...

trap - DEBUG # turn off DEBUG trap
This code will print the value of the wayward variable after every statement between the two traps.

The second and far more important use of the DEBUG trap is as a primitive for implementing Korn shell
debuggers. In fact, it would be fair to say that the DEBUG trap reduces the task of implementing a useful
shell debugger from a large-scal e software devel opment project to a manageable exercise. Read on.

4 PREVIOUS HOME NEXT »
8.6 Subshells BOOK INDEX 9.2 A Korn Shell Debugger

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_01.htm (7 of 8) [2/8/2001 5:00:56 PM]

[Chapter 9] Debugging Shell Programs

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_01.htm (8 of 8) [2/8/2001 5:00:56 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 9] 9.2 A Korn Shell Debugger

Learning the Korn Shell

@ PREVIOUS Chapter 9 HEXT B
Debugging Shell Programs

9.2 A Korn Shell Debugger

Commercialy available debuggers give you much more functionality than the shell's set options and fake signals. The most
advanced have fabulous graphical user interfaces, incremental compilers, symbolic evaluators, and other such amenities. But just
about all modern debuggers-even the more modest ones-have features that enable you to "peek” into a program while it's running, to
examineit in detail and in terms of its source language. Specifically, most debuggers let you do these things:

« Specify points at which the program stops execution and enters the debugger. These are called breakpoints.
« Execute only abit of the program at atime, usually measured in source code statements. This ability is often called stepping.

« Examine and possibly change the state of the program (e.g., values of variables) in the middle of arun, i.e., when stopped at a
breakpoint or after stepping.

« Doall of the above without having to change the source code.

Our debugger, called kshdb, has these features and afew more. Although it's a basic tool, without too many "bells and whistles’, it
isreal. [3] The codeis available from an anonymous FTP archive, as described in Appendix C, Obtaining Sample Programs; if you
don't have access to the Internet, you can type or scan the code in. Either way, you can use kshdb to debug your own shell scripts,
and you should feel free to enhance it. We'll suggest some enhancements at the end of this chapter.

[3] Unfortunately, kshdb won't work completely on SunOS versions 4.1.x and older.

9.2.1 Structure of the Debugger

The code for kshdb has several features worth explaining in some detail. The most important is the basic principle on which it
works: it turns ashell script into a debugger for itself, by prepending debugger functionality to it; then it runs the new script.

9.2.1.1 The driver script

Therefore the code has two parts: the part that implements the debugger's functionality, and the part that installs that functionality
into the script being debugged. The second part, which we'll seefirst, isthe script called kshdb. It's very simple:

kshdb -- Korn Shell debugger
Main driver: constructs full script (with preanble) and runs it

print 'Korn Shell Debugger version 1.0\n'

_gui neapi g=%$1
if [[! -r $11]; then # file not found or readabl e
print "Cannot read $_gui neapig." >&2
exit 1
fi
shift
_tnpdir=/tnp
_libdir=.
_dbgfile=$_tnpdir/kshdb$$ # tenp file for script being debugged (copy)

cat $_libdir/kshdb.pre $_guineapig > $ _dbgfile
exec ksh $_dbgfile $_guineapig $_tnpdir $_libdir "$@

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (1 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

kshdb takes as argument the name of the script being debugged, which for the sake of brevity we'll call the guinea pig. Any
additional arguments will be passed to the guinea pig as its positional parameters.

If the argument isinvalid (the file isn't readable), kshdb exits with error status. Otherwise, after an introductory message, it
constructs atemporary filename in the way we saw in the last chapter. If you don't have (or don't have access to) /tmp on your
system, then you can substitute a different directory for _tmpdir. [4] Also, make surethat _libdir is set to the directory where the
kshdb.pre and kshdb.fns files (which we'll see soon) reside. /usr/lib isagood choice if you have accesstoit.

[4] All function names and variables (except those local to functions) in kshdb have names beginning with an
underscore (_), to minimize the possibility of clashes with namesin the guineapig.

The cat statement builds the temp file: it consists of afile we'll see soon called kshdb.pre, which contains the actual debugger code,
followed immediately by a copy of the guinea pig. Therefore the temp file contains a shell script that has been turned into a
debugger for itself.

9.2.1.2 exec

The last line runs this script with exec, a statement we haven't seen yet. We've chosen to wait until now to introduce it because-as
we think you'll agree-it can be dangerous. exec takes its arguments as a command line and runs the command in place of the current
program, in the same process. In other words, the shell running the above script will terminate immediately and be replaced by
exec's arguments. The situations in which you would want to use exec are few, far between, and quite arcane-though thisis one of
them. [5]

[5] exec can also be used with an 1/0 redirector only; this causes the redirector to take effect for the remainder of the
script or login session. For example, the line exec 2>errlog at the top of a script directs standard error to the file errlog
for the entire script.

In this case, exec just runs the newly-constructed shell script, i.e., the guinea pig with its debugger, in another Korn shell. It passes
the new script three arguments-the names of the original guinea pig ($_guineapig), the temp directory ($_tmpdir), and the
directory where kshdb.pre and kshdb.fns are kept-followed by the user's positional parameters, if any.

9.2.2 The Preamble

Now wel'll see the code that gets prepended to the script being debugged; we call this the preamble. It's kept in the following file
kshdb.pre, which is also fairly smple.

kshdb preanbl e

prepended to shell script being debugged

argunments:

$1 = nane of original guinea-pig script

$2 = directory where tenp files are stored
$3 = directory where kshdb. pre and kshdb.fns are stored
_dbgfil e=$0
_gui neapi g=%$1
_tnpdi r=%$2
_l'i bdir=$%$3
shift 3 # nove user's args into place
. $_libdir/kshdb. fns # read in the debuggi ng functions
_linebp=
_stringbp=
let trace=0 # initialize execution trace to off
let i=1 # read guinea-pig file into lines array
while read -r _lines[$_i]; do
let _i=$_i+1
done < $_gui neapi g
trap _cleanup EXIT # erase files before exiting
et _steps=1 # no. of stnmts to run after trap is set

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (2 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

LI NENO=- 1
trap ' _steptrap $LI NENO DEBUG

Thefirst few lines save the three fixed arguments in variables and shift them out of the way, so that the positional parameters (if
any) are those that the user supplied on the command line as arguments to the guinea pig. Then, the preamble reads in another file,
kshdb.fns, that contains the "meat" of the debugger as function definitions. We put this code in a separate file to minimize the size
of the temp file. We'll examine kshdb.fns shortly.

Next, kshdb.pre initializes the two breakpoint lists to empty and execution tracing to off (see below), then reads the guinea pig into
an array of lines. We do the latter so that the debugger can access lines in the script when performing certain checks, and so that the
execution trace feature can print lines of code as they execute.

Thereal fun beginsin the last group of code lines, where we set up the debugger to start working. We use two trap commands with
fake signals. Thefirst sets up a cleanup routine (which just erases the temporary file) to be called on EXIT, i.e., when the script
terminates for any reason. The second, and more important, sets up the function _steptrap to be called after every statement.

_steptrap gets an argument that evaluates to the number of the line in the guinea pig that just ran. We use the same technique with
the built-in variable LINENO that we saw earlier in the chapter, but with an added twist: if you assign avalueto LINENO, it uses
that as the next line number and increments from there. The statement L INENO=-1 re-starts line numbering so that the first linein
the guineapigisline 1.

After the DEBUG trap is set, the preamble ends with a "do-nothing" statement (:). The shell executes this statement and enters
_steptrap for thefirst time. The variable _stepsis set up so that _steptrap executesitslast elif clause, asyou'll see shortly, and
enters the debugger. As aresult, execution halts just before the first statement of the guinea pig is run, and the user sees a kshdb>
prompt; the debugger is now in full operation.

9.2.3 Debugger Functions

The function _steptrap is the entry point into the debugger; it is defined in the file kshdb.fns, which is given in its entirety at the
end of this chapter. Hereis_steptrap:

Here after each statenment in script being debugged.
Handl e singl e-step and breakpoints.
function _steptrap {
_curline=$1 # arg is no. of line that just ran

(($_trace)) && _nmsg "$PS4 line $_curline: ${_lines[$_curline]}"

if (($_steps >= 0)); then # if in step node
let _steps="$_ steps - 1" # decrenent counter
fi
first check if Iine numor string breakpoint reached
if _at_linenunbp || _at_stringbp; then
_msg "Reached breakpoint at line $ curline"
_cndl oop # breakpoint, enter debugger

if not, check whether break condition exists and is true
elif [[-n $_brcond]] && eval $ brcond; then
_meg "Break condition $ brcond true at line $ _curline"

_cndl oop

next, check if step node and nunber of steps is up

elif (($_steps == 0)); then # if step node and time to stop
_nmeg "Stopped at line $ curline"
_cnmdl oop # enter debugger

fi

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (3 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

_sSteptrap starts by setting _curline to the number of the guinea pig line that just ran. If execution tracing is turned on, it prints the
PS4 execution trace prompt (ala xtrace mode), the line number, and the line of code itself.

Then it does one of two things: enter the debugger, the heart of which isthe function _cmdloop, or just return so that the shell can
execute the next statement. It chooses the former if a breakpoint or break condition (see below) has been reached, or if the user
stepped into this statement.

9.2.3.1 Commands

WEe'll explain shortly how _steptrap determines these things;, now we'll look at _cmdloop. It'satypical command loop, resembling
a combination of the case statements we saw in Chapter 5 and the calculator loop we saw in the previous chapter.

Debugger command | oop.
Here at start of debugger session, when breakpoi nt reached,
or after single-step.
function _cndl oop {
typeset cnd args

while read -s cnd"?kshdb> " args; do
case $cnd in

*bp) _setbp $args ;; # set breakpoint at line numor string.
*bc) _setbc $args ;; # set break condition.

*cb) _clearbp ;; # clear all breakpoints.

*g) return ;; # start/resunme execution

*s) let _steps=${args:-1} # single-step Ntines (default 1) return ;;

*x) _xtrace ;; # toggl e execution trace
*\? | /*h) _nenu ;; # print conmand nenu
*q) exit ;; # quit

**) _msg "lInvalid conmand: $cmd" ;;
*) eval $cnd $args ;; # otherwi se, run shell command

esac
done

}

At each iteration, cmdloop prints a prompt, reads a command, and processesit. We use read -s so that the user can take advantage
of command-line editing within kshdb. All kshdb commands start with * to prevent confusion with shell commands. Anything that
isn't a kshdb command (and doesn't start with *) is passed off to the shell for execution. Table 9.3 summarizes the debugger
commmands.

Table 9.3: kshdb Commands
Command Action
*bp N Set breakpoint at line N
*bpstr Set breakpoint at next line containing str

*bp List breakpoints and break condition
*bc str Set break condition to str

*bc Clear break condition

*cb Clear all breakpoints

*g Start or resume execution

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (4 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger
*s[N] Step through N statements (default 1)

*X Toggle execution tracing
*h, *? Print ahelp menu
*q Quit

Before we look at the individual commands, it isimportant that you understand how control passes through _steptrap, the
command loop, and the guinea pig.

_steptrap runs after every statement in the guinea pig as aresult of thetrap ... DEBUG statement in the preamble. If a breakpoint
has been reached or the user previously typed in a step command (*), _steptrap calls the command loop. In doing so, it effectively
"interrupts" the shell that is running the guinea pig to hand control over to the user. [6]

[6] In fact, low-level systems programmers can think of the entire trap mechanism as quite similar to an
interrupt-handling scheme.

The user can invoke debugger commands as well as shell commands that run in the same shell as the guinea pig. This means that
you can use shell commands to check values of variables, signal traps, and any other information local to the script being debugged.

The command loop runs, and the user stays in control, until the user types* g, * s, or * q. Let'slook in detail at what happensin each
of these cases.

* g has the effect of running the guinea pig uninterrupted until it finishes or hits a breakpoint. But actualy, it simply exits the
command loop and returnsto _steptrap, which exits as well. The shell takes control back; it runs the next statement in the guinea
pig script and calls _steptrap again. Assuming thereis no breakpoint, thistime _steptrap will just exit again, and the process will
repeat until there is abreakpoint or the guinea pig is done.

9.2.3.2 Stepping

When the user types * s, the command loop code sets the variable _stepsto the number of steps the user wants to execute, i.e., to the
argument given. Assume at first that the user omits the argument, meaning that _stepsis set to 1. Then the command loop exits and
returns control to _steptrap, which (as above) exits and hands control back to the shell. The shell runs the next statement and
returnsto _steptrap, which seesthat _stepsis 1 and decrementsit to 0. Then the second €lif conditional seesthat _stepsisO, so it
prints a"stopped” message and calls the command |oop.

Now assume that the user supplies an argument to * s, say 3. _stepsis set to 3. Then the following happens:

1. After the next statement runs, _steptrap iscalled again. It entersthe first if clause, since _stepsis greater than 0. _steptrap
decrements _stepsto 2 and exits, returning control to the shell.

2. This process repeats, another step in the guinea pig isrun, and _steps becomes 1.

3. A third statement isrun and we're back in _steptrap. _stepsis decremented to O, the second €lif clauseisrun, and _steptrap
breaks out to the command loop again.

The overall effect isthat three steps run and then the debugger takes over again.
Finally, the * g command calls the function _cleanup, which just erases the temp file and exits the entire program.

All other debugger commands (* bp, * bc, * cb, * x and shell commands) cause the shell to stay in the command loop, meaning that
the user prolongs the "interruption” of the shell.

9.2.3.3 Breakpoints

Now well examine the breakpoint-related commands and the breakpoint mechanism in general. The * bp command calls the
function _setbp, which can set two kinds of breakpoints, depending on the type of argument given. If it isanumber, it'streated asa
line number; otherwise it's interpreted as a string that the breakpoint line should contain.

For example, the command * bp 15 sets a breakpoint at line 15, and * bp grep sets a breakpoint at the next line that contains the
string gr ep-whatever number that turns out to be. Although you can always look at a numbered listing of afile, [7] string arguments
to * bp can make that unnecessary.

[7] pr -n filename prints a numbered listing to standard output on System V-derived versions of UNIX. Some older
BSD-derived systems don't support it. If this doesn't work on your system, try cat -n filename, or if that doesn't work,

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (5 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

create a shell script with thissingle line:
awk '{ print NR "\t", $0 }' $1

Hereisthe code for _setbp:

Set breakpoint(s) at given |ine nunbers and/or strings
by appending lines to breakpoint file
function _setbp {
if [[-z $1]1]; then
_listhp
elif [[$1 = +([0-9])]]; then # nunmber, set bp at that line
_linebp="%${_linebp}$1|"
_nmsg "Breakpoint at line " $1
el se # string, set bp at next line w string
_stringbp="%{_stringbp}$@"
_nmeg "Breakpoint at next line containing $@"
fi
}

_setbp sets the breakpoints by storing them in the variables _linebp (line number breakpoints) and _stringbp (string breakpoints).
Both have breakpoints separated by pipe character delimiters, for reasons that will become clear shortly. Thisimplies that
breakpoints are cumul ative; setting new breakpoints does not erase the old ones.

The only way to remove breakpoints is with the command * cb, which (in function _clearbp) clears al of them at once by simply
resetting the two variables to null. If you don't remember what breakpoints you have set, the command * bp without arguments lists
them.

Thefunctions _at_linenumbp and _at_stringbp are called by _steptrap after every statement; they check whether the shell has
arrived at aline number or string breakpoint, respectively.

Hereis_at_linenumbp:
See if next line no. is a breakpoint.

function _at _|inenunbp {
[[$_curline = @${_linebp%|}) 1]
}

_at_linenumbp takes advantage of the pipe character as the separator between line numbers: it constructs aregular expression of
the form @(N1|N2|...) by taking the list of line numbers _linebp, removing the trailing |, and surrounding it with @(and). For
example, if $_linebp is 3]15|19), then the resulting expression is @(3|15|19).

If the current lineis any of these numbers, then the conditional becomestrue, and _at_linenumbp aso returns a"true” (0) exit
status.

The check for a string breakpoint works on the same principle, but it's slightly more complicated; hereis_at_stringbp:

Search string breakpoints to see if next line in script matches.
function _at _stringbp {

[[-n $_stringbp & ${ lines[$ curline]} = *@${_stringbp%|})*]]
}

The conditional first checksif $_stringbp isnon-null (meaning that string breakpoints have been defined). If not, the conditional
evaluatesto false, but if so, its value depends on the pattern match after the & & -which tests the current line to see if it contains any
of the breakpoint strings.

The expression on the right side of the equal signissimilar to theonein _at_linenumbp above, except that it has* before and after
it. This gives expressions of the form * @(SL|S2|...)* , where the Ss are the string breakpoints. This expression matches any line that
contains any one of the possibilitiesin the parenthesis.

The |eft side of the equal sign isthe text of the current line in the guinea pig. So, if this text matches the regular expression, then
we've reached a string breakpoint; accordingly, the conditional expression and _at_stringbp return exit status O.

_steptrap usesthe || ("or") construct initsif statement, which evaluates to trueif either type of breakpoint occurred. If so, it calls
the main command |oop.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (6 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

9.2.3.4 Break conditions

kshdb has another feature related to breakpoints: the break condition. Thisis a string that the user can specify that is evaluated as a
command,; if itistrue (i.e, returns exit status 0), the debugger enters the command loop. Since the break condition can be any line
of shell code, there's lots of flexibility in what can be tested. For example, you can break when a variable reaches a certain value
(e.g., ($x <0))) or when a particular piece of text has been written to afile (grep string file). Y ou will probably think of all kinds
of usesfor thisfeature. [8] To set abreak condition, type * bc string. To remove it, type * bc without arguments-thisinstalls the null
string, which isignored. _steptrap evaluates the break condition $_brcond only if it's non-null. If the break condition evaluatesto
0, then the if clause is true and, once again, _steptrap calls the command loop.

[8] Bear in mind that if your break condition produces any standard output (or standard error), you will seeit after
every statement. Also, make sure your break condition doesn't take along time to run; otherwise your script will run
very, very slowly.

9.2.3.5 Execution tracing

The final feature is execution tracing, available through the * x command. This feature is meant to overcome the fact that a kshdb
user can't use set -0 xtrace while debugging (by entering it as a shell command), because its scopeis limited to the _cmdloop
function.

The function _xtrace "toggles' execution tracing by simply assigning to the variable _trace the logical "not" of its current value, so
that it alternates between O (off) and 1 (on). The preamble initializesit to 0.

9.2.3.6 Limitations

kshdb was not designed to push the state of the debugger art forward or to have an overabundance of features. It has the most useful
basic features, its implementation is compact and (we hope) comprehensible, and it does have some important limitations. The ones
we know of are described in the list that follows.

1. The shell should really have the ability to trap before each statement, not after. Thisis the way most commercial source-code
debuggers work. [9] At the very least, the shell should provide avariable that contains the number of the line about to run
instead of (or in addition to) the number of the line that just ran.

[9] Thiskind of functionality is expected to be added in the next Korn shell release.
2. String breakpoints cannot begin with digits or contain pipe characters (|) unless they are properly escaped.

3. You can only set breakpoints-whether line number or string-on lines in the guinea pig that contain what the shell's
documentation calls simple commands, i.e., actual UNIX commands, shell built-ins, function cals, or aliases. If you set a
breakpoint on aline that contains only whitespace or acomment, the shell will always skip over that breakpoint. More
importantly, control keywords like while, if, for, do, done, and even conditionals ([[...]] and ((...))) won't work either, unless
asimple command is on the same line.

4. kshdb will not "step down" into shell scripts that are called from the guinea pig. To do this, you have to edit your guinea pig
and change a call to scriptname to kshdb scriptname.

5. Similarly, nested subshells are treated as one gigantic statement; you cannot step down into them at all.
6. The guinea pig should not trap on the fake signals DEBUG or EXIT; otherwise the debugger won't work.

7. Variablesthat are typeset (see Chapter 4, Basic Shell Programming) are not accessible in break conditions. However, you
can use the shell command print to check their values.

8. Command error handling is weak. For example, a non-numeric argument to * swill cause it to bomb.

Many of these are not insurmountable; see the exercises.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (7 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

9.2.4 Sample kshdb Session

Now wel'll show atranscript of an actual session with kshdb, in which the guinea pig is the solution to Task 6-2. For convenience,
hereis a numbered listing of the script, which welll call Iscol.

1 set -A filenanmes $(Is $1)

2 typeset -L14 fnane

3 | et count=0

4 | et nuntol s=5

5

6 while [[$count -It ${#filenanes[*]}]]; do
7 fname=${fi | enanes[$count]}

8 print -n "$fname "

9 | et count="count + 1"

10 if [[$((count % nuncols)) = 0]]; then
11 pri nt # NEWLI NE

12 fi

13 done

14

15 if [[$((count % nunctols)) !'=0]];: then

16 print

17 fi

Here is the kshdb session transcript:

$ kshdb | scol /usr/spool
Korn shel |l Debugger version 1.0

Stopped at line O

kshdb> *bp 4

Breakpoint at line 4

kshdb> *g

Reached breakpoint at line 4

kshdb> print $count $nuntols

05

kshdb> *bc [[$count -eq 10]]

Break when true: [[$count -eq 10]]

kshdb> *g

bwnf s cron | ocks | pd | pd. | ock
mai | ngueue r who secret mai | uucp
Break condition [[$count -eq 10]] true at line 9

kshdb> *bc

Break condition cleared.

kshdb> *bp NEWLI NE

Breakpoi nt at next |ine containing "NEW.I NE".
kshdb> *g

Reached breakpoint at line 11
kshdb> print $count

10

kshdb> | et count=9

kshdb> *g

uucp

Reached breakpoint at line 11
kshdb> *bp

Breakpoi nts at |ines:

4

Breakpoi nts at strings:
NEWLI NE

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (8 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

No break conditi on.
kshdb> *g
uucppublic

$

First, notice that we gave the guinea pig script the argument /usr/spool, meaning that we want to list the files in that directory. We
begin by setting a simple breakpoint at line 4 and starting the script. It stops after executing line 4 (let numcols=5). Then weissue a
shell print command to show that the variables count and numcols are indeed set correctly.

Next, we set a break condition, telling the debugger to kick in when $count is 10, and we resume execution. Sure enough, the
guinea pig prints 10 filenames and stops at line 9, on which $count isincremented. We clear the break condition by typing * bc
without an argument, since otherwise the shell would stop after every statement until the condition becomes fal se.

The next command shows how the string breakpoint mechanism works. We tell the debugger to break when it hits aline that
contains the string NEWLINE. This string isin acomment on line 11. Notice that it doesn't matter that the stringisina
comment-just that the line it's on contain an actual command. We resume execution, and the debugger hits the breakpoint at line 11.

After that, we show how we can use the debugger to change the guinea pig's state while running. We see that $count is still 10; we
changeit to 9. In the next iteration of the while loop, the script accesses the same filename that it just did (uucp), increments count
back to 10, and hits the breakpoint again. Finally, we list breakpoints and let the script execute to its end; it prints out one last
filename and exits.

9.2.5 Exercises

WEe'll conclude this chapter with afew exercises, which are suggested enhancements to kshdb.
1. Improve command error handling in these ways:
1. For numeric argumentsto * bp, check that they are valid line numbers for the particular guinea pig.
2. Check that argumentsto * sare valid numbers.
3. Any other error handling you can think of.
2. Enhance the * cb command so that the user can del ete specific breakpoints (by string or line number).
3. Remove the major limitation in the breakpoint mechanism:

1. Improveit so that if the line number selected does not contain an actual UNIX command, the next closest line above it
is used as the breakpoint instead.

2. Do the same thing for string breakpoints. (Hint: first translate each string breakpoint command into one or more
line-number breakpoint commands.)

4. Implement an option that causes a break into the debugger whenever acommand exits with non-0 status:
1. Implement it as the command-line option -e.

2. Implement it as the debugger commands * be (to turn the option on) and * ne (to turn it off). (Hint: you won't be able to
use the ERR trap, but bear in mind that when you enter _steptrap, $? is still the exit status of the last command that
ran.)

5. Add the ability to "step down" into scripts that the guinea pig calls (i.e., non-nested subshells) as the command-line option -s.
One way of implementing thisis to change the kshdb script so that it "plants’ recursive calls to kshdb in the guinea pig. You
can do this by filtering the guinea pig through aloop that reads each line and determines, with the whence -v and file(1) (see
the man page) commands, if the lineis acall to another shell script.[10] If it is, prepend kshdb -sto the line and write it to the
new file; if not, just passit through asis.

[10] Notice that this method should catch most nested shell scripts but not al of them. For example, it won't
catch shell scriptsthat follow semicolons (e.g., cmdl; cmd2).

6. Add support for multiple break conditions, so that kshdb stops execution when any one of them becomes true and prints a
message that says which oneistrue. Do this by storing the break conditionsin a colon-separated list or an array. Try to make
this as efficient as possible, since the checking will take place after every statement.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (9 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

7. Add any other features you can think of.

If you add significant functionality to kshdb, we invite you to send your version to the author, care of O'Rellly and Associates, at
billr@ora.com on the Internet or, viaUS Mall, at:

O'Reilly & Associates, Inc.
103 Morris St., Suite A
Sebastopol, CA 95472
WEe'll select the best one and publish it in the next revision of our UNIX Power Tools CD-ROM. Remember: there isno "official"

Korn shell debugger, and as more and more programmers realize how powerful the Korn shell is as a programming environment, a
debugger will become more and more necessary. We've made the initial effort, and we leave it up to you to finish the job!

Finally, here is the complete source code for the debugger function file kshdb.fns:

Here after each statenent in script being debugged.
Handl e single-step and breakpoints.
function _steptrap {

_curline=$1 # arg is no. of line that just ran
(($_trace)) & & _nmsg "$PS4 line $_curline: ${_lines[$ _curline]}"
if (($_steps >= 0)); then #if in step node
let _steps="$_steps - 1" # decrement counter
fi
first check if line numor string breakpoint reached
if _at_linenunbp || _at_stringbp; then
_nmeg "Reached breakpoint at line $ curline"
_cmdl oop # breakpoi nt, enter debugger

if not, check whether break condition exists and is true
elif [[-n $_brcond]] && eval $_brcond; then
_nmsg "Break condition $ brcond true at line $_curline"

_cndl oop

next, check if step node and nunber of steps is up

elif (($_steps == 0)); then # if step node and time to stop
_neg "Stopped at line $ curline"
_cmdl oop # enter debugger

fi
}

Debugger command | oop.
Here at start of debugger session, when breakpoint reached,
or after single-step.
function _cndl oop {
typeset cnd args

while read -s cnd"?kshdb> " args; do
case $cnd in

*bp) _setbp $args ;; # set breakpoint at |line numor string.

*bc) _setbc $args ;; # set break condition

*cb) _clearbp ;; # clear all breakpoints.

*g) return ;; # start/resume execution

*s) let _steps=${args:-1} # single-step Ntimes (default 1)
return ;;

*x) _xtrace ;; # toggl e execution trace

\ ¥\ 7?2 | *h) _menu ;; # print command nenu

*q) eX|t ,; # quit

\¥x) “Invalid connand: $cnd"

*) evaI $cnd $args ;; # ot herwi se, run shell command

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (10 of 12) [2/8/2001 5:01:06 PM]

mailto:billr@ora.com

[Chapter 9] 9.2 A Korn Shell Debugger

esac
done

}

See if next line no. is a breakpoint.
function _at _|inenunbp {

[[$_curline = @${_linebp%|}) 1]
}

Search string breakpoints to see if next line in script matches.
function _at_stringbp {

[[-n $_stringbp & ${ lines[$ curline]} = *@${_stringbp%|})* 1]
}

Print the given nmessage to standard error.
function _nsg {

print "$@ >&2
}

Set breakpoint(s) at given |line nunbers and/or strings
by appending lines to breakpoint file
function _setbp {
if [[-z $1]1]; then
_listhbp
elif [[$1 = +([0-9])]]; then # nunmber, set bp at that line
_linebp="%${_I|inebp}$1|"
_nmsg "Breakpoint at line " $1
el se # string, set bp at next line wstring
_stringbp="${_stringbp}$@"
_nmeg "Breakpoint at next line containing $@"
fi
}

Li st breakpoints and break condition.
function _listbp {
_msg "Breakpoints at lines:"

_msg "$(print $_linebp | tr "|" ')"
_nsg "Breakpoints at strings:"
_msg "$(print $_stringbp | tr | ")"

_msg "Break on condition:"
_nmsg "$_brcond"

}

Set or clear break condition
function _setbc {
if [[-n"$@]]; then
_brcond=%ar gs
_nsg "Break when true: $_brcond"
el se
_brcond=
_nmsg "Break condition cleared.”
fi
}

Clear all breakpoints.
function _clearbp {
_l'inebp=

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (11 of 12) [2/8/2001 5:01:06 PM]

[Chapter 9] 9.2 A Korn Shell Debugger

_stringbp=
_msg "All breakpoints cleared.”

}

Toggl e execution trace feature on/off
function _xtrace {
let _trace="! $ trace"
_msg "Execution trace \c"
if (($_trace)); then
_msg "on."
el se
_nmsg "off."
fi
}

Print command nenu
function _menu {
_msg ' kshdb conmands:

*bp N set breakpoint at line N

*bp str set breakpoint at next |line containing str
*bp i st breakpoints and break condition
*bc str set break condition to str

*bc cl ear break condition

*cb clear all breakpoints

*g start/resunme execution

*s [N] execute N statenments (default 1)

*X toggl e execution trace on/off

*h, *? print this nenu

*q quit’

}

Erase tenp files before exiting.
function _cleanup {
rm $_dbgfile 2>/ dev/ nul

}
4@ PREVIOUS HOME HEXT %
9.1 Basic Debugging Aids BOOK INDEX 10. Korn Shell Administration

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch09_02.htm (12 of 12) [2/8/2001 5:01:06 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 10] Korn Shell Administration

| Learning the KOrn Shell

4 PREVIOUS Chapter 10 MEXT

10. Korn Shell Administration

Contents:
Installing the Korn Shell as the Standard Shell

Environment Customization
System Security Features

System administrators use the shell as part of their job of setting up a system-wide environment for all
users. In this chapter, we'll discuss the Korn shell's features that relate to this task from two perspectives:
customization that is available to all users and system security. We assume that you already know the
basics of UNIX system administration. [1]

[1] A good source of information on system administration is Essential System
Administration, a Nutshell Handbook from O'Rellly & Associates, Inc., by AEleen Frisch.

10.1 Installing the Korn Shell as the Standard Shell

As aprelude to system-wide customization, we want to emphasi ze something about the Korn shell that
doesn't apply to most other shells: you can install it asif it were the standard Bourne shell, i.e., as/bin/sh.
Just save the real Bourne shell as another filename, such as /bin/bsh, in case anyone actually needsit for
anything (which is doubtful), then rename your Korn shell as/bin/sh.

Many installations have done this with absolutely no ill effects. Not only does this make the Korn shell
your system's standard login shell, but it also makes most existing Bourne shell scripts run faster, and it
has security advantages that we'll see later in this chapter.

Aswewill seein Appendix A, Related Shells, the Korn shell is backward-compatible with the Bourne

shell except that it doesn't support A as a synonym for the pipe character |. Unless you have an ancient
UNIX system, or you have some very, very old shell scripts, you needn't worry about this.

But if you want to be absolutely sure, ssimply search through al shell scriptsin al directoriesin your
PATH. An easy way to do thisis to use the file command, which we saw in Chapter 5, Flow Control and

Chapter 9, Debugging Shell Programs. file prints "executable shell script”" when given the name of one.
[2] Hereisascript that looks for ~ in shell scriptsin every directory in your PATH:

[2] The exact message varies from system to system; make sure that yours prints this

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_01.htm (1 of 2) [2/8/2001 5:01:12 PM]

[Chapter 10] Korn Shell Administration

message Wwhen given the name of a shell script. If not, just substitute the message your file
command prints for "shell script” in the code below.
| FS=:
for d in $PATH, do
print checking $d:
cd $d
scripts=$(file * | grep '"shell script' | cut -d: -f1)
for f in $scripts; do
grep '' $f /dev/null
done
done

Thefirst line of this script make it possible to use $PATH as an item list in the for loop. For each
directory, it cdsthere and finds al shell scripts by piping the file command into grep and then, to extract
the filename only, into cut. Then for each shell script, it searches for the* character. [3]

[3] Theinclusion of /dev/null in the grep command is a kludge that forces grep to print the
names of files that contain a match, even if thereis only one such file in a given directory.

If you run this script, you will probably find several occurrences of ~-but these should be used within
regular expressionsin grep, sed, or awk commands, not as pipe characters. Assuming thisisthe casg, itis
safe for you to install the Korn shell as/bin/sh.

41 PREVIOUS HOME NEXT »
9.2 A Korn Shell Debugger BOOK INDEX 10.2 Environment
Customization

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_01.htm (2 of 2) [2/8/2001 5:01:12 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 10] 10.2 Environment Customization

| Learning the KOrn Shell

4 PREVIOUS Chapter 10 NEXT B
Korn Shell Administration

10.2 Environment Customization

Like the Bourne shell, the Korn shell usesthe file /etc/profile for system-wide customization. When a
user logs in, the shell reads and runs /etc/profile before running the user's .profile.

We won't cover all the possible commands you might want to put in /etc/profile. But the Korn shell has a
few unique features that are particularly relevant to system-wide customization; we'll discuss them here.

WEell start with two built-in commands that you can use in /etc/profile to tailor your users environments
and constrain their use of system resources. Users can aso use these commandsin their .profile, or at any
other time, to override the default settings.

10.2.1 umask

umask, like the same command in most other shells, lets you specify the default permissions that files
have when users create them. It takes the same types of arguments that the chmod command does, i.e.,
absolute (octal numbers) or symbolic permission values.

The umask contains the permissions that are turned off by default whenever a process creates afile,
regardless of what permission the process specifies. [4]

[4] If you are comfortable with Boolean logic, think of the umask as a number that the
operating system logically XORs with the permission given by the creating process.

WE'll use octal notation to show how thisworks. As you should know, the digits in a permission number
stand (left to right) for the permissions of the owner, owner's group, and all other users, respectively.
Each digit, in turn, consists of three bits, which specify read, write, and execute permissions from left to
right. (If afileisadirectory, the "execute" permission becomes "search” permission, i.e., permission to
cd toit, listitsfiles, etc.)

For example, the octal number 640 equals the binary number 110 100 000. If afile has this permission,
then its owner can read and write it; usersin the owner's group can only read it; everyone else has no
permission on it. A file with permission 755 givesits owner the right to read, write, and execute it and
everyone else the right to read and execute (but not write).

022 isacommon umask value. Thisimpliesthat when afileis created, the "most" permission it could
possibly have is 755-which is the usua permission of an executable that a compiler might create. A text
editor, on the other hand, might create afile with 666 permission (read and write for everyone), but the

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_02.htm (1 of 4) [2/8/2001 5:01:23 PM]

[Chapter 10] 10.2 Environment Customization

umask forces it to be 644 instead.

10.2.2 ulimit

The ulimit command was originally used to specify the limit on file creation size. But the Korn shell
version has options that let you put limits on several different system resources. Table 10.1 liststhe

options.

Table 10.1: ulimit Resource Options

Option Resource Limited

-a All (for printing values only)
-C Corefile size (%2 kb blocks)
-d Process data segment (kb)

-f File size (Y2 kb blocks)

-n File descriptors
-S Process stack segment (kb)
-t Process CPU time (seconds)

-V Virtual memory (kb)

Each takes a numerical argument that specifiesthe limit in units shown in the table. Y ou can aso give
the argument "unlimited" (which may actually mean some physical limit), or you can omit the argument,
in which case it will print the current limit. ulimit -a prints limits (or "unlimited") of all types. You can
only specify one type of resource at atime. If you don't specify any option, -f is assumed.

Some of these options depend on operating system capabilities that don't exist in older UNIX versions. In
particular, some older versions have afixed limit of 20 file descriptors per process (making -n
irrelevant), and some don't support virtual memory (making -v irrelevant).

The -d and -s options have to do with dynamic memory allocation, i.e., memory for which a process asks
the operating system at runtime. It's not necessary for casual usersto limit these, though software
developers may want to do so to prevent buggy programs from trying to allocate endless amounts of
memory due to infinite loops.

The -v option issimilar; it putsalimit on all uses of memory. Y ou don't need this unless your system has
severe memory constraints or you want to limit process size to avoid thrashing.

Y ou may want to specify limitson file size (-f and -c) if you have constraints on disk space. Sometimes
users actually mean to create huge files, but more often than not, ahuge file is the result of a buggy
program that goes into an infinite loop. Software developers who use debuggers like sdb and dbx should
not limit core file size, because core dumps are necessary for debugging.

The -t option is another possible guard against infinite loops. But we would argue that a program that is
in an infinite loop but isn't allocating memory or writing filesis not particularly dangerous; it's better to
leave this unlimited and just let the user kill the offending program.

In addition to the types of resources you can limit, ulimit lets you specify hard or soft limits. Hard limits
can be lowered by any user but only raised by the superuser (root); users can lower soft limits and raise
them-but only as high as the hard limit for that resource.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_02.htm (2 of 4) [2/8/2001 5:01:23 PM]

[Chapter 10] 10.2 Environment Customization

If you give -H along with one (or more) of the options above, ulimit will set hard limits; -S sets soft
limits. Without either of these, ulimit sets both. For example, the following commands set the soft limit
on file descriptors to 64 and the hard limit to unlimited:

ulimt -Sn 64

ulimt -Hn unlimted

When ulimit prints current limits, it prints soft limits unless you specify -H.

10.2.3 Types of Global Customization

The best possible approach to globally-available customization would be a system-wide environment file
that is separate from each user's environment file-just like /etc/profile is separate from each user's
profile.

Unfortunately, the Korn shell doesn't have this feature. If you assign a filename to the ENV environment
variable, it could be overridden in auser's .profile. This alows you to make a default environment file
available for users who don't have their own, but it doesn't let you have a system-wide environment file
that runsin addition to the users.

Nevertheless, the shell gives you afew ways to set up customizations that are availableto all users at al
times. Environment variables are the most obvious; your /etc/profile file will undoubtedly contain
definitions for several of them, including PATH and TERM.

The variable TMOUT is useful when your system supports dialup lines. Set it to anumber N, and if a
user doesn't enter a command within N seconds after the shell last issued a prompt, the shell will
terminate. Thisfeature is helpful in preventing people from "hogging" the dialup lines.

Y ou may want to include some more complex customizations involving environment variables, such as
the prompt string PS1 containing the current directory (as seen in Chapter 4, Basic Shell Programming).

Y ou can also turn on options, such as emacs- or vi- editing modes, trackall to make alias expansion
more efficient and system security tighter, and noclobber to protect against inadvertent file overwriting.
Any shell scripts you have written for general use also contribute to customization.

Unfortunately, it's not possible to create aglobal aias. You can define aliases in /etc/profile, but thereis
no way to make them part of the environment so that their definitions will propagate to subshells. (In
contrast, users can define global aliases by putting their definitionsin environment files.)

However, you can set up global functions. These are an excellent way to customize your system's
environment, because functions are part of the shell, not separate processes. For example, if you define
pushd and popd (see Chapters Chapter 4 through Chapter 6, Command-line Options and Typed
Variables) as exported functions, the shell will run them amost asif they were built-in commands, as

they are in the C shell.

The best way to create global functionsisto use the built-in variable FPATH and the autoload feature
that we introduced in Chapter 4. Just define FPATH as afunction library directory, perhaps

/usr/local/functions, and make it an environment variable by exporting it. In other words, put this or

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_02.htm (3 of 4) [2/8/2001 5:01:23 PM]

[Chapter 10] 10.2 Environment Customization
similar code in /etc/profile:

FPATH=/ usr/ | ocal / functi ons
export FPATH

Then put each global function's definition in afile in that directory with the same name as the function,
and put autoload fname for each of these functionsin /etc/profile.

In either case, we suggest using exported functions for global customization instead of shell scripts.
Given how cheap memory is nowadays, there is no reason why you shouldn't make generally useful
functions part of your users environment.

41 PREVIOUS HOME NEXT &
10.1 Installing the Korn Shell BOOK INDEX 10.3 System Security Features
as the Standard Shell

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_02.htm (4 of 4) [2/8/2001 5:01:23 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Chapter 10] 10.3 System Security Features

| Learning the KOrn Shell

4 PREVIOUS Chapter 10 NEXT B
Korn Shell Administration

10.3 System Security Features

UNIX security is aproblem of legendary notoriety. Just about every aspect of a UNIX system has some
security issue associated with it, and it's usually the system administrator's job to worry about thisissue.

The Korn shell has three features that help solve this problem: the restricted shell, which isintentionally
"brain damaged," the tracked alias facility that we saw in Chapter 3, Customizing Y our Environment,

and privileged mode, which is used with shell scripts that run as if the user were r oot.

10.3.1 Restricted Shell

The restricted shell is designed to put the user into an environment where his or her ability to move
around and write filesis severely limited. It's usually used for "guest" accounts. Y ou can make a user's
login shell restricted by putting rksh or ksh -r in the user's /etc/passwd entry.

The specific constraints imposed by the restricted shell disallow the user from doing the following:

« Changing working directories: cd isinoperative. If you try to use it, you will get the error message
"ksh: cd: restricted".

« Redirecting output to afile: the redirectors >, >|, <>, and >> are not allowed.
« Assigning anew value to the environment variablesSHEL L, ENV, or PATH.

« Specifying any pathnames with slashes (/) in them. The shell will treat files outside of the current
directory as "not found."

These restrictions go into effect after the user's .profile and environment files are run.

This means that the restricted shell user's entire environment is set up in .profile. Since the user can't
overwrite that file, thislets the system administrator configure the environment as he or she seesfit.

Two common ways of setting up such environments are to set up a directory of "safe" commands and
have that directory be the only onein PATH, and to set up a command menu from which the user can't
escape without exiting the shell.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_03.htm (1 of 4) [2/8/2001 5:01:25 PM]

[Chapter 10] 10.3 System Security Features

10.3.2 A System Break-in Scenario

Before we explain the other security features, here is some background information on system security
that should help you understand why they are necessary.

Many problems with UNIX security hinge on aUNIX file attribute called the suid (set user ID) bit. This
Islike a permission bit (see umask above): when an executable file hasit turned on, the file runs with an
effective user ID equal to the owner of the file, which is usually root. The effective user ID is distinct
from thereal user ID of the process.

This feature lets administrators write scripts that do certain things that require root privilege (e.g.,
configure printers) in a controlled way. To set afile's suid bit, the superuser can type chmod 4755
fil enane;the4isthe suid bit.

Modern system administration wisdom says that creating suid shell scriptsisavery, very bad idea. [9]
This has been especially true under the C shell, because its .cshrc environment file introduces numerous
opportunities for break-ins. The Korn shell's environment file feature creates similar security holes,
although the security features we'll see shortly make this problem less severe.

[5] In fact, some versions of UNIX intentionally disable the suid feature for shell scripts.

WEe'll show why it's dangerous to set a script's suid bit. Recall that in Chapter 3 we mentioned that it's not
agood ideato put your personal bin directory at the front of your PATH. Here is a scenario that shows
how this combines with suid shell scriptsto form a security hole: avariation of the infamous " Trojan
horse" scheme.

For this particular technigue to work, the computer cracker has to find a user on the system with an suid
shell script. In addition, the user must have a PATH with his or her personal bin directory listed before
the public bin directories, and the cracker must have write permission on the user's personal bin
directory.

Once the cracker finds a user with these requirements, he or she does the following:
« Looksat the suid script and finds a common utility that it calls. Let's say it's grep.

« Createsthe Trojan horse: ashell script called grep in the user's personal bin directory that looks
like this:

cp /bin/ksh fil enane
chown root filenane
chnod 4755 fil enanme
/bin/grep "$@
rm ~/ bin/grep

filename should be some unremarkabl e filename in a directory with public read and execute
permission, such as/bin or /usr/bin. The file, when created, will be that most heinous of security
holes: an suid interactive shell.

« Sitsback and waits for the user to run the suid shell script-which calls the Trojan horse, which in
turn creates the suid shell and then self-destructs.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_03.htm (2 of 4) [2/8/2001 5:01:25 PM]

[Chapter 10] 10.3 System Security Features

o Runsthe suid shell and creates havoc.

10.3.3 Tracked Aliases

The Korn shell protects against this type of scheme in two ways. First, it defines tracked aliases (see
Chapter 3) for just about all commonly-used utilities: Is, mv, cp, who, grep, and many others. Since

aliasestake priority over executable files, the alias will always run instead of the Trojan horse.

Furthermore, the shell won't let you know about these if you type alias -t to see all tracked aliases. [6]
Y ou'll have trouble finding a command to use as your Trojan horse if you want to break in. Thisisavery
clever-and undocumented-security feature.

[6] Unless you type whence -v command or type command. If command has a tracked alias,
thiswill say so, and it will cause alias -t to report it next time.

10.3.4 Privileged Mode

The second type of protection against Trojan horsesis privileged mode. Thisisaset -0 option (set -0
privileged or set -p), but the shell enters it automatically whenever it executes a script whose suid bit is
Set.

In privileged mode, when an suid Korn shell script isinvoked, the shell does not run the user's
environment file-i.e., it doesn't expand the user's ENV environment variable. Instead, it runsthefile
/etc/suid_profile.

/etc/suid_profile should be written so as to restrict suid shell scriptsin much the same way as the
restricted shell does. At aminimum, it should make PATH read-only (typeset -r PATH or readonly
PATH) and set it to one or more "safe" directories. Once again, this prevents any decoys from being
invoked.

Since privileged mode is an option, it is possible to turn it off with the command set +o privileged (or
set +p). But this doesn't help the potential system cracker: the shell automatically changesits effective
user 1D to be the same as the real user ID-i.e., if you turn off privileged mode, you also turn off suid.

Privileged mode is an excellent security feature; it solves a problem that originated when the
environment file ideafirst appeared in the C shell. Tracked aliases make protection against Trojan horses
even stronger.

Furthermore, both features are strong arguments for installing the Korn shell as/bin/sh. Y our system will
be all the more impervious to break-insif your standard shell has these security features.

Nevertheless, we still recommend against creating suid shell scripts. We have shown how the Korn shell
protects against break-insin one particular situation, but that certainly does not imply that the Korn shell
Is"safe" in any absolute sense. If you really must have suid scripts, you should carefully consider all
relevant security issues.

Finally, if you would like to learn more about UNIX security, we recommend the O'Reilly & Associates
Nutshell Handbook, Practical UNIX Security, by Gene Spafford and Simson Garfinkel.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_03.htm (3 of 4) [2/8/2001 5:01:25 PM]

[Chapter 10] 10.3 System Security Features

41 PREVIOUS HOME MEXT
10.2 Environment BOOK INDEX A. Related Shells
Customization

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/ch10_03.htm (4 of 4) [2/8/2001 5:01:25 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix B] Reference Lists

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS Appendix B MEXT

B. Reference Lists

Contents:
I nvocation Options

Built-in Commands and Keywords
Built-in Shell Variables

Test Operators

Options

Typeset Options

Emacs Mode Commands

Vi Control Mode Commands

B.1 Invocation Options

Hereisalist of the options you can use when invoking the Korn shell. In addition to these, any set option
can be used on the command line; see Table B.5 below. Login shells are usually invoked with the options
-i (interactive), -s (read from standard input), and -m -able job contral).

Option Meaning
-C string Execute string, then exit.
-S Read commands from the standard input. If an argument is given, this flag takes precedence

(i.e., the argument won't be treated as a script name and standard input will be read).
- Interactive shell. Ignore signals TERM, INTR, and QUIT.

-r Restricted shell. See Chapter 10, Korn Shell Administration.

4 PREVIOUS HOME MEXT
A.7 The Future of the Korn BOOK INDEX B.2 Built-in Commands and
Shell Keywords

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appb_01.htm [2/8/2001 5:01:51 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix A] A.7 The Future of the Korn Shell

| Learning the KOrn Shell

4 PREVIOUS Appendix A MEXT

Related Shells

A.7 The Future of the Korn Shell

David Korn continues to enhance the Korn shell at AT& T Bell Labs. At thiswriting, anew releaseisin
beta test-usually the final step before a piece of software is released. However, negotiations between
AT&T and USL (now Novell UNIX Systems Group) over distribution rights could very well postpone
the new shell's public release for a couple of years or more.

Nevertheless, the new Korn shell has significant enhancements that make it worth looking forward to.
These features are subject to change between the time of thiswriting and the new shell's public release.
Here are some highlights:

The ahility to customize key bindings, as in bash and pdksh but applicable to vi- aswell as
emacs-mode. Thisisimplemented as another "fake signal” trap (on keystrokes), so it's extremely
flexible.

Many new customization variables and options.

A greatly expanded set of string operators, providing substrings, substitutions, and other
functionality.

An enhanced array variable facility that provides for associative arrays, which can be addressed by
their contents rather than by indices.

Better prompt string customization capabilities (with command substitution and arithmetic
expression evaluation).

Floating point (real number) arithmetic.
An arithmetic for loop in the style of the C programming language.
A new option to print that allows C language printf()-style output formatting.

The ahbility to add new built-in commands, on systems that support dynamic loading (the dlopen()
system call).

More user control over command lookup order, asin the POSIX standard and bash.
The ability to set timed "alarms’ (with the ALRM signal).
Expanded debugging support through additional fake signal traps.

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_07.htm (1 of 3) [2/8/2001 5:02:01 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm

[Appendix A] A.7 The Future of the Korn Shell

Online help for built-in commands through a standard -? option.

The next release is expected to be incompatible with the 1988 Korn shell in afew ways, some of which
are necessary for POSIX compliance (refer to the section on POSIX in this Appendix for more details):

The alias command will never display tracked aliases unless you specify the option -t.

Functions defined with fname() (the syntax not used in this book) will have weaker
POSI X -compliant semantics. However, functions defined with function fname will remain the
same.

Tilde expansion can take place inside ${...}-style variable expressions, whereas in the 1988 Korn
shell, tildesin these expressions are treated literally.

'will be akeyword, asitisinthe POSIX standard.

Command substitution and arithmetic expression evaluation (in addition to parameter expansion)
will be performed on the variables PS1, PS3, and ENV when they are expanded. Thiswill alow
for more flexible customization of prompt strings and environment files. It also means that grave
accents (©) and $(must be quoted to be taken literally.

Output of the built-in commands set, typeset, and alias will change so that any words containing
special characters are single-quoted-so that these commands' output can be used directly for input.

A new expansion operator, $..." , isused to delimit strings that conform to the ANSI C language
standard for character strings. In the 1988 Korn shell, $ causes the dollar sign to be treated
literally; in future releases, it must be backslash-escaped.

command will be abuilt-in command, asin POSI X.

Command lookup order will change so that built-in commands will be treated asif they were
installed in /bin, i.e., will be found at the same time as /bin is searched when the shell goes through
your PATH. The rules will also change to comply with the POSIX standard that allows certain
built-in commands to take precedence over functions.

Signal traps will propagate to subshells (whether nested or shell scriptsinvoked from shells) until
the subshell issues atrap command (on any signal). Currently, traps do not propagate to subshells;

see Chapter 8.
The built-in variable ERRNO will be dropped; exit statuses will reflect system call error numbers.

Finally, the following features are expected eventually to become obsol ete:

The command fc will be renamed hist; the built-in variable FCEDI T will be renamed
HISTEDIT.

The -t option to alias, set -h, and set -o trackall. Alias tracking will always be on.
The -k or -0 keyword option. Thiswill always be off (see Chapter 3).

Grave accents (") for command substitution. Use $(...) instead.

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_07.htm (2 of 3) [2/8/2001 5:02:01 PM]

[Appendix A] A.7 The Future of the Korn Shell

« The-a (file existence) condition test will be renamed -e, to avoid clashing with the -a operator
(logical "and") inthe old test or [...] syntax.

« The = pattern-matching operator in [[...]] condition tests will be replaced by == for better syntactic
alignment with the C language.

« The arithmetic comparisons -eq, -It, etc. Use ((...)) instead.

41 PREVIOUS HOME HEXT
A.6 Workalikes on PC BOOK INDEX B. Reference Lists
Platforms

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_07.htm (3 of 3) [2/8/2001 5:02:01 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/ksh/appa_06.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix B] B.2 Built-in Commands and Keywords

| Learning the KOrn Shell

41 PREVIOUS

Appendix B
Reference Lists

HEXT »

B.2 Built-in Commands and Keywords

Hereisasummary of all built-in commands and keywords.

Command Chapter Summary

7

alias

bg
break
case

cd
continue
echo
exec
exit
export
eval

fc

fg

for
function
getopts
if

jobs

kill

let
newgrp
print
pwd
read
readonly
return
select

OO0, UITOOPROCITOONNWOI O N R 0101 00w A

OO NP

Do nothing (just do expansions of arguments).

Read file and execute its contents in current shell.

Set up shorthand for command or command line.

Put job in background.

Exit from surrounding for, select, while, or until loop.
Multi-way conditional construct.

Change working directory.

Skip to next iteration of for, select, while, or until loop.

Expand and print arguments (obsol ete).
Replace shell with given program.

Exit from shell.

Create environment variables.

Process arguments as a command line.
Fix command (edit history file).

Put background job in foreground.

L ooping construct.

Define function.

Process command-line options.
Conditional construct.

List background jobs.

Send signal to process.

Arithmetic variable assignment.

Start new shell with new group ID.
Expand and print arguments on standard output.
Print working directory.

Read a line from standard input.

Make variables read-only (unassignable).
Return from surrounding function or script.
Menu generation construct.

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_02.htm (1 of 2) [2/8/2001 5:02:03 PM]

[Appendix B] B.2 Built-in Commands and Keywords

set 3 Set options.

shift 6 Shift command-line arguments.

time Run command and print execution times.

trap 8 Set up signal-catching routine.

typeset 6 Set specia characteristics of variables.

ulimit 10 Set/show process resource limits.

umask 10 Set/show file permission mask.

unalias 3 Remove alias definitions.

unset 3 Remove definitions of variables or functions.

until 5 L ooping construct.

wait 8 Wait for background job(s) to finish.

whence 3 | dentify source of command.

while 5 L ooping construct.

41 PREVIOUS HOME NEXT »
B.1 Invocation Options BOOK INDEX B.3 Built-in Shell Variables

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_02.htm (2 of 2) [2/8/2001 5:02:03 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix B] B.3 Built-in Shell Variables

| Learning the KOrn Shell

41 PREVIOUS

Appendix B NEXT B
Reference Lists

B.3 Built-in Shell Variables

Variable

H*

@O !

CDPATH
COLUMNS
EDITOR
ERRNO
ENV
FCEDIT
FPATH

IFS

HISTFILE
HISTSIZE
HOME
LINENO
LINES
MAIL

Chapter Meaning

4

5
8

~NRANWD>DNWWO™

WwWOwWwWwNMNDN

MAILCHECK 3
MAILPATH 3

OLDPWD
OPTARG
OPTIND
PATH
PS1

PS2

PS3

3

6
6
3
3
3
5

Number of arguments given to current process.

Options given to shell on invocation.

Exit status of previous command.

Process ID of shell process.

L ast argument to previous command.

Process ID of last background command.

List of directoriesfor cd command to search.

Width of display in columns (for editing modes and select).
Used to set editing mode; also used by mail and other programs.
Error number of last system call that failed.

Name of file to run as environment file when shell isinvoked.
Default editor for fc command.

Search path for autoloaded functions.

Internal field separator: list of characters that act as word separators. Normally
set to SPACE, TAB, and NEWLINE.

Name of command history file.

Number of lines kept in history file.

Home (login) directory.

Number of linein script or function that just ran.

Height of display in lines (for select command).

Name of file to check for new mail.

How often (in seconds) to check for new mail.

List of file names to check for new mail, if MAIL isnot set.
Previous working directory.

Argument to option being processed by getopts.

Number of first argument after options.

Search path for commands.

Primary command prompt string.

Prompt string for line continuations.

Prompt string for select command.

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_03.htm (1 of 2) [2/8/2001 5:02:04 PM]

[Appendix B] B.3 Built-in Shell Variables

P 9 Prompt string for xtrace option.

PPID 8 Process ID of parent process.

PWD 3 Current working directory.

RANDOM 9 Random number between 0 and 32767 (2215-1).

REPLY 57 User's response to select command; result of read command if no variable
names given.

SECONDS 3 Number of seconds since shell wasinvoked.

SHELL 3 Full pathname of shell.

TMOUT 10 If set to a positive integer, number of seconds between commands after which
shell automatically terminates.

VISUAL 2 Used to set editing mode.

41 PREVIOUS HOME NEXT »

B.2 Built-in Commands and BOOK INDEX B.4 Test Operators

Keywords

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appb_03.htm (2 of 2) [2/8/2001 5:02:04 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix B] B.4 Test Operators

Ie arﬂfﬁ_g fhE' Korn Sheu

41 PREVIOUS

Appendix B NEXT B
Reference Lists

B.4 Test Operators

These are the operators that are used with the [[...]] construct. They can be logically combined with & &
("and") and || ("or") and grouped with parenthesis.

Operator Truelf...

-afile file exists.

-b file fileisablock devicefile.

-cfile fileis acharacter devicefile.

-d file fileisadirectory.

-f file fileisaregular file.

-gfile file hasits setgid bit set.

-k file file hasits sticky bit set.

-n string string is non-null.

-0 option option is set.

-p file fileis apipe or named pipe (FIFO file).
-r file fileisreadable.

-sfile fileis not empty.

-tN File descriptor N pointsto aterminal.
-u file file hasits setuid bit set.

-w file fileiswriteable.

-x file fileis executable, or fileis adirectory that can be searched.
-z string string is null.

-G file file'sgroup ID isthe same as that of the shell.
-L file fileisasymbolic link.

-O file fileis owned by the shell'suser ID.
-Sfile fileis a socket.

fileA-nt fileB fileAisnewer than fileB.

fileA-ot fileB fileAisolder than fileB.

fileA-ef fileB fileA and fileB point to the samefile.

string = pattern string matches pattern (which can contain wildcards).
string != pattern string does not match pattern.

stringA < stringB stringA comes before stringB in dictionary order.
stringA > stringB stringA comes after stringB in dictionary order.

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_04.htm (1 of 2) [2/8/2001 5:02:06 PM]

[Appendix B] B.4 Test Operators

exprA -eq exprB Arithmetic expressions exprA and exprB are equal.
exprA -ne exprB Arithmetic expressions exprA and exprB are not equal.
exprA-ltexprB exprAislessthan exprB.

exprA -gt exprB exprA is greater than exprB.

exprA-leexprB exprAislessthan or equal to exprB.

exprA -geexprB exprAisgreater than or equal to exprB.

41 PREVIOUS HOME HEXT »
B.3 Built-in Shell Variables BOOK INDEX B.5 Options

LIERARY HOME | UMIX POWER TOOLS | UNIX IN & NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appb_04.htm (2 of 2) [2/8/2001 5:02:06 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix B] B.5 Options

Ie arﬂfﬁ_g fhE' Korn Sheu

41 PREVIOUS

Appendix B
Reference Lists

HEXT »

B.5 Options

These are options that can be turned on with the set -o command. All areinitially off except where noted.
Abbrevs, where listed, are arguments to set that can be used instead of the full set -o command (e.g., set
-aisan abbreviation for set -0 allexport). The abbreviations are actually backward-compatible Bourne

shell options.
Option

Abbrev Meaning

allexport -a Export all subsequently defined variables.

erexit -e Exit the shell when a command exits with non-0 status.

bgnice Run all background jobs at decreased priority (on by default).

emacs Use emacs-style command-line editing.

gmacs Use emacs-style command-line editing, but with a slightly different meaning for
[CTRL-T] (See Chapter 2, Command-line Editing).

ignor eeof Disallow [CTRL-D] to exit the shell.

markdirs Add/ to all directory names generated from wildcard expansion.

monitor -m Enable job control (on by default).

noclobber Don't alow > redirection to existing files.

noexec -n Read commands and check for syntax errors, but don't execute them.

noglob -f Disable wildcard expansion.

nolog Disable command history.

nounset -u Treat undefined variables as errors, not as null.

privileged -p Script isrunning in suid mode.

trackall -h Substitute full pathnames for commands in alias expansions.

verbose -v Print commands (verbatim) before running them.

Vi Use vi-style command-line editing.

Viraw Use vi mode and have each keystroke take effect immediately.

xtrace -X Print commands (after expansions) before running them.

41 PREVIOUS HOME NEXT »

B.4 Test Operators BOOK INDEX B.6 Typeset Options

LIBRARY HOME | UMIX POWER TOOLS | URIX IN & HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING URIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appb_05.htm [2/8/2001 5:02:07 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix B] B.6 Typeset Options

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS Appendix B NEXT B
ReferenceLists

B.6 Typeset Options

These are arguments to the typeset command.

Option Meaning
With no option, create local variable within function.

-L L eft justify and remove leading blanks.

-R Right justify and remove trailing blanks.

-f With no arguments, prints all function definitions.
-f fname Prints the definition of function fname.

+f Prints all function names.

-ft Turns on trace mode for named function(s).

+ft Turns off trace mode for named function(s).

-fu Defines given name(s) as autoloaded function(s).

- Declare variable as an integer.
-l Convert all lettersto lowercase.

-r Make variable read-only.

-u Convert all letters to uppercase.

-X Export variable, i.e., put in environment so that it is passed to subshells.

41 PREVIOUS HOME NEXT »
B.5 Options BOOK INDEX B.7 Emacs Mode Commands

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appb_06.htm [2/8/2001 5:02:08 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix B] B.7 Emacs Mode Commands

| Learning the KOrn Shell

41 PREVIOUS

Appendix B NEXT B
Reference Lists

B.7 Emacs Mode Commands

Hereisacomplete list of all Emacs editing mode commands.

Command

CTRL-A
CTRL-B
CTRL-C
CTRL-D
CTRL-E
CTRL-F
CTRL-J
CTRL-K
CTRL-L
CTRL-M
CTRL-N
CTRL-O
CTRL-P
CTRL-R
CTRL-T
CTRL-U
CTRL-V
CTRL-W
CTRL-Y

Meaning

Move to beginning of line

Move backward one character (without deleting)
Capitalize character after point

Delete one character forward

Move to end of line

Move forward one character

Same as RETURN.

Delete ("kill") forward to end of line

Redisplay theline

Same as RETURN

Next line

Same as RETURN, then display next linein history file
Previous line

Search backward

Transpose two characters

Repeat the following command four times

Print the version of the Korn shell

Delete ("wipe") al characters between point and mark (see below)
Retrieve ("yank™) last item deleted

CTRL-X CTRL-X Exchange point and mark

CTRL-] x
DEL
CTRL-[
ESCb
ESC c
ESCd
ESC f
ESC h
ESC |

Search forward for x, where x is any character
Delete one character backward

Same as ESC (most keyboards)

Move one word backward

Change word after point to all capital letters
Delete one word forward

Move one word forward

Delete one word backward

Change word after point to all lowercase letters

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_07.htm (1 of 2) [2/8/2001 5:02:10 PM]

[Appendix B] B.7 Emacs Mode Commands

ESCp Save characters between point and mark asif deleted

ESC CTRL-H Delete one word backward

ESC CTRL-]x Search backward for x, where x is any character

ESC SPACE Set mark at point

ESC # Insert linein history file for future editing

ESC DEL Delete one word backward

ESC < Moveto first line of history file

ESC > Moveto last line of history file

ESC. Insert last word in previous command line after point

ESC Same as above

ESC ESC Do filename completion on current word

ESC * Do filename expansion on current word

ESC = Insert linein history file for future editing

41 PREVIOUS HOME NEXT »

B.6 Typeset Options BOOK INDEX B.8 Vi Control Mode
Commands

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_07.htm (2 of 2) [2/8/2001 5:02:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix B] B.8 Vi Control Mode Commands

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS Appendix B NEXT B
ReferenceLists

B.8 Vi Control Mode Commands

Hereisacomplete list of all vi control mode commands.

Command Meaning
h Move left one character
Move right one character

I

w Move right one word

b Move left one word

W Move to beginning of next non-blank word

B Move to beginning of preceding non-blank word
e Move to end of current word

E Move to end of current non-blank word

0 Move to beginning of line

A Moveto first non-blank character in line

$ Moveto end of line

[Insert text before current character

a Insert text after current character

I Insert text at beginning of line

A Insert text at end of line

R Overwrite existing text

dh Delete one character backwards

dl Delete one character forwards

db Delete one word backwards

dw Delete one word forwards

dB Delete one non-blank word backwards

dw Delete one non-blank word forwards

ds$ Delete to end of line

do Delete to beginning of line

D Equivalent to d$ (delete to end of line)

dd Equivalent to 0d$ (delete entire line)

C Equivalent to c$ (delete to end of line, enter input mode)
cc Equivalent to Oc$ (delete entire line, enter input mode)
X Equivalent to dl (delete character backwards)

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_08.htm (1 of 2) [2/8/2001 5:02:11 PM]

[Appendix B] B.8 Vi Control Mode Commands

X Equivaent to dh (delete character forwards)
Kk or - Move backward one line

jor+ Move forward one line

G Move to line given by repeat count

/string Search forward for string
?string Search backward for string

n Repeat search forward

N Repeat search backward

X Move right to next occurrence of x

Fx Move |€eft to previous occurrence of x

tXx Move right to next occurrence of x, then back one space

Tx Move left to previous occurrence of X, then forward one space

: Undo motion of last character finding command
X Redo last character finding command

\ Do filename completion

* Do wildcard expansion (onto command line)

\= Do wildcard expansion (as printed list)

~ Invert ("twiddle") case of current character(s)

\ Append last word of previous command, enter input mode

Run the fc command on the current line (actually, run the command fc -e
H{VISUAL:-${EDITOR:-vi}}). Usualy this means run the full vi on the current line.
[CTRL-L] Start anew line and redraw the current line on it

Prepend # (comment character) to the line and send it

X Insert expansion of alias X

4 PREVIOUS HOME NEXT »
B.7 Emacs Mode Commands BOOK INDEX C. Obtaining Sample

Programs

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85w1sos.de/documents/oreilly/unix/ksh/appb_08.htm (2 of 2) [2/8/2001 5:02:11 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

sed & awk

O’REILLY"

By Dale Dougherty & Arnold Robbins; ISBN 1-56592-225-5, 432 pages.
Second Edition, March 1997.
(See the catalog page for this book.)

Search the text of sed & awk.

Index

Table of Contents

Preface

Chapter 1: Power Tools for Editing
Chapter 2. Understanding Basic Operations
Chapter 3: Understanding Regular Expression Syntax
Chapter 4: Writing sed Scripts

Chapter 5. Basic sed Commands

Chapter 6. Advanced sed Commands
Chapter 7: Writing Scripts for awk

Chapter 8: Conditionals, Loops, and Arrays
Chapter 9: Functions

Chapter 10: The Bottom Drawer

Chapter 11: A Flock of awks

Chapter 12: Full-Featured Applications
Chapter 13: A Miscellany of Scripts

Appendix A: Quick Reference for sed
Appendix B: Quick Reference for awk
Appendix C: Supplement for Chapter 12

Examples

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/sedawk/index.htm (1 of 2) [2/8/2001 5:02:15 PM]

http://www.oreilly.com/catalog/sed2/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/ssrch.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_0.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_a.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_b.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_c.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_d.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_e.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_f.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_g.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_h.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_i.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_k.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_l.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_m.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_n.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_o.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_p.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_q.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_r.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_s.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_t.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_u.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_v.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_w.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_x.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/index/idx_y.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/prf1_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch01_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch02_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch03_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch04_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch05_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch06_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch07_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch08_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch09_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch10_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch11_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch12_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/ch13_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/appa_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/appb_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/appc_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/sedawk/examples/index.htm

sed & awk

@ 5 &5 ® B Y

POWER UNIX e
Library Home TOOLS in & Nutshell Learming vi sed & awk the Korm Shell Leamning UMIX

Copyright © 1998 O'Rellly & Associates. All Rights Reserved.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/sedawk/index.htm (2 of 2) [2/8/2001 5:02:15 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/

Learning the vi Editor

O’REILLY"

Learning the Vi Editor \
S

By Linda Lamb; ISBN 0-937175-67-6, 173 pages.
Fifth Edition, August 1994.
(See the catalog page for this book.)

Search the text of Learning the vi Editor.

Index

Table of Contents

Preface to the 5th Edition

Preface

Chapter 1: Thevi Text Editor
Chapter 2: Simple Editing

Chapter 3: Moving Around in aHurry
Chapter 4. Beyond the Basics
Chapter 5: Introducing the ex Editor
Chapter 6: Global Replacement
Chapter 7: Advanced Editing

Appendix A: Quick Reference

Appendix B: Setting Environment Options
Appendix C: ex commands

Appendix D: Problem Checklist

Library Home TOOLS in a Natzhell Learming i sed & awk the Korm Shell Leaming ilil]t

Copyright © 1998 O'Rellly & Associates. All Rights Reserved.

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/vi/index.htm [2/8/2001 5:02:16 PM]

http://www.oreilly.com/catalog/vi5/
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/search/vsrch.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_a.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_b.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_c.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_d.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_e.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_f.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_g.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_h.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_i.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_j.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_l.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_m.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_n.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_o.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_p.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_q.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_r.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_s.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_t.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_u.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_v.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_w.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/index/idx_y.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/prf1_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/prf2_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch01_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch02_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch03_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch04_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch05_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch06_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/ch07_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/appa_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/appb_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/appc_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/vi/appd_01.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/copyrght.htm
http://www.oreilly.com/

[Appendix C] Obtaining Sample Programs

Learning the Korn Shell

4 PREVIOUS Appendix C NEXT B

C. Obtaining Sample Programs

Contents:
ﬂ)
FTPMAIL
BITFTP
UUCP

Some of the examplesin this book are available electronically in anumber of ways: by ftp, ftpmail, bitftp, and uucp. The cheapest,
fastest, and easiest ways are listed first. If you read from the top down, the first one that works for you is probably the best. Use ftp
if you are directly on the Internet. Use ftpmail if you are not on the Internet but can send and receive electronic mail to internet sites
(thisincludes CompuServe users). Use BITFTP if you send electronic mail viaBITNET. Use UUCP if none of the above works.

C1FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with what you should typein
boldface.

% ftp ftp.uu. net

Connected to ftp.uu. net.

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Nanme (ftp.uu.net:kisnet): anonynous

331 Guest login OK send domain style e-nmail address as password.
Password: ki snet @ra.com (use your user nane and host here)

230 Cuest login OK access restrictions apply.

ftp> cd /published/oreilly/nutshell/ksh

250 OAD conmand successful .

ftp> binary (Very inportant! You nust specify binary transfer for conpressed files.)
200 Type set to I.

ftp> get ksh.tar.Z

200 PORT command successful.

150 Openi ng BI NARY node data connection for ksh.tar.Z.

226 Transfer conpl ete.

ftp> quit

221 Goodbye.

%

If the fileis a compressed tar archive, extract the files from the archive by typing:
% zcat ksh.tar.zZ | tar xf -

System V systems require the following tar command instead:
% zcat ksh.tar.ZzZ | tar xof -

If zcat is not available on your system, use separate uncompress and tar commands.

41 PREVIOUS HOME HEXT

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appc_01.htm (1 of 2) [2/8/2001 5:02:31 PM]

[Appendix C] Obtaining Sample Programs

B.8 Vi Control Mode BEOOK INDEX C.2FTPMAIL
Commands

UIERARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appc_01.htm (2 of 2) [2/8/2001 5:02:31 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix C] C.4 UUCP

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS ~ Appendix C
Obtaining Sample Programs

C.4 UUCP

UUCP is standard on virtually all UNIX systems, and is available for IBM-compatible PCs and Apple
Macintoshes. The examples are available by UUCP viamodem from UUNET; UUNET's connect-time

charges apply.
Y ou can get the examples from UUNET whether you have an account or not. If you or your company has
an account with UUNET, you will have a system with adirect UUCP connection to UUNET. Find that
system, and type:
% uucp uunet! ~/published/oreilly/nutshell/ksh/ksh.tar.Z \
your host ! ~/ your nane/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should appear
some time later (up to aday or more) in the directory /usr/spool/uucppublic/yourname. If you don't have
an account but would like one so that you can get electronic mail, then contact UUNET at 703-204-8000.

Try to get the file /published/oreilly/nutshell/ksh/Is-IR.Z as a short test file containing the filenames and
sizes of al thefilesin the directory.

Once you've got the desired file, follow the directions under FTP to extract the files from the archive.

41 PREVIOUS HOME
C.3BITFTP BOOK INDEX

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appc_04.htm [2/8/2001 5:02:36 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix C] C.3 BITFTP

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS ~ Appendix C NEXT B
Obtaining Sample Programs

C.3 BITFTP

BITFTPisamail server for BITNET users. You send it electronic mail messages requesting files, and it
sends you back the files by electronic mail. BITFTP currently serves only users who send it mail from
nodes that are directly on BITNET, EARN, or NETNORTH. BITFTP isa public service of Princeton
University. Here's how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For acomplete help file,
send HEL P as the message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonynous

PASS your Internet email address (not your bitnet address)
CD /published/oreilly/nutshell/ksh

D R

Bl NARY

GET ksh.tar.Z

QUT
Once you've got the desired file, follow the directions under FTP to extract the files from the archive.
Since you are probably not on aUNIX system, you may need to get versions of uudecode, uncompress,
atob, and tar for your system. VMS, DOS, and Mac versions are available. The VM S versions are on
gatekeeper.dec.comin /archive/pub/VMS.

Questions about BITFTP can be directed to Melinda Varian, MAINT@PUCC on BITNET.

41 PREVIOUS HOME HEXT
C.2 FTPMAIL BOOK INDEX C.4 UUCP

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A HUTSHELL | LEARMING VI | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appc_03.htm [2/8/2001 5:02:40 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

[Appendix C] C.2 FTPMAIL

Ie arﬂfﬁ_g fhE' Korn Sheu

4 PREVIOUS ~ Appendix C NEXT B
Obtaining Sample Programs

C.2 FTPMAIL

FTPMAIL isamail server available to anyone who can send electronic mail to and receive it from
Internet sites. Thisincludes any company or service provider that allows email connections to the
Internet. Here's how you do it.

Y ou send mail to ftpmail @online.ora.com. In the message body, give the FTP commands you want to
run. The server will run anonymous FTP for you and mail the files back to you. To get acomplete help
file, send a message with no subject and the single word "help” in the body. The following is an example
mail session that should get you the examples. This command sends you alisting of the filesin the
selected directory, and the requested example files. The listing is useful if there's alater version of the
examples you're interested in.

% mail ftpmail @nline.ora.com

Subj ect :

reply alan@ra.com (where you want files mail ed)
open

chdir /published/oreilly/nutshell/ksh
dir

node binary

uuencode (or btoa if you have it)
get ksh.tar.Z

qui t

%

A signature at the end of the message is acceptable aslong as it appears after "quit."

All retrieved files will be split into 60K B chunks and mailed to you. Y ou then remove the mail headers
and concatenate them into one file, and then uudecode or atob it. Once you've got the desired file, follow
the directions under FTP to extract the files from the archive.

VMS, DOS, and Mac versions of uudecode, atob, uncompress, and tar are available. The VMS versions
are on gatekeeper.dec.comin /archive/pub/VMS

4 PREVIOUS HOME MEXT
C1lFTP BOOK INDEX C.3BITFTP

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appc_02.htm (1 of 2) [2/8/2001 5:03:10 PM]

[Appendix C] C.2 FTPMAIL

LIBRARY HOME | UMIX POWER TOOLS | UNIX IN A NUTSHELL | LEARMING V1 | SED & AWK | KORM SHELL | LEARMING UNIX

http://www.crypto.ncluwlaoi420d85wlsos.de/documents/oreilly/unix/ksh/appc_02.htm (2 of 2) [2/8/2001 5:03:10 PM]

http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/lrnunix/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/unixnut/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/upt/index.htm
http://www.crypto.nc1uw1aoi420d85w1sos.de/documents/oreilly/unix/index.htm

	www.crypto.nc1uw1aoi420d85w1sos.de
	Learning the Korn Shell
	Search Learning the Korn Shell
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Index
	Preface
	[Preface] Summary of Korn Shell Features
	[Preface] Intended Audience
	[Preface] Code Examples
	[Preface] Chapter Summary
	[Preface] Conventions Used in This Handbook
	[Preface] Acknowledgments
	[Preface] We'd Like to Hear From You
	[Appendix A] Related Shells
	[Chapter 1] Korn Shell Basics
	[Chapter 1] 1.2 Scope of This Book
	[Chapter 1] 1.3 History of UNIX Shells
	[Chapter 1] 1.4 Getting the Korn Shell
	[Chapter 1] 1.5 Interactive Shell Use
	[Chapter 1] 1.6 Files
	[Chapter 1] 1.7 Input and Output
	[Chapter 1] 1.8 Background Jobs
	[Chapter 1] 1.9 Special Characters and Quoting
	[Chapter 2] Command-line Editing
	[Chapter 2] 2.2 The History File
	[Chapter 2] 2.3 Emacs Editing Mode
	[Chapter 2] 2.4 Vi Editing Mode
	[Chapter 2] 2.5 The fc Command
	[Chapter 2] 2.6 Finger Habits
	[Chapter 7] Input/Output and Command-line Processing
	[Chapter 3] Customizing Your Environment
	[Chapter 3] 3.2 Aliases
	[Chapter 3] 3.3 Options
	[Chapter 3] 3.4 Shell Variables
	[Chapter 3] 3.5 Customization and Subprocesses
	[Chapter 3] 3.6 Customization Hints
	[Chapter 4] Basic Shell Programming
	[Chapter 4] 4.2 Shell Variables
	[Chapter 4] 4.3 String Operators
	[Chapter 4] 4.4 Command Substitution
	[Chapter 4] 4.5 Advanced Examples: pushd and popd
	[Chapter 5] Flow Control
	[Chapter 5] 5.2 for
	[Chapter 5] 5.3 case
	[Chapter 5] 5.4 select
	[Chapter 5] 5.5 while and until
	[Chapter 6] Command-line Options and Typed Variables
	[Chapter 6] 6.2 Integer Variables and Arithmetic
	[Chapter 6] 6.3 Arrays
	[Chapter 8] Process Handling
	[Chapter 7] 7.3 Command-line Processing
	[Chapter 8] 8.2 Job Control
	[Chapter 8] 8.3 Signals
	[Chapter 8] 8.4 trap
	[Chapter 8] 8.5 Coroutines
	[Chapter 8] 8.6 Subshells
	[Chapter 9] Debugging Shell Programs
	[Chapter 9] 9.2 A Korn Shell Debugger
	[Chapter 10] Korn Shell Administration
	[Chapter 10] 10.2 Environment Customization
	[Chapter 10] 10.3 System Security Features
	[Appendix B] Reference Lists
	[Appendix A] A.7 The Future of the Korn Shell
	[Appendix B] B.2 Built-in Commands and Keywords
	[Appendix B] B.3 Built-in Shell Variables
	[Appendix B] B.4 Test Operators
	[Appendix B] B.5 Options
	[Appendix B] B.6 Typeset Options
	[Appendix B] B.7 Emacs Mode Commands
	[Appendix B] B.8 Vi Control Mode Commands
	[Appendix C] Obtaining Sample Programs
	[Appendix C] C.4 UUCP
	[Appendix C] C.3 BITFTP
	[Appendix C] C.2 FTPMAIL

	HMCKADDACAEKGFFNOGCGFPEDIIAIKAOH:
	form1:
	x:
	f1: FALSE
	f2: FIND
	f3: LOCAL
	f4: 1-56592-054-6
	f5: [EXPANDED]
	f7:

	f6:
	f8:

	KCPBNNAPHGFIKAPDBIDFFGKPCPNMMPPI:
	form1:
	x:
	f1: FALSE
	f2: FIND
	f3: LOCAL
	f4: 1-56592-390-1
	f5: [EXPANDED]
	f7:

	f6:
	f8:

